Bio-Reclamation of Strategic and Energy Critical Metals from Secondary Resources
Abstract
:1. Introduction
2. Potentially Important Microbes and Mechanism of Bio-Reclamation
3. Bio-Reclamation of Caritical Metals
3.1. Bio-Reclamation of Rare Earth Elements
3.2. Bio-Reclamation of Precious Metals
3.3. Bio-Reclamation of Other Critical Metals
4. Prospects for the Bio-Reclamation of Critical Metals from Secondary Resources
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hurd, A.J.; Kelley, R.L.; Eggert, R.G.; Lee, M.-H. Energy-critical elements for sustainable development. MRS Bull. 2012, 37, 405–410. [Google Scholar] [CrossRef]
- Jaffe, R.; Price, J.; Ceder, G.; Eggert, R.; Graedel, T.; Gschneidner, K.; Hitzman, M.; Houle, F.; Hurd, A.; Kelley, R.; et al. Energy Critical Elements: Securing Materials for Emerging Technologies; Materials Research Society/American Physical Society: Washington, DC, USA, 2011. [Google Scholar]
- Catinat, M. Critical Raw Materials for the EU—Report of the Ad-Hoc Working Group on Defining Critical Raw Materials; EC: Brussels, Belgium, 2010. [Google Scholar]
- Glöser, S.; Espinoza, L.T.; Gandenberger, C.; Faulstich, M. Raw material criticality in the context of classical risk assessment. Resour. Policy 2015, 44, 35–46. [Google Scholar] [CrossRef]
- Hennebel, T.; Boon, N.; Maes, N.; Lenz, M. Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnol. 2015, 32, 121–127. [Google Scholar]
- Srivastava, R.R.; Kim, M.; Lee, J.; Jha, M.K.; Kim, B.-S. Resource recycling of superalloys and hydrometallurgical challenges. J. Mater. Sci. 2014, 49, 4671–4686. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathi, Y.C.; Singh, S.; Tripathi, G. Metal pollutants in living environment: Threat and challenges. In Dimensions of Environmental Threats; Kumar, A., Ed.; Daa Publishing House: New Delhi, India, 2003; pp. 1–20. [Google Scholar]
- Pathak, P.; Srivastava, R.R.; Ojasvi. Assessment of legislation and practices for the sustainable management of waste electrical and electronic equipment in India. Renew. Sustain. Energy Rev. 2017, 78, 220–232. [Google Scholar] [CrossRef]
- Abdi, O.; Kazemi, M. A review stud of biosorption of heavy metals and comparison between different biosorbents. J. Mater. Environ. Sci. 2015, 6, 1386–1399. [Google Scholar]
- Jha, M.K.; Lee, J.; Kim, M.; Jeong, J.; Kim, B.-S.; Kumar, V. Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: A review. Hydrometallurgy 2013, 133, 23–32. [Google Scholar] [CrossRef]
- Jha, M.K.; Kumari, A.; Panda, R.; Kumar, J.R.; Yoo, K.; Lee, J.Y. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 2016, 165, 2–26. [Google Scholar] [CrossRef]
- Ilyas, S.; Lee, J. Biometallurgical recovery of metals from waste electrical and electronic equipment: A review. Chem. Bioeng. Rev. 2014, 1, 148–169. [Google Scholar] [CrossRef]
- Ilyas, S.; Lee, J.; Kim, B.-S. Bioremoval of heavy metals from recycling industry electronic waste by a consortium of moderate thermophiles: Process development and optimization. J. Clean. Prod. 2014, 70, 194–202. [Google Scholar] [CrossRef]
- Ilyas, S.; Lee, J. Bioprocessing of electronic scraps. In Microbiology for Minerals, Metals, Materials and the Environment; Abhilash, Pandey, B.D., Natrajan, K.A., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 307–328. [Google Scholar]
- Norris, P.R.; Burton, N.P.; Foulis, N.A. Acidophiles in bioreactormineral processing. Extremophiles 2000, 4, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Markosyan, G.E. A new iron-oxidizing bacterium: Leptospirillum ferrooxidans gen. et sp. nov. Biol. Zh. Arm. 1972, 25, 26–29. [Google Scholar]
