Stability Investigation of TiB2 Coatings in Molten Zinc Fabricated by Electrophoretic Deposition in Molten Salts
Abstract
:1. Introduction
2. Materials and Experimental Procedure
2.1. EPD of TiB2 Coatings in NaF-AlF3 Molten Salts
- (1)
- Synthesis of Nano-TiB2 by Borothermal Reduction in Molten Bath
- (2)
- EPD of TiB2 Coatings
2.2. Corrosion Resistance Test of TiB2 Coatings in Molten Zinc
2.3. Characterization
3. Results and Discussion
3.1. Synthesis of TiB2 NPs and EPD of TiB2 Coatings in NaF-AlF3 Molten Salts
3.2. Corrosion Behavior of Uncoated Molybdenum in Molten Zinc
3.3. Corrosion Behavior of Molybdenum with TiB2 Coatings in Liquid Zinc
4. Conclusions
- In the NaF-AlF3 molten salt system at 1238 K, TiB2 particles ranging from 50 to 150 nm were synthesized through the borothermal reduction method. Under a 1.2 V cell voltage, TiB2 NPs migrated within the molten salts and deposited on the molybdenum substrate, forming a dense TiB2 coating with high adhesion strength (Lc3 = 44 N);
- At 823 K, molybdenum and molten zinc formed a solid solution via reactive diffusion, rendering it unable to resist corrosion. However, the absence of a chemical reaction between TiB2 and molten zinc at 823 K, along with the coating’s dense structure and low oxygen content, enables the TiB2 coating to exhibit excellent corrosion resistance after 120 h of immersion, effectively protecting the molybdenum substrate.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rivai, A.K.; Takahashi, M. Compatibility of surface-coated steels, refractory metals and ceramics to high temperature lead-bismuth eutectic. Prog. Nucl. Energy 2008, 50, 560–566. [Google Scholar] [CrossRef]
- Abramov, A.V.; Alimgulov, R.R.; Trubcheninova, A.I.; Zhilyakov, A.Y.; Belikov, S.V.; Volkovich, V.A.; Polovov, I.B. Corrosion of Molybdenum-Based and Ni–Mo Alloys in Liquid Bismuth–Lithium Alloy. Metals 2023, 13, 366. [Google Scholar] [CrossRef]
- Wang, B.; Yang, D.; Zhou, Y.C.; Xu, L.J.; Li, Y.P.; Li, X.Q.; Wei, S.Z. Mechanical Properties and Corrosion Behavior in Molten Zinc of Mo–ZrO2 Alloys. J. Mater. Res. Technol. 2023, 25, 4942–4959. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Y.C.; Yang, D.; Xu, L.J.; Li, X.Q.; Wei, S.Z. Effect of Al2O3 Particles on the Corrosion Behavior of Molybdenum Alloys in Molten Zinc. Corros. Sci. 2023, 220, 111266. [Google Scholar] [CrossRef]
- Chakraborty, S.P.; Banerjee, S.; Singh, K.; Sharma, I.G.; Grover, A.K.; Suri, A.K. Studies on the Development of Protective Coating on TZM Alloy and Its Subsequent Characterization. J. Mater. Process. Technol. 2008, 207, 240–247. [Google Scholar] [CrossRef]
- Zheng, L.W.; Liu, E.Z.; Zheng, Z.; Ning, L.K.; Tong, J.; Tan, Z. Preparation of alumina/aluminide coatings on molybdenum metal substrates, and protection performance evaluation utilizing a DZ40M superalloy casting test. Surf. Coat. Technol. 2020, 395, 125931. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, E.; Zheng, Z.; Ning, L.; Tong, J.; Tan, Z.; Li, H. Resistance to Molten Superalloy at 1550 °C for Molybdenum Metal Core with a Silica/Silicide Coating. Coatings 2021, 11, 275. [Google Scholar] [CrossRef]
