Influence of Pt Addition and Manufacturing Process on the Failure Mechanisms of NiCoCrAlYTa-Base Thermal Barrier Coating Systems under Thermal Cycling Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Coatings
2.2. Oxidation Test
2.3. Characterization
3. Results
3.1. As-Processed Bond-Coatings and TBC Systems
3.2. Influence of Pt on the Cyclic Oxidation Resistance of TBC Systems
3.3. Degradation of TBC Systems Containing a Trib-Pt/2 Coating
3.3.1. Healthy Area
3.3.2. Area of Catastrophic Degradation
3.4. Degradation of TBC Systems with a VPS-Pt Bond-Coating
4. Discussion
4.1. Pt Effect on the Cyclic Oxidation Resistance of TBC Systems with a Trib Bond-Coating
4.2. Failure Mechanism of AM3-Trib-Pt/2 and MCNG-Trib-Pt/2 TBC Systems
4.3. Failure Mechanism of TBC Systems with a VPS-Pt Bond-Coating
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicholls, J.R.; Deakin, M.J.; Rickerby, D.S. A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings. Wear 1999, 233, 352–361. [Google Scholar] [CrossRef]
- Wellman, R.G.; Deakin, M.J.; Nicholls, J.R. The effect of TBC morphology and aging on the erosion rate of EB-PVD TBCs. Wear 2005, 258, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Mercer, C.; Faulhaber, S.; Evans, A.G.; Darolia, R. A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration. Acta Mater. 2005, 53, 1029–1039. [Google Scholar] [CrossRef]
- Krämer, S.; Faulhaber, S.; Chambers, M.; Clarke, D.R.; Levi, C.G.; Hutchinson, J.W.; Evans, A.G. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Mater. Sci. Eng. A 2008, 490, 26–35. [Google Scholar] [CrossRef]
- Evans, A.G.; Mumm, D.R.; Hutchinson, J.W.; Meier, G.H.; Pettit, F.S. Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater Sci. 2001, 46, 505–553. [Google Scholar] [CrossRef]
- Lipkin, D.M.; Clarke, D.R.; Hollatz, M.; Bobeth, M.; Pompe, W. Stress development in alumina scales formes upon oxidation of (111) NiAl single crystals. Corros. Sci. 1997, 39, 231–242. [Google Scholar] [CrossRef]
- Reddy, A.; Hovis, D.B.; Heuer, A.H.; Paulikas, A.P.; Veal, B.W. In Situ Study of Oxidation-Induced Growth Strains in a Model NiCrAlY Bond-Coat Alloy. Oxid. Met. 2007, 67, 153–177. [Google Scholar] [CrossRef]
- Lipkin, D.M.; Clarke, D.R. Measurement of the Stress in Oxide Scales Formed by Oxidation of Alumina-Forming Alloys. Oxid. Met. 1996, 45, 267–280. [Google Scholar] [CrossRef]
- Mevrel, R. State of art on High-Temperature Corrosion-resistant Coatings. Mater. Sci. Eng. A 1989, A120, 13–24. [Google Scholar] [CrossRef]
- Nicholls, J.R. Designing oxidation-resistant coatings. JOM 2000, 52, 28–35. [Google Scholar] [CrossRef]
- Nicholls, J.R. Advances in coating design for high-performance gas turbines. MRS Bull. 2003, 28, 659–670. [Google Scholar] [CrossRef]
- Pomeroy, M.J. Coatings for gas turbine materials and long term stability issues. Mater. Des. 2005, 26, 223–231. [Google Scholar] [CrossRef]
- Eliaz, N.; Shemesh, G.; Latanision, R.M. Hot corrosion in gas turbine components. Eng. Fail. Anal. 2002, 9, 31–43. [Google Scholar] [CrossRef]
- Whittle, D.P.; Stringer, J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philos. Trans. R. Soc. Lond. 1980, A295, 309. [Google Scholar] [CrossRef]