- Sand, W.; Rohde, K.; Sobotke, B.; Zenneck, C. Evaluation of Leptospirillum ferrooxidans for leaching. Appl. Environ. Microbiol. 1992, 58, 85–92. [Google Scholar] [PubMed]
- Brierley, J.A. Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl. Environ. Microbiol. 1978, 36, 523–525. [Google Scholar] [PubMed]
- Brierley, C.L. Biogenic extraction of uranium from ores of the grants region. In Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena; Murr, L.E., Torma, A.E., Brierley, J.A., Eds.; Academic Press: New York, NY, USA, 1978; pp. 345–351. [Google Scholar]
- Ilyas, S.; Ruan, C.; Bhatti, H.N.; Ghauri, M.A.; Anwar, M.A. Column bioleaching of metals from electronic scrap. Hydrometallurgy 2010, 101, 135–140. [Google Scholar] [CrossRef]
- Brierley, J.A. Heap leaching of gold bearing deposits, theory and operational description. In Biomining: Theory, Microbes and Industrial Processes; Rawlings, D., Ed.; Springer: New York, NY, USA, 1997; pp. 103–115. [Google Scholar]
- Ilyas, S.; Anwar, M.A.; Niazi, S.B.; Ghauri, A. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 2007, 88, 180–188. [Google Scholar] [CrossRef]
- Valdes, J.; Pedroso, I.; Quatrini, R.; Dodson, R.J.; Tettelin, H.; Blake, R., 2nd; Eisen, J.A.; Holmes, D.S. Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications. BMC Genom. 2008, 9, 597. [Google Scholar]
- Ilyas, S.; Lee, J.; Shin, D.; Kim, B.-S. Biohydrometallurgical processing of non-ferrous metals from copper smelter slag. Adv. Mater. Res. 2013, 825, 250–253. [Google Scholar] [CrossRef]
- Bosshard, P.P.; Bachofen, R.; Brandl, H. Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ. Sci. Technol. 1996, 30, 3066–3070. [Google Scholar] [CrossRef]
- Faramarzi, M.A.; Stagars, M.; Pensini, E.; Krebs, W.; Brandl, H. Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J. Biotechnol. 2004, 113, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Binnemans, K.; Jones, P.T.; Van, G.T.; Blanpain, B.; Yiannis, Y.P. Towards zero-waste valorisation of rare-earth-containing industrial process residues: A critical review. J. Clean. Prod. 2015, 99, 17–38. [Google Scholar] [CrossRef]
- Qu, Y.; Lian, B. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour. Technol. 2013, 136, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Beolchini, F.; Fonti, V.; Dell’Anno, A.; Rocchetti, L.; Veglio, F. Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manag. 2012, 32, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, E.M.; Munoz, J.A.; Blazquez, M.L.; Gonzalez, F.; Ballester, A. Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential. Hydrometallurgy 2008, 93, 88–96. [Google Scholar] [CrossRef]
- Sugio, T.; Domatsu, C.; Tano, T.; Imai, K. Role of ferrous ions in synthetic cobaltous sulfide leaching of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 1984, 48, 461–467. [Google Scholar] [PubMed]
- Hopfe, S.; Flemming, K.; Lehmann, F.; Mockel, R.; Kutschke, S.; Pollmann, K. Leaching of rare earth elements from fluorescent powder using the tea fungu Kombucha. Waste Manag. 2017, 62, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Brandl, H.; Bosshard, R.; Wegmann, M. Computer-munching microbes: Metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 2001, 59, 319–326. [Google Scholar] [CrossRef]
- Hassanien, W.A.G.; Desouky, O.A.N.; Hussien, S.S.E. Bioleaching of some rare earth elements from Egyptian monazite using Aspergillus ficuum and Pseudomonas aeruginosa. Walailak J. Sci. Technol. 2013, 11, 809–823. [Google Scholar]
- Shin, D.; Kim, J.; Kim, B.-S.; Jeong, J.; Lee, J. Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore. Minerals 2015, 5, 189–202. [Google Scholar] [CrossRef]
