Selective Recovery of Scandium (Sc) from Sulfate Solution of Bauxite Residue Leaching Using Puromet MTS9580 Ion-Exchange Sorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Methods
2.3. Analysis
2.4. Calculating Methods
2.4.1. Adsorption Efficiency Calculations
2.4.2. Adsorption Isotherm Studies
2.4.3. Adsorption Column Studies
3. Results and Discussion
3.1. Batch Sc Adsorption Experiments and Study of Sorption Mechanism
3.2. Column Adsorption and Breakthrough Modeling
3.2.1. Adsorption Study from Simulated Solution
3.2.2. Adsorption Study from PLS
3.3. Desorption Studies
4. Conclusions
- For the adsorption of Sc on resin, Langmuir equations adequately describe the sorption isotherms under batch conditions. This indicates the chemisorption process on the chelating resin;
- The high values of R2 for the equations of the breakthrough models indicate that the Thomas model is applicable to describing the Sc adsorption from simulated Mg-containing solutions. According to the Langmuir model, the maximum calculated capacity for the batch process was 8.576 mg mL−1, while the maximum capacity for column sorption obtained using the Thomas model was 7.013 mg mL−1;
- The results of the column adsorption study using PLS showed that significant sorption of Ti in addition to Sc was observed. This is apparently due to the properties of Ti being close to the properties of REEs;
- Sc can be efficiently desorbed (>98%) with NaHCO3 solution (200 g L−1) from both simulated and real solutions within a duration of 1.5 h. After 1.5 h of desorption, the concentration of Sc in the desorption solution was 461.5 mg L−1, while the concentration of Mg and Ti was lower than 200 mg L−1 and 50 mg L−1, respectively. This indicates that the resin is very selective towards Sc or rare earth elements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brichkin, V.N.; Vasiliev, V.V.; Bormotov, I.S.; Maksimova, R.I. Production and Recycling of Limes in Integrated Mineral Processing. GZH 2021, 11, 88–94. [Google Scholar] [CrossRef]
- El Deeb, A.B.; Brichkin, V.N.; Kurtenkov, R.V.; Bormotov, I.S. Factors Affecting on the Extraction of Alumina from Kaolin Ore Using Lime-Sinter Process. In Topical Issues of Rational Use of Natural Resources 2019; Litvinenko, V., Ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 502–508. ISBN 978-1-00-301463-8. [Google Scholar]
- Vind, J.; Alexandri, A.; Vassiliadou, V.; Panias, D.; Vind, J.; Alexandri, A.; Vassiliadou, V.; Panias, D. Distribution of Selected Trace Elements in the Bayer Process. Metals 2018, 8, 327. [Google Scholar] [CrossRef]
- Phoung, S.; Williams, E.; Gaustad, G.; Gupta, A. Exploring Global Supply and Demand of Scandium Oxide in 2030. J. Clean. Prod. 2023, 401, 136673. [Google Scholar] [CrossRef]
- Ray, A.R.; Mishra, S. Hydro Metallurgical Technique as Better Option for the Recovery of Rare Earths from Mine Tailings and Industrial Wastes. Sustain. Chem. Pharm. 2023, 36, 101311. [Google Scholar] [CrossRef]
- Salman, A.D.; Juzsakova, T.; Mohsen, S.; Abdullah, T.A.; Le, P.-C.; Sebestyen, V.; Sluser, B.; Cretescu, I. Scandium Recovery Methods from Mining, Metallurgical Extractive Industries, and Industrial Wastes. Materials 2022, 15, 2376. [Google Scholar] [CrossRef] [PubMed]