- Felten, E.J. Use of Platinum and Rhodium to Improve Oxide Adherence on Ni-8Cr-6Al Alloys. Oxid. Met. 1976, 10, 23–28. [Google Scholar] [CrossRef]
- Lowrie, R.; Boone, D.H. Composite coatings of CoCrAlY plus platinum. Thin Solid Films 1977, 45, 491–498. [Google Scholar] [CrossRef]
- Peichl, L.; Bettridge, D.F. Overlay and diffusion coatings for aero gas turbines. In Materials for Advanced Power Engineering, Part I; Springer Netherlands: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Taylor, T.A.; Bettridge, D.F. Development of alloyed and dispersion-strengthened MCrAlY coatings. Surf. Coat. Technol. 1996, 86–87, 9–14. [Google Scholar] [CrossRef]
- Quadakkers, W.J.; Shemet, V.; Sebold, D.; Anton, R.; Wessel, E.; Singheiser, L. Oxidation characteristics of a platinized MCrAlY bond coat for TBC systems during cyclic oxidation at 1000 °C. Surf. Coat. Technol. 2005, 199, 77–82. [Google Scholar] [CrossRef]
- Yanar, N.M.; Pettit, F.S.; Meier, G.H. Failure Characteristics during Cyclic Oxidation of Yttria Stabilized Zirconia Thermal Barrier Coatings Deposited via Electron Beam Physical Vapor Deposition on Platinum Aluminide and on NiCoCrAlY Bond Coats with Processing Modifications for Improved Performances. Metall. Mater. Trans. A 2006, 37A, 1563–1580. [Google Scholar]
- Feuerstein, A.; Knapp, J.; Taylor, T.; Ashary, A.; Bolcavage, A.; Hitchman, N. Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review. J. Ther. Spray Technol. 2008, 17, 199–213. [Google Scholar] [CrossRef]
- Jackson, E.M.M.; Yanar, N.M.; Maris-Jakubowski, M.C.; Onal-Hance, K.; Meier, G.H.; Pettit, F.S. Effect of surface preparation on the durability of NiCoCrAlY coatings for oxidation protection and bond coats for thermal barrier coatings. Mater. Corros. 2008, 59, 494–500. [Google Scholar] [CrossRef]
- Vande Put, A.; Oquab, D.; Péré, E.; Raffaitin, A.; Monceau, D. Beneficial Effect of Pt and of Pre-Oxidation on the Oxidation Behaviour of an NiCoCrAlYTa Bond-Coating for Thermal Barrier Coating Systems. Oxid. Met. 2011, 75, 247–279. [Google Scholar] [CrossRef] [Green Version]
- Yanar, N.M.; Meier, G.H.; Pettit, F.S. The influence of platinum on the failure of EBPVD YSZ TBCs on NiCoCrAlY bond coats. Scr. Mater. 2002, 46, 325–330. [Google Scholar] [CrossRef]
- Joo, D.; Park, S.-H.; Jung, Y.-G.; Lee, J.-H.; Ye, C.-H.; Lee, K.-H. Effect of Platinum Pre-Coating on Isothermal Oxidation Behavior of MCrAlY Coating by Plasma Spray Process. Mater. Sci. Forum 2007, 544–545, 721–724. [Google Scholar] [CrossRef]
- Monceau, D.; Oquab, D.; Estournes, C.; Boidot, M.; Selezneff, S.; Thebault, Y.; Cadoret, Y. Pt-modified Ni aluminides, MCrAlY-base multilayer coatings and TBC systems fabricated by Spark Plasma Sintering for the protection of Ni-base superalloys. Surf. Coat. Technol. 2009, 204, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Monceau, D.; Oquab, D.; Estournes, C.; Boidot, M.; Selezneff, S.; Ratel-Ramond, N. Thermal Barrier Systems and Multi-Layered Coatings Fabricated by Spark Plasma Sintering for the Protection of Ni-Base Superalloys. Mater. Sci. Forum 2010, 654–656, 1826–1831. [Google Scholar] [CrossRef]
- Lan, H.; Yang, Z.; Zhang, Y.; Zhang, C. Influence of Pt on Oxidation Behavior of CoNiCrAlY Alloy. Rare Met. Mater. Eng. 2012, 41, 194–198. [Google Scholar]