- Reed, D.W.; Fujita, Y.; Daubaras, D.L.; Jiao, Y.; Thompson, V.S. Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy 2016, 166, 34–40. [Google Scholar] [CrossRef]
- Handley-Sidhu, S.; Hriljac, J.A.; Cuthbert, M.O.; Renshaw, J.C.; Pattrick, R.A.D.; Charnock, J.M.; Stolpe, B.; Lead, J.R.; Baker, S.; Macaskie, L.E. Bacterially produced calcium phosphate nanobiominerals: Sorption capacity, site preferences, and stability of captured radionuclides. Environ. Sci. Technol. 2014, 48, 6891–6898. [Google Scholar] [CrossRef] [PubMed]
- Paterson-Beedle, M.; Readman, J.E.; Hriljac, J.A.; Macaskie, L.E. Biorecovery of uranium from aqueous solutions at the expense of phytic acid. Hydrometallurgy 2010, 104, 524–528. [Google Scholar] [CrossRef]
- Pol, A.; Barends, T.R.M.; Dietl, A.; Khadem, A.F.; Eygensteyn, J.; Jetten, M.S.M.; Op den Camp, H.J.M. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ. Microbiol. 2014, 16, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Ueda, M. Molecular design of the microbial cell surface toward the recovery of metal ions. Curr. Opin. Biotechnol. 2011, 22, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Moriwaki, H.; Koide, R.; Yoshikawa, R.; Warabino, Y.; Yamamoto, H. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis. Appl. Microbiol. Biotechnol. 2013, 97, 3721–3728. [Google Scholar] [CrossRef] [PubMed]
- Texier, A.C.; Andrès, Y.; Illemassene, M.; Le Cloirec, P. Characterization of lanthanide ions binding sites in the cell wall of Pseudomonas aeruginosa. Environ. Sci. Technol. 2000, 34, 610–615. [Google Scholar] [CrossRef]
- Andrès, Y.; MacCordick, H.J.; Hubert, J.C. Adsorption of several Actinide (Th, U and Lanthanide (La, Eu, Yb) ions to Mycobacterium smegmatis. Appl. Microbiol. Biotechnol. 1993, 39, 413–417. [Google Scholar] [CrossRef]
- Karavaiko, G.I.; Kareva, A.S.; Avakian, Z.A.; Zakharova, V.I.; Korenevsky, A.A. Biosorption of scandium and yttrium from solutions. Biotechnol. Lett. 1996, 18, 1291–1296. [Google Scholar] [CrossRef]
- Andrès, Y.; Thouand, G.; Boualam, M.; Mergeay, M. Factors influencing the biosorption of gadolinium by microorganisms and its mobilization from sand. Appl. Microbiol. Biotechnol. 2000, 54, 262–267. [Google Scholar] [PubMed]
- Texier, A.C.; Andrès, Y.; Le Cloirec, P. Selective biosorption of lanthanide (La, Eu, Yb) ions by Pseudomonas aeruginosa. Environ. Sci. Technol. 1999, 33, 489–495. [Google Scholar] [CrossRef]
- Ledin, M.; Pedersen, K.; Allard, B. Effects of pH and ionic strength on the adsorption of Cs, Sr, Eu, Zn, Cd and Hg by Pseudomonas Putida. Water Air Soil Pollut. 1997, 93, 367–381. [Google Scholar] [CrossRef]
- Mullen, M.D.; Wolf, D.C.; Ferris, F.G.; Beveridge, T.J.; Flemming, C.; Bailley, G.W. Bacterial sorption of heavy metals. Appl. Environ. Microbiol. 1986, 55, 3143–3149. [Google Scholar]
- Philip, L.; Iyengar, L.; Venkobachar, C. Biosorption of U, La, Dy, Pr, and Eu by Pseudomonas aeruginosa. J. Ind. Microbiol. Biotechnol. 2000, 25, 1–7. [Google Scholar] [CrossRef]
- Pedersen, K.; Albinsson, Y. Effect of cell number, pH and lanthanide concentration on the sorption of promethium by Shewanella putrefaciens. Radiochim. Acta 1991, 54, 91–95. [Google Scholar] [CrossRef]
- Omar, N.B.; Merroun, M.L.; Penalver, J.M.A.; Munoz, M.T.G. Comparative heavy metal biosorption study of Brewery yeast and Myxococcus Xanthus biomass. Chemosphere 1997, 35, 2277–2283. [Google Scholar] [CrossRef]
- Texier, A.C.; Andrès, Y.; Le Cloirec, P. Selective biosorption of lanthanide (La, Eu) ions by Mycobacterium smegmatis. Environ. Technol. 1997, 18, 835–841. [Google Scholar] [CrossRef]
- Horiike, T.; Yamashita, M. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Appl. Environ. Microbiol. 2015, 81, 3062–3068. [Google Scholar] [CrossRef] [PubMed]