- Zinoveev, D.; Pasechnik, L.; Fedotov, M.; Dyubanov, V.; Grudinsky, P.; Alpatov, A. Extraction of Valuable Elements from Red Mud with a Focus on Using Liquid Media—A Review. Recycling 2021, 6, 38. [Google Scholar] [CrossRef]
- Ochsenkühn-Petropulu, M.; Lyberopulu, T.; Ochsenkühn, K.M.; Parissakis, G. Recovery of Lanthanides and Yttrium from Red Mud by Selective Leaching. Anal. Chim. Acta 1996, 319, 249–254. [Google Scholar] [CrossRef]
- Wang, W.; Pranolo, Y.; Cheng, C.Y. Recovery of Scandium from Synthetic Red Mud Leach Solutions by Solvent Extraction with D2EHPA. Sep. Purif. Technol. 2013, 108, 96–102. [Google Scholar] [CrossRef]
- Abhilash; Sinha, S.; Sinha, M.K.; Pandey, B.D. Extraction of Lanthanum and Cerium from Indian Red Mud. Int. J. Miner. Process. 2014, 127, 70–73. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Jing, Q.; Zhang, M. Recovery of Scandium from Leachate of Sulfation-Roasted Bayer Red Mud by Liquid–Liquid Extraction. JOM 2017, 69, 2373–2378. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Chen, J.; Zou, D.; Deng, Y.; Li, D. Application of P507 and Isooctanol Extraction System in Recovery of Scandium from Simulated Red Mud Leach Solution. J. Rare Earths 2019, 37, 1002–1008. [Google Scholar] [CrossRef]
- Das, S.; Behera, S.S.; Murmu, B.M.; Mohapatra, R.K.; Mandal, D.; Samantray, R.; Parhi, P.K.; Senanayake, G. Extraction of Scandium(III) from Acidic Solutions Using Organo-Phosphoric Acid Reagents: A Comparative Study. Sep. Purif. Technol. 2018, 202, 248–258. [Google Scholar] [CrossRef]
- Hérès, X.; Blet, V.; Di Natale, P.; Ouaattou, A.; Mazouz, H.; Dhiba, D.; Cuer, F. Selective Extraction of Rare Earth Elements from Phosphoric Acid by Ion Exchange Resins. Metals 2018, 8, 682. [Google Scholar] [CrossRef]
- Korovin, V.; Shestak, Y.; Pogorelov, Y.; Cortina, J.L. Solid Polymeric Extractants (TVEX). Synthesis, Extraction Characterization, and Applications for Metal Extraction Processes. ChemInform 2009, 40, 200927276. [Google Scholar] [CrossRef]
- Kabay, N.; Cortina, J.L.; Trochimczuk, A.; Streat, M. Solvent-Impregnated Resins (SIRs)—Methods of Preparation and Their Applications. React. Funct. Polym. 2010, 70, 484–496. [Google Scholar] [CrossRef]
- Kauczor, H.W.; Meyer, A. Structure and Properties of Levextrel Resins. Hydrometallurgy 1978, 3, 65–73. [Google Scholar] [CrossRef]
- Korovin, V.; Shestak, Y. Scandium Extraction from Hydrochloric Acid Media by Levextrel-Type Resins Containing Di-Isooctyl Methyl Phosphonate. Hydrometallurgy 2009, 95, 346–349. [Google Scholar] [CrossRef]
- Mostajeran, M.; Bondy, J.M.; Reynier, N.; Cameron, R. Mining Value from Waste: Scandium and Rare Earth Elements Selective Recovery from Coal Fly Ash Leach Solutions. Miner. Eng. 2021, 173, 107091. [Google Scholar] [CrossRef]
- Bao, S.; Hawker, W.; Vaughan, J. Scandium Loading on Chelating and Solvent Impregnated Resin from Sulfate Solution. Solvent Extr. Ion Exch. 2018, 36, 100–113. [Google Scholar] [CrossRef]
- Sharaf, M.; Yoshida, W.; Kubota, F.; Goto, M. A Novel Binary-Extractant-Impregnated Resin for Selective Recovery of Scandium. J. Chem. Eng. Jpn. 2019, 52, 49–55. [Google Scholar] [CrossRef]
- Ghosh, A.; Dhiman, S.; Gupta, A.; Jain, R. Process Evaluation of Scandium Production and Its Environmental Impact. Environments 2022, 10, 8. [Google Scholar] [CrossRef]