- Lan, H.; Zhang, W.; Yang, Z. Investigation of Pt-Dy co-doping effects on isothermal oxidation behavior of (Co,Ni)-based alloy. J. Rare Earths 2012, 30, 928. [Google Scholar] [CrossRef]
- Tawancy, H.M. Comparative Structure, Oxidation Resistance and Thermal Stability of CoNiCrAlY Overlay Coatings with and Without Pt and Their Performance in Thermal Barrier Coatings on a Ni-Based Superalloy. Oxid. Met. 2018, 90, 383–399. [Google Scholar] [CrossRef]
- Vande Put, A.; Oquab, D.; Raffaitin, A.; Monceau, D. Effect of Pt addition on the cyclic oxidation resistance of NiCoCrAlYTa base TBC systems. In Proceedings of the Eurocorr Conference, Nice, France, 6–10 September 2009. [Google Scholar]
- Vande Put, A.; Lafont, M.C.; Oquab, D.; Raffaitin, A.; Monceau, D. Effect of modification by Pt and manufacturing processes on the microstructure of two NiCoCrAlYTa bond coatings intended for thermal barrier system applications. Surf. Coat. Technol. 2010, 205, 717–727. [Google Scholar] [CrossRef] [Green Version]
- Monceau, D.; Crabos, F.; Malie, A.; Pieraggi, B. Effects of bond-coat preoxidation and surface finish on isothermal and cyclic oxidation, high temperature corrosion and thermal shock resistance of TBC systems. Mater. Sci. Forum 2001, 369–372, 607–614. [Google Scholar] [CrossRef]
- Mevrel, R.; Duret, C. Interdiffusion effects between protective coatings on superalloy substrates. In Proceedings of the NATO Advanced Workshop: Coatings for Heat Engines, Aquafredda di Maratea, Italy, 1–6 April 1984. [Google Scholar]
- Huntz, A.M.; Boumaza, A.; Moulin, G. Improvement of the Oxidation Resistance of Superalloys by Low-Pressure, Plasma-Sprayed MCrAlYTa Coatings. I. Oxid. Met. 1988, 30, 141–183. [Google Scholar] [CrossRef]
- Boudot, A. Propriétés des revêtements de protection haute température pour pales de turbine haute pression. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 13 December 1999. [Google Scholar]
- Dryepondt, S. Comportement et endommagement en fluage à haute température de parois minces en supralliage monocristallin MC2: Effets de l’oxydation et de l’application d’un revêtement MCrAlY. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 25 March 2004. [Google Scholar]
- Vialas, N. Etude de la détérioration par oxydation haute température et interdiffusion de systèmes revêtements/superalliage à base de nickel. Prévision de durée de vie. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 15 November 2004. [Google Scholar]
- Birks, N.; Meier, G.H.; Pettit, S. Introduction to the High-Temperature Oxidation of Metals; Cambridge University Press: Cambridge, UK, 2006; p. 338. [Google Scholar]
- Mumm, D.R.; Evans, A.G.; Spitsberg, I.T. Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system. Acta Mater. 2001, 49, 2329–2340. [Google Scholar] [CrossRef]
- Vande Put, A.; Oquab, D.; Monceau, D. Characterization of TBC systems with NiPtAl or NiCoCrAlYTa bond coatings after thermal cycling at 1100 °C: A comparative study of failure mechanisms. Mater. Sci. Forum 2008, 595–598, 213–221. [Google Scholar] [CrossRef]
- Allam, I.A.; Whittle, D.P.; Stringer, J. The oxidation behavior of CoCrAl systems containing active element additions. Oxid. Met. 1978, 12, 35–66. [Google Scholar] [CrossRef]