- Skovran, E.; Martinez-Gomez, N.C. Just add lanthanides. Science 2015, 348, 862–863. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, L.; Chi, A.; Beard, S.; Orell, A.; Guiliani, N.; Shabanowitz, J.; Hunt, D.F.; Jerez, C.A. Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol. Adv. 2006, 24, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Kita, Y.; Nishikawa, H.; Takemoto, T. Effects of cyanide and dissolved oxygen concentration on biological Au recovery. J. Biotechnol. 2006, 124, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Brandl, H.; Faramarzi, M.A. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuol. 2006, 4, 93–97. [Google Scholar] [CrossRef]
- Chi, T.D.; Lee, J.-C.; Pandey, B.D.; Jeong, J.; Yoo, K.K.; Huynh, T.H. Bacterial cyanide generation in presence of metal ions (Na+, Mg2+, Fe2+, Pb2+) and gold bioleaching from waste PCBs. J. Chem. Eng. Jpn. 2010, 44, 692–700. [Google Scholar]
- Tay, S.B.; Natarajan, G.; Rahim, M.N.A.; Tan, H.T.; Chung, M.C.M.; Ting, Y.P.; Yew, W.S. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Suja, E.; Nancharaiah, Y.V.; Venugopalan, V.P. Biogenic nanopalladium production by self-immobilized granular biomass: Application for contaminant remediation. Water Res. 2014, 65, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Pat-Espadas, A.M.; Field, J.A.; Razo-Flores, E.; Cervantes, F.J.; Sierra-Alvarez, R. Continuous removal and recovery of palladium in an upflow anaerobic granular sludge bed (UASB) reactor. J. Chem. Technol. Biotechnol. 2016, 91, 1183–1189. [Google Scholar] [CrossRef]
- Chidambaram, D.; Hennebel, T.; Taghavi, S.; Mast, J.; Boon, N.; Verstraete, W.; Van der Lelie, D.; Fitts, J.P. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ. Sci. Technol. 2010, 44, 7635–7640. [Google Scholar] [CrossRef] [PubMed]
- Lenz, K.; Koellensperger, G.; Hann, S.; Weissenbacher, N.; Mahnik, S.N.; Fuerhacker, M. Fate of cancerostatic platinum compounds in biological wastewater treatment of hospital effluents. Chemosphere 2007, 69, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.; Zhang, X.; Xu, H. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Water Res. 2015, 78, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Yong, P.; Liu, W.; Zhang, Z.; Beauregard, D.; Johns, M.L.; Macaskie, L.E. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction. Biotechnol. Lett. 2015, 37, 2181–2191. [Google Scholar] [CrossRef] [PubMed]
- Rotaru, A.E.; Jiang, W.; Finster, K.; Skrydstru, T.; Meyer, R.L. Non-enzymatic palladium recovery on microbial and synthetic surfaces. Biotechnol. Bioeng. 2012, 109, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.R.; Yong, P.; Macaskie, L.E. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl. Environ. Microb. 1998, 64, 4607–4609. [Google Scholar]
- De Windt, W.; Aelterman, P.; Verstraete, W. Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ. Microbiol. 2005, 7, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Mikheenko, I.P.; Rousset, M.; Dementin, S.; Macaskie, L.E. Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains. Appl. Environ. Microbiol. 2008, 74, 6144–6146. [Google Scholar] [CrossRef] [PubMed]