- Wande, C.; Li, T.S.; Xue, D.Z.; Yang, H.J.; Cheng, P.M.; Chen, C.; Sun, Y.J.; Zeng, Y.; Ding, X.D.; Sun, J. Enhancement of the Corrosion Resistance of Molybdenum by La2O3 Dispersion. Corros. Sci. 2021, 186, 109469. [Google Scholar]
- Xiao, Z.; Liu, J.; Jiang, Z.; Luo, L. Corrosion behavior of refractory metals in liquid lead at 1000 °C for 1000 h. Nucl. Eng. Technol. 2022, 54, 1954–1961. [Google Scholar] [CrossRef]
- Abramov, A.V.; Alimgulov, R.R.; Trubcheninova, A.I.; Zhilyakov, A.Y.; Belikov, S.V.; Volkovich, V.A.; Polovov, I.B. Corrosion of Metals and Nickel-Based Alloys in Liquid Bismuth–Lithium Alloy. Metals 2021, 11, 791. [Google Scholar] [CrossRef]
- Yu, Z.D.; Chen, M.H.; Wang, J.L.; Li, F.J.; Zhu, S.L.; Wang, F.H. Enamel Coating for Protection of the 316 Stainless Steel Against Tribo-Corrosion in Molten Zinc Alloy at 460 °C. J. Mater. Sci. Technol. 2021, 65, 126–136. [Google Scholar] [CrossRef]
- Yadav, K.K.; Guchhait, S.K.; Sunaina; Ankush; Hussain, C.M.; Ganguli, A.K.; Jha, M. Synthesis of Zirconium Diboride and Its Application in the Protection of Stainless steel Surface in Harsh Environment. J. Solid State Electrochem. 2019, 23, 3243–3253. [Google Scholar] [CrossRef]
- Hu, Z.W.; Li, W.G.; Zhao, Y.T. The Effect of Laser Power on the Properties of M3B2-Type Boride-Based Cermet Coatings Prepared by Laser Cladding Synthesis. Materials 2020, 13, 1867. [Google Scholar] [CrossRef]
- Wang, G.C.; Chong, X.Y.; Li, Z.L.; Feng, J.; Jiang, Y.H. Design of Fe2B-Based Ductile High Temperature Ceramics: First-Principles Calculations and Experimental Validation. Ceram. Int. 2022, 48, 27163–27173. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Zhang, L.; Liu, H.; Zeng, C. Stability Investigation of Electrodeposited Zirconium Diboride Ceramic Coatings in Molten Zinc. Mater. Corros. 2019, 70, 492–502. [Google Scholar] [CrossRef]
- Lv, Y.H.; Wu, X.S.; Liu, Y.F.; Wu, Z.J. Preparation and Liquid Zinc Corrosion Resistance of Al2O3-TiB2 Composite Ceramic Coating. China Surf. Eng. 2011, 24, 30–33. [Google Scholar]
- Zhang, J.F.; Deng, C.M.; Song, J.B.; Deng, C.G.; Liu, M.; Zhou, K.S. MoB–CoCr as Alternatives to WC–12Co for Stainless Steel Protective Coating and Its Corrosion Behavior in Molten Zinc. Surf. Coat. Technol. 2013, 235, 811–818. [Google Scholar] [CrossRef]
- Tsipas, D.N.; Triantafyllidis, G.K.; Kipkemoi, J.; Flitris, Y. Thermochemical Treatments for Protection of Steels in Chemically Aggressive Atmospheres at High Temperatures. Mater. Manuf. Process. 1999, 14, 697–712. [Google Scholar] [CrossRef]
- Lv, J.S.; Li, W.; Li, T.; Guo, L.X.; Fu, Y.Q.; Li, J.C.; Zhang, J.C.; Zhang, Y.L. Ablation behavior of high-entropy boride (Hf-Zr-Ta-Ti)B2 coating fabricated via supersonic atmospheric plasma spraying for carbon/carbon composites. Eng. Proc. 2024, 270, 111137. [Google Scholar] [CrossRef]