- Orlandini, K.A. Cation Exchange Separation of Scandium from Rare Earths in Oxalic Acid Media. Inorg. Nucl. Chem. Lett. 1969, 5, 325–331. [Google Scholar] [CrossRef]
- Molchanova, T.V.; Akimova, I.D.; Tatarnikov, A.V. Ion-Exchange Methods of Scandium Recovery from the Ores of the Tomtor Deposit. Russ. Metall. 2019, 2019, 674–679. [Google Scholar] [CrossRef]
- Page, M.J.; Soldenhoff, K.; Ogden, M.D. Comparative Study of the Application of Chelating Resins for Rare Earth Recovery. Hydrometallurgy 2017, 169, 275–281. [Google Scholar] [CrossRef]
- El Ouardi, Y.; Virolainen, S.; Massima Mouele, E.S.; Laatikainen, M.; Repo, E.; Laatikainen, K. The Recent Progress of Ion Exchange for the Separation of Rare Earths from Secondary Resources—A Review. Hydrometallurgy 2023, 218, 106047. [Google Scholar] [CrossRef]
- Felipe, E.C.B.; Batista, K.A.; Ladeira, A.C.Q. Recovery of Rare Earth Elements from Acid Mine Drainage by Ion Exchange. Environ. Technol. 2021, 42, 2721–2732. [Google Scholar] [CrossRef]
- Mikhaylenko, M. Development and Screening of Resins to Recover REE and Scandium from Different Sources. In Extraction 2018; Davis, B.R., Moats, M.S., Wang, S., Gregurek, D., Kapusta, J., Battle, T.P., Schlesinger, M.E., Alvear Flores, G.R., Jak, E., Eds.; The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Switzerland, 2018; pp. 2113–2122. ISBN 978-3-319-95021-1. [Google Scholar]
- Kolodynska, D.; Hubicki, Z. Investigation of Sorption and Separation of Lanthanides on the Ion Exchangers of Various Types. In Ion Exchange Technologies; Kilislioglu, A., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0836-8. [Google Scholar]
- Virolainen, S.; Repo, E.; Sainio, T. Recovering Rare Earth Elements from Phosphogypsum Using a Resin-in-Leach Process: Selection of Resin, Leaching Agent, and Eluent. Hydrometallurgy 2019, 189, 105125. [Google Scholar] [CrossRef]
- Mikeli, E.; Marinos, D.; Toli, A.; Pilichou, A.; Balomenos, E.; Panias, D. Use of Ion-Exchange Resins to Adsorb Scandium from Titanium Industry’s Chloride Acidic Solution at Ambient Temperature. Metals 2022, 12, 864. [Google Scholar] [CrossRef]
- Smirnov, A.L.; Titova, S.M.; Rychkov, V.N.; Bunkov, G.M.; Semenishchev, V.S.; Kirillov, E.V.; Poponin, N.N.; Svirsky, I.A. Study of Scandium and Thorium Sorption from Uranium Leach Liquors. J. Radioanal. Nucl. Chem. 2017, 312, 277–283. [Google Scholar] [CrossRef]
- Shoppert, A.; Loginova, I.; Napol’skikh, J.; Valeev, D. High-Selective Extraction of Scandium (Sc) from Bauxite Residue (Red Mud) by Acid Leaching with MgSO4. Materials 2022, 15, 1343. [Google Scholar] [CrossRef] [PubMed]
- Shoppert, A.; Loginova, I.; Napol’skikh, J.; Kyrchikov, A.; Chaikin, L.; Rogozhnikov, D.; Valeev, D. Selective Scandium (Sc) Extraction from Bauxite Residue (Red Mud) Obtained by Alkali Fusion-Leaching Method. Materials 2022, 15, 433. [Google Scholar] [CrossRef] [PubMed]
- Yessimkanova, U.; Mataev, M.; Alekhina, M.; Kopbaeva, M.; Berezovskiy, A.; Dreisinger, D.D. The Study of the Kinetic Characteristics of Sorption of Scandium of Ion Exchanger Purolite MTS9580 from Return Circulating Solutions of Underground Leaching of Uranium Ores. Eurasian Chem. Tech. J. 2020, 22, 135. [Google Scholar] [CrossRef]