- Bunge, M.; Sobjerg, L.S.; Amelia-Elena, R.; Delphine, G.; Lindhardt, A.T.; Hause, G.; Finster, K.; Kingshott, P.; Skrydstrup, T.; Meyer, R.L. Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnol. Bioeng. 2010, 107, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Capeness, M.J.; Edmundson, M.C.; Horsfall, L.E. Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20. New Biotechnol. 2015, 32, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Creamer, N.J.; Baxter-Plant, V.S.; Henderson, J.; Potter, M.; Macaskie, L.E. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans. Biotechnol. Lett. 2005, 28, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Kwak, I.S.; Won, S.W.; Chung, Y.S.; Yun, Y.S. Ruthenium recovery from acetic acid waste water through sorption with bacterial biosorbent fibers. Bioresour. Technol. 2006, 128, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Won, S.W.; Kwak, I.S.; Yun, Y.S. The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution. Bioresour. Technol. 2014, 160, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Darnall, D.W.; Greene, B.; Henzl, M.T. Selective recovery of gold and other metal ions from an algal biomass. Environ. Sci. Technol. 1986, 20, 206–208. [Google Scholar] [CrossRef] [PubMed]
- Kuyucak, N.; Volesky, B. Biosorbents for recovery of metals from industrial solutions. J. Biotechnol. Lett. 1988, 10, 137–142. [Google Scholar] [CrossRef]
- Niu, H.; Volesky, B. Characteristics of gold biosorption from cyanide solution. J. Chem. Technol. Biotechnol. 1999, 74, 778–784. [Google Scholar] [CrossRef]
- Torres, E.; Mata, Y.N.; Bl’azquez, M.L. Gold and silver uptake and nanoprecipitation on calcium alginate beads. Langmuir 2005, 21, 7951–7958. [Google Scholar] [CrossRef] [PubMed]
- Romero-Gonz’alez, M.E.; Williams, C.J.; Gardiner, P.H.E.; Gurman, S.J.; Habesh, S. Spectroscopic studies of the biosorption of gold (III) by dealginated seaweed waste. Environ. Sci. Technol. 2003, 37, 4163–4169. [Google Scholar] [CrossRef]
- Pethkar, A.V.; Paknikar, K.M. Recovery of gold from solutions using Cladosporium cladosporioides biomass beads. J. Biotechnol. 1998, 63, 121–136. [Google Scholar] [CrossRef]
- Khoo, K.M.; Ting, Y.P. Biosorption of gold by immobilized fungal biomass. Biochem. Eng. J. 2001, 8, 51–59. [Google Scholar] [CrossRef]
- Akthar, M.N.; Sastry, K.S.; Mohan, P.M. Biosorption of silver ions by processed Aspergillus niger biomass. J. Biotechnol. Lett. 1995, 17, 551–556. [Google Scholar] [CrossRef]
- Ishikawa, S.; Suyama, K.; Arihara, K. Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. Bioresour. Technol. 2002, 81, 201–206. [Google Scholar] [CrossRef]
- Maruyama, T.; Matsushita, H.; Shimada, Y.; Kamata, I.; Hanaki, M.; Sonokawa, S.; Kamiya, N.; Goto, M. Proteins and protein-rich biomass as environmentally friendly adsorbents selective for precious metal ions. Environ. Sci. Technol. 2007, 41, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Gamez, G.; Gardea-Torresdey, J.L.; Tiemann, K.J. Recovery of gold(III) from multi-elemental solutions by alfalfa biomass. Adv. Environ. Res. 2003, 7, 563–571. [Google Scholar] [CrossRef]
- Volesky, B. Removal of heavy metals by biosorption. In Harnessing Biotechnology for the 21st Century; Ladisch, M.R., Bose, A., Eds.; American Chemical Society: Washington, DC, USA, 1992; pp. 462–466. [Google Scholar]
- Ma, H.-W.; Liao, X.-P.; Liu, X. Recovery of platinum (IV) and palladium (II) by bayberry tannin immobilized collagen fiber membrane from water solution. J. Membr. Sci. 2006, 278, 373–380. [Google Scholar] [CrossRef]
- Niu, H.; Volesky, B. Characteristics of anionic metal species biosorption with waste crab shells. Hydrometallurgy 2003, 71, 209–215. [Google Scholar] [CrossRef]
- Arrascue, M.L.; Garcia, H.M.; Horna, O.; Guibal, E. Gold sorption on chitosan derivatives. Hydrometallurgy 2003, 71, 191–200. [Google Scholar] [CrossRef]
- Guibal, E.; Vincent, T.; Mendoza, R.N. Synthesis and characterization of a thiourea derivative of chitosan for platinum recovery. J. Appl. Polym. Sci. 1999, 75, 119–134. [Google Scholar] [CrossRef]