- Mennicke, C.; He, M.Y.; Clarke, D.R.; Smith, J.S. The role of secondary oxide inclusions (“pegs”) on the spalling resistance of oxide films. Acta Mater. 2000, 48, 2941–2949. [Google Scholar] [CrossRef]
- Nijdam, T.J.; Marijnissen, G.H.; Vergeldt, E.; Kloosterman, A.B.; Sloof, W.G. Development of a Pre-Oxidation Treatment to Improve the Adhesion between Thermal Barrier Coatings and NiCoCrAlY Bond Coatings. Oxid. Met. 2006, 66, 269–294. [Google Scholar] [CrossRef]
- Nijdam, T.J.; Sloof, W.G. Combined pre-annealing and pre-oxidation treatment for the processing of thermal barrier coatings on NiCoCrAlY bond coatings. Surf. Coat. Technol. 2006, 201, 3894–3900. [Google Scholar] [CrossRef]
- Schulz, U.; Fritscher, K.; Ebach-Stahl, A. Cyclic behavior of EB-PVD thermal barrier coating systems with modified bond coats. Surf. Coat. Technol. 2008, 203, 449–455. [Google Scholar] [CrossRef]
- Toscano, J.; Vaβen, R.; Gil, A.; Subanovic, M.; Naumenko, D.; Singheiser, L.; Quadakkers, W.J. Parameters affecting TGO growth and adherence on MCrAlY-bond coats for TBC’s. Surf. Coat. Technol. 2006, 201, 3906–3910. [Google Scholar] [CrossRef] [Green Version]
- Fisher, G.; Datta, P.K.; Burnell-Gray, J.S.; Chan, W.Y.; Soares, J.C. The effects of active element additions on the oxidation performance of a platinum aluminide coating at 1100 °C. Surf. Coat. Technol. 1998, 110, 24–30. [Google Scholar] [CrossRef]
- Lau, H.; Leyens, C.; Schulz, U.; Friedrich, C. Influence of bondcoat pre-treatment and surface topology on the lifetime of EB-PVD TBCs. Surf. Coat. Technol. 2003, 165, 217–223. [Google Scholar] [CrossRef]
- Guo, H.; Sun, L.; Li, H.; Gong, S. High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system. Thin Solid Films 2008, 516, 5732–5735. [Google Scholar] [CrossRef]
- Pint, B.A.; Haynes, J.A.; More, K.L.; Wright, I.G.; Leyens, C. Compositional effects on aluminide oxidation performance: Objectives for improved bond coats. In Proceedings of the Superalloys 2000, TMS, Warrendale, PA, USA, 17–21 September 2000. [Google Scholar]
- Tawancy, H.M.; Sridhar, N.; Abbas, N.M.; Rickerby, D.S. Comparative performance of selected bond coats in advanced thermal barrier coating systems. J. Mater. Sci. 2000, 35, 3615–3629. [Google Scholar] [CrossRef]
- Tawancy, H.M.; Mohamed, A.I.; Abbas, N.M.; Jones, R.E.; Rickerby, D.S. Effect of superalloy substrate composition on the performance of a thermal barrier coating system. J. Mater. Sci. 2003, 38, 3797–3807. [Google Scholar] [CrossRef]
- Hesnawi, A.; Li, H.; Zhou, Z.; Gong, S.; Xu, H. Isothermal oxidation behaviour of EB-PVD MCrAlY bond coat. Vacuum 2007, 81, 947–952. [Google Scholar] [CrossRef]
- Vialas, N.; Monceau, D. Substrate effect on the high temperature oxidation behaviour of a Pt modified aluminide coating. Part I: Influence of the initial chemical composition of the coating surface. Oxid. Met. 2006, 66, 155–189. [Google Scholar] [CrossRef]
- Muamba, J.M.N.; Streiff, R. Sur l’effet de quelques éléments d’addition du substrat sur l’oxydation des revêtements d’aluminiures modifiés par le chrome déposés sur superalliages à base Nickel. Mater. Sci. Eng. A 1989, 120, 391–405. [Google Scholar] [CrossRef]