- Chaikin, L.; Shoppert, A.; Valeev, D.; Loginova, I.; Napol’skikh, J. Concentration of Rare Earth Elements (Sc, Y, La, Ce, Nd, Sm) in Bauxite Residue (Red Mud) Obtained by Water and Alkali Leaching of Bauxite Sintering Dust. Minerals 2020, 10, 500. [Google Scholar] [CrossRef]
- Hubicki, Z. Studies on Selective Separation of Sc(III) from Rare Earth Elements on Selective Ion-Exchangers. Hydrometallurgy 1990, 23, 319–331. [Google Scholar] [CrossRef]
- Marhol, M.; Svehla, G.; Wilson, C.L.; Wilson, D.W.; Veselý, V. Ion Exchangers in Analytical Chemistry: Their Properties and Use in Inorganic Chemistry; Wilson and Wilson’s Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 1982; ISBN 978-0-444-99717-3. [Google Scholar]
- Hamaguchi, H.; Ohuchi, A.; Onuma, N.; Kuroda, R. Anion Exchange Behavior of Rare Earth Elements in Potassium Sulfate Medium. J. Chromatogr. A 1964, 16, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Smyshlyaev, D.; Kirillov, E.; Kirillov, S.; Bunkov, G.; Rychkov, V.; Botalov, M.; Taukin, A.; Yuldashbaeva, A.; Malyshev, A. Recovery and Separation of Sc, Zr and Ti from Acidic Sulfate Solutions for High Purity Scandium Oxide Production: Laboratory and Pilot Study. Hydrometallurgy 2022, 211, 105889. [Google Scholar] [CrossRef]
- Wood, S.A. The Aqueous Geochemistry of the Rare-Earth Elements and Yttrium. Chem. Geol. 1990, 82, 159–186. [Google Scholar] [CrossRef]
- Lin, P.; Yang, X.; Werner, J.M.; Honaker, R.Q. Application of Eh-pH Diagrams on Acid Leaching Systems for the Recovery of REEs from Bastnaesite, Monazite and Xenotime. Metals 2021, 11, 734. [Google Scholar] [CrossRef]
- Yan, G.; Viraraghavan, T.; Chen, M. A New Model for Heavy Metal Removal in a Biosorption Column. Adsorpt. Sci. Technol. 2001, 19, 25–43. [Google Scholar] [CrossRef]
- Aksu, Z.; Gönen, F. Biosorption of Phenol by Immobilized Activated Sludge in a Continuous Packed Bed: Prediction of Breakthrough Curves. Process Biochem. 2004, 39, 599–613. [Google Scholar] [CrossRef]
- Calero, M.; Hernáinz, F.; Blázquez, G.; Tenorio, G.; Martín-Lara, M.A. Study of Cr (III) Biosorption in a Fixed-Bed Column. J. Hazard. Mater. 2009, 171, 886–893. [Google Scholar] [CrossRef] [PubMed]
Reference | pH/Medium Concentration, g L−1 | Initial Sc Concentration | Resin/Delivery Form | Functional Group | Maximum Capacity q0 |
---|---|---|---|---|---|
[18] | 2–8 M HCl | from 0.08 M to 0.33 M (15 g L−1) | TVEX | di-isooctyl methyl phosphonate (DIOMP); tributyl phosphate (TBP) and phosphine oxide with different alkyls | – |
[19] | pH 1.6 obtained after leaching coal fly ash with 0.5 M H2SO4 | 50–1200 mg L−1 | VP OC 1026 (SIR, H+) | di-(2-ethylhexyl) | 8.0–24.0 mg g−1 |
TP 272 (SIR, H+) | bis-(2,4,4-trimethylpentyl) phosphinic acid | ||||
TP 260 (CR, Na+) | aminomethyl-phosphonic acid (AMPA) | – | |||
[20] | pH 2.5 | 50 mg L−1 | TP 272 (SIR, H+) | bis-(2,4,4-trimethylpentyl) phosphinic acid | 11.3 mg g−1 pseudo-second order |
TP 260 (CR, Na+) | aminomethyl-phosphonic acid (AMPA) | 35.5 mg g−1 at pH 1.5 for 36 h (66.2 mg g−1 pseudo-second order) | |||
TP 209 (CR, Na+) | iminodiacetate acid (IDA) | 25.1 mg g−1 at pH 3 for 36 h (22.5 mg g−1 pseudo-second order) | |||
[21] | pH 0.5–3.5 | 50 mg L−1 | XAD-7HP (SIR) | 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) + neodecanoic acid (Versatic 10) | 48.0 mg g−1 |