- Guibal, E.; VonOffenberg, N.S.; Vincent, T.; Tobin, J.M. Sulfur derivatives of chitosan for palladium sorption. React. Funct. Polym. 2002, 50, 149–163. [Google Scholar] [CrossRef]
- Chassary, P.; Vincent, T.; SanchezMarcano, J.; Macaskie, L.E.; Guibal, E. Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 2005, 76, 131–147. [Google Scholar] [CrossRef]
- De Vargas, I.; Macaskie, L.E. Biosorption of palladium and platinum by sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 2004, 79, 49–56. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Lens, P.N. Ecology and biotechnology of selenium-respiring bacteria. Microbiol. Mol. Biol. Rev. 2015, 79, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.J.; Borghese, R.; Zannoni, D. Microbial processing of tellurium as a tool in biotechnology. Biotechnol. Adv. 2012, 30, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Rajwade, J.M.; Paknikar, K.M. Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application. Hydrometallurgy 2003, 71, 243–248. [Google Scholar] [CrossRef]
- Bonificio, W.D.; Clarke, D.R. Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3. J Appl. Microbiol. 2014, 117, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.M.; Gallegos, T.J.; Landa, E.R. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation. Appl. Geochem. 2015, 57, 206–235. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Joshi, H.M.; Mohan, T.V.K.; Venugopalan, V.P.; Narasimhan, S.V. Aerobic granular biomass: A novel biomaterial for efficient uranium removal. Curr. Sci. 2006, 91, 503–509. [Google Scholar]
- Newsome, L.; Morris, K.; Lloyd, J.R. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol. 2014, 363, 164–184. [Google Scholar] [CrossRef]
- Wall, D.; Krumholz, L.R. Uranium reduction. Annu. Rev. Microbiol. 2006, 60, 149–166. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.U.; Kim, S.M.; Kim, K.W.; Kim, I.S. Microbial removal of uranium in uranium-bearing black shale. Chemosphere 2005, 59, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.R.; Kim, M.-S.; Lee, J.-C. Novel aqueous processing of the reverted turbine-blade superalloy for rhenium recovery. Ind. Eng. Chem. Res. 2016, 55, 8191–8199. [Google Scholar] [CrossRef]
- Motaghed, M.; Mousavi, S.M.; Rastegar, S.O.; Shojaosadati, S.A. Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: Statistical modeling and process optimization. Bioresour. Technol. 2014, 171, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, M.A.; Brandl, H. Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. FEMS Microbiol. Lett. 2006, 259, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Xu, J.; Shan, W.; Lou, Z.; Fang, D.; Zang, S.; Han, G. A new approach for rhenium(VII) recovery by using modified brown algae Laminaria japonica adsorbent. Bioresour. Technol. 2013, 127, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wang, H.T.; Lou, Z.N.; Shan, W.J.; Xing, Z.Q.; Deng, G.C.; Wu, D.B.; Fang, D.W.; Biswas, B.K. Selective adsorption of molybdenum(VI) from Mo–Re bearing effluent by chemically modified astringent persimmon. J. Hazard Mater. 2011, 186, 1855–1861. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.J.; Fang, D.W.; Zhao, Z.Y.; Yue, S.; Lou, Z.N.; Xing, Z.Q.; Xiong, Y. Application of orange peel for adsorption separation of molybdenum(VI) from Re-containing industrial effluent. Biomass Bioenergy 2012, 37, 289–297. [Google Scholar] [CrossRef]
Microorganism | Composition of Treated Solution | Optimum Condition | Efficacy of Metal Recovery % | References |
---|---|---|---|---|
Pseudomonas aeruginosa | 3 mM nitrate solution of: Ca, La, Eu, Yb and Gd | T, 20 °C; t, 2 h; pH, 5.0; B.D., 0.5 g/L | >90% Gd, and 77% Ca, La, Eu and Yb | [45,46] |