- Huntz, A.M.; Boumaza, A.; Moulin, G.; Lebrun, J.L. Relation between the oxidation behaviour of superalloys protected by plasma sprayed NiCoCrAlYTa coatings and Metallurgical or Mechanichal parameters. In Proceedings of the Advanced Materials and Processing Techniques for Structural Applications, Paris, France, 7–9 September 1987. [Google Scholar]
- Fox, P.; Tatlock, G.J. Effect of tantalum additions on oxidation of overlay coated superalloys. Mater. Sci. Technol. 1989, 5, 816–827. [Google Scholar] [CrossRef]
- Gleeson, B.; Wang, W.; Hayashi, S.; Sordelet, D. Effects of Platinum on the Interdiffusion and oxidation Behavior of Ni-Al-Based Alloys. Mater. Sci. Forum 2004, 461–464, 213–222. [Google Scholar] [CrossRef]
- Copland, E. Thermodynamic Effect of Platinum Addition to beta-NiAl: An Initial Investigation; Technical report NASA/CR-2005-213330; Case Western Reserve University: Cleveland, OH, USA, 1 January 2005. [Google Scholar]
- Karlsson, A.M.; Xu, T.; Evans, A.G. The effect of the thermal barrier coating on the displacement instability in thermal barrier systems. Acta Mater. 2002, 50, 1211–1218. [Google Scholar] [CrossRef] [Green Version]
- Tolpygo, V.K.; Clarke, D.R.; Murphy, K.S. Evaluation of interface degradation during cyclic oxidation of EB-PVD thermal barrier coatings and correlation with TGO luminescence. Surf. Coat. Technol. 2004, 188–189, 62–70. [Google Scholar] [CrossRef]
- Shi, J.; Darzens, S.; Karlsson, A.M. Aspects of the morphological evolution in thermal barrier coatings and the intrinsic thermal mismatch therein. Mater. Sci. Eng. A 2005, 392, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.W.; Glynn, M.L.; Ott, R.T.; Hufnagel, T.C.; Hemker, K.J. Characterization and modeling of a martensitic transformation in a platinum modified diffusion aluminide bond coat for thermal barrier coatings. Acta Mater. 2003, 51, 4279–4294. [Google Scholar] [CrossRef]
- Balint, D.S.; Hutchinson, J.W. An analytical model of rumpling in thermal barrier coatings. J. Mech. Phys. Solids 2005, 53, 949–973. [Google Scholar] [CrossRef]
- Evans, H.E.; Donaldson, A.T.; Gilmour, T.C. Mechanisms of Breakaway Oxidation and Application to a Chromia-Forming Steel. Oxid. Met. 1999, 52, 379–402. [Google Scholar] [CrossRef]
- Schmutzler, H.J.; Viefhaus, H.; Grabke, H.J. The Influence of the Oxide/Metal Interface Composition on the Adherence of Oxide Layers on Metal Substrates. Surf. Interface Anal. 1992, 18, 581–584. [Google Scholar] [CrossRef]
- Wright, I.G.; Pint, B.A.; Lee, W.Y.; Alexander, K.B.; Prübner, K. Some effects of metallic substrate composition on degradation of thermal barrier coatings. In Proceedings of the High Temperature Surface Engineering Conference, Edinburgh Scotland, UK, 22–24 September 1997. [Google Scholar]
- Lee, W.Y.; Zhang, Y.; Wright, I.G.; Pint, B.A.; Liaw, P.K. Effects of Sulfur Impurity on the Scale Adhesion Behavior of a Desulfurized Ni-Based Superalloy Aluminized by Chemical Vapor Deposition. Metall. Mater. Trans. A 1998, 29A, 833–841. [Google Scholar] [CrossRef]
- Haynes, J.A.; Zhang, Y.; Lee, W.Y.; Pint, B.A.; Wright, I.G.; Cooley, K.M. Effects of Platinum additions and sulfur impurities on the microstructure and scale adhesion behavior of single-phase CVD aluminide bond coat. In Elevated Temperature Coatings: Science and Technology III, 1999; The Minerals, Metals and Materials Society: Warrendale, PA, USA, 1999. [Google Scholar]