[24] | pH 2–4 in synthetic solution NO3– 180 g L−1 | 0.12 g L−1 in synthetic solution PLS with 100–200 mg L−1 | Purolite D5041 (NH+, H+) | phosphorus | 16.4 g L−1 (H+) 26–30 g L−1 (NH4+) |
Purolite C115 (NH+, H+) | carboxyl | 23–27 g L−1 (NH4+) | |||
[31] | – | 130 mg L−1 | Lewatit TP 260 (CR, H+) | bis(2-ethylhexyl)phosphoric acid (D2EHPA) | 1460 mg L−1 |
Lewatit VP OC 1026 (SIR, Na+) | aminomethyl-phosphonic acid (AMPA) | 310 mg L−1 | |||
[32] | H2SO4 solution 5 g L−1 | 0.78 mg L−1 | Tulsion CH 93 (CR, Na+) | aminomethyl phosphonic acid (AMPA) | 40 mg g−1 |
Purolite D5041 (Cationite) | phosphate | 33 mg g−1 |
Element | Al | Ca | Mg | Ti | Fe | Sc | Y | La | Ce | Nd | Sm | Th |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Content, mg L−1 | 274.1 | 621.1 | 7270.0 | 1.6 | 50.7 | 12.3 | 14.9 | 7.7 | 16.8 | 11.0 | 3.8 | 0.6 |
RSD, % | 0.30 | 0.72 | 1.62 | 0.61 | 1.24 | 1.23 | 1.17 | 2.23 | 1.15 | 2.36 | 1.35 | 0.61 |
Model | Langmuir | Freundlich | Temkin | ||||
---|---|---|---|---|---|---|---|
Parameter | R2 | Qm, mg mL−1 | KL, L mg−1 | R2 | KF, L mg−1 | R2 | KT, L mg−1 |
Value | 0.983 | 8.576 | 0.985 | 0.975 | 3.440 | 0.963 | 1615 |
Thomas Model | 2.5 mL min−1 | 5 mL min−1 | 7.5 mL min−1 |
---|---|---|---|
Kt (L min−1 mg−1) | 0.00142 | 6.834 × 10−4 | 3.65 × 10−4 |
Q0 (mg mL−1) | 7.013 | 6.776 | 6.383 |
R2 | 0.99 | 0.989 | 0.996 |
Modified dose-response model | 2.5 mL min−1 | 5 mL min−1 | 7.5 mL min−1 |
a | 2.197 | 2.184 | 3.115 |
q0 (mg mL−1) | 10.214 | 4.845 | 3.213 |
R2 | 0.973 | 0.987 | 0.988 |
MDR Model | Sc | Fe | Ti |
---|---|---|---|
a | 0.679 | 1.532 | 0.187 |
q0 (mg mL−1) | 3.888 | 0.343 | 0.082 |
R2 | 0.984 | 0.997 | 0.905 |
Element | Sc | Ti | Fe |
---|---|---|---|
βSc/E | - | 0.25 | 6.90 |
Kd (mL g−1) | 0.40 | 1.61 | 0.06 |
Qd, mg mL−1 | 3.77 | 1.14 | 2.81 |
Element | Al | Ca | Mg | Ti | Fe | Sc | Y | La | Ce | Nd | Sm | Th |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mg L−1 | 61.6 | 500.6 | 195.9 | 48.8 | 16.1 | 461.5 | 9.4 | 4.3 | 6.2 | 5.0 | 1.9 | 1.2 |
RSD, % | 1.03 | 0.99 | 1.89 | 0.96 | 1.83 | 1.79 | 3.35 | 3.75 | 3.80 | 3.20 | 3.14 | 3.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napol’skikh, J.; Shoppert, A.; Loginova, I.; Kirillov, S.; Valeev, D. Selective Recovery of Scandium (Sc) from Sulfate Solution of Bauxite Residue Leaching Using Puromet MTS9580 Ion-Exchange Sorption. Metals 2024, 14, 234. https://doi.org/10.3390/met14020234
Napol’skikh J, Shoppert A, Loginova I, Kirillov S, Valeev D. Selective Recovery of Scandium (Sc) from Sulfate Solution of Bauxite Residue Leaching Using Puromet MTS9580 Ion-Exchange Sorption. Metals. 2024; 14(2):234. https://doi.org/10.3390/met14020234
Chicago/Turabian StyleNapol’skikh, Julia, Andrei Shoppert, Irina Loginova, Sergey Kirillov, and Dmitry Valeev. 2024. "Selective Recovery of Scandium (Sc) from Sulfate Solution of Bauxite Residue Leaching Using Puromet MTS9580 Ion-Exchange Sorption" Metals 14, no. 2: 234. https://doi.org/10.3390/met14020234
APA StyleNapol’skikh, J., Shoppert, A., Loginova, I., Kirillov, S., & Valeev, D. (2024). Selective Recovery of Scandium (Sc) from Sulfate Solution of Bauxite Residue Leaching Using Puromet MTS9580 Ion-Exchange Sorption. Metals, 14(2), 234. https://doi.org/10.3390/met14020234