Pseudomonas putida | 10−8 M Ca, Sr, Eu, Zn, Cd, Hg in solution | T, 25 °C; t, 24 h; pH, 6.4; B.D., 0.075 mg/mL | 90% Eu | [47] |
Bacillus subtilis | Synthetic nitrate solution containing La | T, 25 °C; t, 30 min; pH, 4.0; B.D., 3 mg/mL | 98% La | [48] |
Pseudomonas aeruginosa | Chloride solution containing 0.25–2.0 mM REEs | T, 30 °C; t, 4 h; pH, 5.0; B.D., 0.124 g/L | Up to 97% REEs | [49] |
Shewanella putrefaciens | Synthetic solution containing 0.14 mM Pm | T, 15 °C; t, 17 h; pH, 5.5; B.D., 5.6 × 1011 cells/L | 90% Pm | [50] |
Mycobacterium smegmatis and Bacillus subtilis | Synthetic Gd-nitrate solution | T, 20 °C; t, 1 h; pH, 5.0; B.D., 50 g/L | ≥98% Gd | [45] |
Myxococcus xanthus and Saccharomyces cerevisiae | 0.4 mM nitrate solution of: La, Co, Mn, Pb, Ag, Zn, Cd | T, 28 °C; t, 1 h; pH, 4.5; B.D., 0.4 g/L solution | >95% La | [51] |
Mycobacterium smegmatis | Nitrate solution of 30 mM Th, U, Yb, Eu, and La | T, 20 °C; t, 3 h; pH, 1.0–1.5; B.D., 50 g/L | 99% REEs | [52] |
(a) Saccharomyces cerevisiae; (b) Rhizopusarrhizus; (c) Aspergillus terreus; (d) Saccharomyces cerevisiae | In synthetic solution (mg/L): 1.7 Sc, 7.9 Y, 2.0 Al, 1.7 Fe, 0.35 Ti, 2.1 Ca | T, 25 °C; t, 30 min; pH, 4.5; B.D., 0.5 g/L | (a) >98%; (b) 87%; (c) 87%; (d) 99% Y | [44] |
Algae | Composition of Treated Solution | Optimum Process Conditions | Efficacy of Gold Recovery % | Remarks | References |
---|---|---|---|---|---|
Chlorella vulgaris | A solution containing l0−4 M of each Cr3+, Cu2+, Zn2+, Au3+, Hg2+ | T, 30 °C; t, 12 h; pH, 2; B.D., 5 mg/mL solution | 90% | Lab scale study; except the AuCl4– and Cr(H2O)63+ all other metals taken in oxidized form | [75] |
Sargassum natans | 8.5–1000 mg gold with other metal ions UO22+, Pb2+, Zn2+, Ag+ in solution | T, 30 °C; t, 2 h; pH 2.5 | 420 mg/g gold | Various cationic species of gold was used in lab scale study | [76] |
Sargassum fluitans | 2.2 mM gold in cyanide solution | T, 30 °C; t, 4 h; pH 2.0; B.D., 20 mg/150 mL solution | 97% | Gold ions, Laboratory Scale Laboratory Scale | [77] |
Alginate cross-linked with CaCl2 | Synthetic solution containing 25–500 ppm gold as HAuCl4 | T, 25 °C; t, 4 h; pH, 2.0; B.D., 0.075 g/75 mL solution | 98% | Colloidal gold Laboratory Scale | [78] |
Alginate cross-linked with CaCl2 | Synthetic solution containing 25–500 mg/L silver as AgNO3 | T, 25 °C; t, 4 h; pH, 2.0; B.D., 0.075 g/75 mL solution | 85% | Colloidal Siver Laboratory Scale | [78] |
De-alginated Seaweed Waste | Synthetic solution of gold | T, 25 °C; pH, 3.0; B.D., 0.5 g/mL solution | 92% | Colloidal gold Laboratory Scale | [79] |
Microbe Used | Composition of Treated Solution | Optimum Process Conditions | Efficacy of Metal Recovery % | Remarks | References |
---|---|---|---|---|---|
Cladosporium cladosporioides | Synthetic solution of gold | T, 30 °C; t, 30 min; pH, 4.0; B.D., 0.05 g/25 mL | 96.6 mg Au/g biomass dosage | Lab study recovering the colloidal gold | [80] |
Cladosporium cladosporioides | Synthetic solution containing Ag+ | T, 30 °C; t, 30 min; pH, 4.0; B.D., 0.05 g/25 mL | 15.2 mg Ag/g biomass dosage | - | [80] |
Rhizopus arrhizus | 8.5–1000 mg gold with other metal ions UO22+, Pb2+, Zn2+, Ag+ in solution | T, 30 °C; t, 30 min; pH 2.5; B.D., 0.5 mg/mL | 92–95% gold | Lab study recovering the colloidal gold | [76] |
PVA-immobilized biomass (Fomitopsis carnea) | 10–100 mg/L gold solution | T, 25 °C; t, 33.3 h; pH, 1.0–13.0; B.D., 5 g/100 mL | ~80% gold | Lab study recovering the colloidal gold | [81] |
Aspergillus niger | 2.5–1000 mg/L silver as AgNO3 | T, 30 °C, t, 1 h; pH, 7; B.D., 2 g/25 mL solution | 75% silver | Lab study recovering the colloidal silver | [82] |