- Li, K.Z.; Liu, G.X.; Zhang, Y.L. Ablation properties of HfB2 coatings prepared by supersonic atmospheric plasma spraying for SiC-coated carbon/carbon composites. Surf. Coat. Technol. 2019, 357, 48–56. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.Y.; Lai, C.; Ma, J.; Meng, X.F.; Zhang, L.; Xu, G.G.; Lu, Y.W.; Li, H.Y.; Wang, J.S.; et al. Boriding of tungsten by the powder-pack process: Phase formation, growth kinetics and enhanced neutron shielding. Int. J. Refract. Met. H 2023, 110, 106049. [Google Scholar] [CrossRef]
- Jin, W.L.; Xiao, S.J.; Kou, Q.; Ding, D.S.; Zhang, J.; Fang, X.H.; Ge, C.T.; Zhong, C.; Zhu, H.M.; Haarberg, G.M. Preparation of Diboride Coatings by Electrophoretic Deposition in Nanoparticle-Containing Molten Inorganic Salts. Mater. Lett. 2021, 306, 130908. [Google Scholar] [CrossRef]
- Pang, J.; Kou, Q.; Ge, C.T.; Xie, L.L.; Jin, W.L.; Qi, W.Q.; Zhang, J.; Zhu, H.M.; Xiao, S.J. Electrophoretic deposition of ZrB2 coatings in NaCl-KCl-AlF3 melt containing synthesized ZrB2 nanoparticles. J. Am. Ceram. Soc. 2023, 106, 5147–5156. [Google Scholar] [CrossRef]
- Zhang, J.; Pang, J.; Jin, W.L.; Chu, S.J.; Haarberg, G.M.; Xiao, S.J. Production of TiB2 coatings on graphite substrates by electrophoretic deposition in NaF-AlF3 melt. Process Appl. Ceram. 2023, 17, 9–13. [Google Scholar] [CrossRef]
- Zhang, J.; Chu, S.J.; Jin, W.L.; Cai, F.; Zhu, H.M.; Xiao, S.J. Fabrication of TiB2 coatings by electrophoretic deposition of synthesized TiB2 nanoparticles in molten salts. J. Mater. Res. Technol. 2022, 18, 2451–2457. [Google Scholar] [CrossRef]
- Sørlie, M.; Øye, H.A. Cathode in Aluminium Electrolysis; Aluminium-Verlag Marketing & Kommunikation GmbH Press: Düsseldorf, Germany, 2010. [Google Scholar]
- Verkhoturov, A.D.; Egorov, F.F.; Podchernyaeva, I.A.; Smolin, M.D.; Timofeeva, I.I.; Isaeva, L.P.; Chiplik, V.N. Characteristics of coating formation on steel during electric-spark alloying with heterophase TiB2+Mo materials in air. Powder Metall. Met. Ceram. 1983, 22, 993–997. [Google Scholar] [CrossRef]
- Petukhov, V.A.; Chekhovskoi, V.Y.; Zaichenko, V.M. Thermal Expansion of Molybdenum. High Temp. 1977, 14, 724–728. [Google Scholar]
- Pierson, H.O.; Randich, E. Titanium Diboride Coatings and their Interaction with the Substrates. Thin Solid Films 1978, 70, 119–128. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Xu, J.; Ge, C.; Pang, J.; Jin, W.; Haarberg, G.M.; Xiao, S. Stability Investigation of TiB2 Coatings in Molten Zinc Fabricated by Electrophoretic Deposition in Molten Salts. Metals 2024, 14, 981. https://doi.org/10.3390/met14090981
Liu J, Xu J, Ge C, Pang J, Jin W, Haarberg GM, Xiao S. Stability Investigation of TiB2 Coatings in Molten Zinc Fabricated by Electrophoretic Deposition in Molten Salts. Metals. 2024; 14(9):981. https://doi.org/10.3390/met14090981
Chicago/Turabian StyleLiu, Jialie, Junjie Xu, Chuntao Ge, Jie Pang, Weiliang Jin, Geir Martin Haarberg, and Saijun Xiao. 2024. "Stability Investigation of TiB2 Coatings in Molten Zinc Fabricated by Electrophoretic Deposition in Molten Salts" Metals 14, no. 9: 981. https://doi.org/10.3390/met14090981
APA StyleLiu, J., Xu, J., Ge, C., Pang, J., Jin, W., Haarberg, G. M., & Xiao, S. (2024). Stability Investigation of TiB2 Coatings in Molten Zinc Fabricated by Electrophoretic Deposition in Molten Salts. Metals, 14(9), 981. https://doi.org/10.3390/met14090981