Neurosporacrassa | 2.5–1000 mg/L silver as AgNO3 | T, 30 °C ; t, 1 h; pH, 7.0; B.D., 2 g/25 mL solution | 68.2% silver | Lab scale study recovering the colloidal silver | [82] |
Fusarium oxysporium | 2.5–1000 mg/L silver as AgNO3 | T, 30 ; t, 1 h; pH, 7.0; B.D., 2 g/25 mL solution | 57.5% silver | Lab scale study recovering the colloidal silver | [82] |
Protein Used | Composition of Treated Solution | Optimum Condition | Efficacy of Metal Recovery % | References |
---|---|---|---|---|
Hen egg shell membrane | 1 g/L KAu(CN)2, HAuCl4 | T, 25 °C; t, 2 h; pH, 3.0; B.D., 0.25–0.35 g/50 mL | 147 mg Au+/g 618 mgAu3+/g | [83] |
Lysozyme from hen egg white | Cu-refining solution containing 82 g/L Au, 3.8 b/L Pt and 21 g/L Pd | T, 25 °C; t, 1 h; pH, 4.0; B.D., 2 mg/10 mL | 165 g/kg Au; 11 g/kg Pt; 1 g/kg Pd | [84] |
Alfalfa | 0.3 mM of each metal ions: Au3+, Cd2+, Cu2+, Cr3+, Pb2+, Ni2+, Zn2+ | T, 30 °C; t, 1 h; pH, 5.0; B.D., 5 mg/mL | 58% Au | [85] |
Condensed-tannin gel | Synthetic solution of Pd | T, 25 °C; t, 3 days; pH, 2.0; B.D., 3–35 mg/150 mL | 95% Pd | [86] |
Bayberry tannin immobilized collagen fiber membrane | Chloride solution containing 48.8 mg/L Pd and Pt each | T, 40 °C; t, 4 h; pH, 4.0; B.D., 0.1 g membrane | 97.4% Pd and 94% Pt | [87] |
Acid-washed Ucides cordatus (waste crab shells) | Synthetic cyanide solution containing 2.2 mM gold | T, 25 °C; t, 24 h; pH, 3.4; B.D., 40 mg/20 mL solution | 92% Au | [88] |
Sulfur derivative of chitosan | Synthetic gold solution in 1 M HCl | T, 25 °C; t, 5 days; pH, 2.0–3.0; B.D., 8 mg/150 mL solution | 400 mg Au/g B.D. | [89] |
Glutaraldehyde crosslinked derivatives of chitosan (GCC, RADC) | Synthetic gold solution in 1 M HCl | T, 25 °C; t, 5 days; pH, 2.0–3.0; B.D., 8 mg/150 mL solution | 600 mg Au/g B.D. | [89] |
Thiourea derivative of chitosan | 20 mg/L Pt solution | T, 25 °C; t, 72 h; pH, 2.0; B.D., 10 mg/100 mL solution | 120 mg Pt/g B.D. | [90] |
Glutaraldehyde crosslinked chitosan | 50 mg/L Pd and 20 mg/L Pt | T, ~20 °C; t, 72 h; pH, 2.0; B.D., 10 mg/100 mL solution | 400 mg Pd and 120 mg Pt/g B.D. | [91,92] |
Chitosan derivatives | 10–20 mg/L Pd and 20–40 mg/L Pt | T, ~20 °C; t, 3 days; pH, 2.0; B.D., 3–35 mg/150 mL solution | 1.3 mM Pd and 0.8 mM Pt/g B.D. | [93] |
Bacteria Used | Composition of Treated Solution | *Optimum Condition | Efficacy of Metal Recovery % | References |
---|---|---|---|---|
Streptomyces erythraeus and Spirulina platensis | 1 g/L KAu(CN)2, HAuCl4H2O | T, 25 °C; t, 2 h; pH, 3.0; B.D., 0.25–0.35 g/50 mL | 99% and 98% Au, respectively | [83] |
Desulfovibrio desulfuricans | Synthetic solution: 5–50 mg/L Pd and Pt | T, 30 °C; t, 4 days; pH, 3.0; B.D., 50 mg/L solution | 90% Pd and 92% Pt | [93] |
Bacillus subtilis | Synthetic CN− containing 2.2 mMAu | T, 30 °C; t, 4 h; pH, 2.0; B.D., 40 mg/20 mL solution | 97% Au | [77] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilyas, S.; Kim, M.-S.; Lee, J.-C.; Jabeen, A.; Bhatti, H.N. Bio-Reclamation of Strategic and Energy Critical Metals from Secondary Resources. Metals 2017, 7, 207. https://doi.org/10.3390/met7060207
Ilyas S, Kim M-S, Lee J-C, Jabeen A, Bhatti HN. Bio-Reclamation of Strategic and Energy Critical Metals from Secondary Resources. Metals. 2017; 7(6):207. https://doi.org/10.3390/met7060207
Chicago/Turabian StyleIlyas, Sadia, Min-Seuk Kim, Jae-Chun Lee, Asma Jabeen, and Haq Nawaz Bhatti. 2017. "Bio-Reclamation of Strategic and Energy Critical Metals from Secondary Resources" Metals 7, no. 6: 207. https://doi.org/10.3390/met7060207
APA StyleIlyas, S., Kim, M. -S., Lee, J. -C., Jabeen, A., & Bhatti, H. N. (2017). Bio-Reclamation of Strategic and Energy Critical Metals from Secondary Resources. Metals, 7(6), 207. https://doi.org/10.3390/met7060207