- Haynes, J.A.; Lance, M.J.; Pint, B.A.; Wright, I.G. Characterization of commercial EB-PVD TBC systems with CVD (Ni,Pt)Al bond coatings. Surf. Coat. Technol. 2001, 146–147, 140–146. [Google Scholar] [CrossRef]
- Cadoret, Y.; Monceau, D.; Bacos, M.; Josso, P.; Maurice, V.; Marcus, P. Effect of platinum on the growth rate of the oxide scale formed on cast nickel aluminide intermetallic alloys. Oxid. Met. 2005, 64, 185–205. [Google Scholar] [CrossRef] [Green Version]
- Krupp, U.; Christ, H.J. Selective oxidation and internal nitridation during high-temperature exposure of single-crystalline nickel-base superalloys. Metall. Mater. Trans. A 2000, 31, 47–56. [Google Scholar] [CrossRef]
- Orosz, R.; Krupp, U.; Christ, H.-J. Study of the oxide scale integrity on Ni-base alloy CMSX-4 during isothermal and thermal-cycling exposure. Mater. Corros. 2006, 57, 154–158. [Google Scholar] [CrossRef]
- Raffaitin, A.; Crabos, F.; Andrieu, E.; Monceau, D. Advanced burner-rig test for oxidation-corrosion resistance evaluation of MCrAlY/superalloys systems. Surf. Coat. Technol. 2006, 201, 3829–3835. [Google Scholar] [CrossRef] [Green Version]
- Subanovic, M.; Sebold, D.; Vassen, R.; Wessel, E.; Naumenko, D.; Singheiser, L.; Quadakkers, W.J. Effect of Manufacturing Related Parameters on Oxidation Properties of MCrAlY Bondcoats. Mater. Corros. 2008, 59, 463–470. [Google Scholar] [CrossRef]
- Funkenbusch, A.W.; Smeggil, J.G.; Bornstein, N.S. Reactive Element-Sulfur Interaction and oxide scale adherence. Metall. Trans. A 1985, 16A, 1164–1166. [Google Scholar] [CrossRef]
- Smialek, J.L. Adherent Al2O3 scales formed on undoped NiCrAl Alloy. Metall. Trans. A 1987, 18A, 164–167. [Google Scholar] [CrossRef]
- Schumann, E.; Yang, J.C.; Graham, M.J. Direct observation of the interaction of yttrium and sulfur in oxidized NiAl. Scr. Mater. 1996, 34, 1365–1370. [Google Scholar] [CrossRef]
- Craig, M.; Nicholls, J.R. Private Communication; Cranfield University: Cranfield, UK, 2008. [Google Scholar]
At % | Ni | Al | Cr | Co | Ta | Ti | Mo | W | Re | Ru | Others |
---|---|---|---|---|---|---|---|---|---|---|---|
AM3 | Bal. | 12.9 | 8.9 | 5.9 | 1.3 | 2.4 | 1.2 | 1.6 | - | - | S: Batch 2: <0.5 ppmw, Batch 3: 0.28 ppmw, Hf free |
CMSX-4 | Bal. | 12.6 | 7.6 | 9.9 | 2.2 | 1.3 | 0.4 | 2.2 | 1.0 | - | 0.67 ppmw Hf, 1.4 ppmw S |
MCNG | Bal. | 13.6 | 4.7 | - | 1.7 | 0.6 | 0.6 | 1.7 | 1.3 | 2.4 | 0.03 at % Hf, 0.16 ppmw S |
Manufacturing Process | Batch 1 | Batch 2 | Batch 3 |
---|---|---|---|
Sample geometry | |||
Thermal Barrier (YSZ) | EB-PVD (110–120 µm) By Praxair ST | EB-PVD (150–200 µm) By Ceramic Coating Center | EB-PVD (60–80 µm) At Cranfield University |
Surface preparation | By Praxair ST | Grit blasting By Safran Aircraft Engines | Grit blasting At Cranfield University |
Heat Treatment | 6 h at 1080 °C under high vacuum | ||
Pt modification | With/without electroplated Pt (7 µm ± 2 µm) By Praxair ST | Electroplated Pt (7 µm ± 2 µm) By Praxair ST | Sputtered Pt (7 µm ± 1 µm) At Cranfield University |
Surface preparation | - | Smoothening | Light grinding |
NiCoCrAlYTa | Tribomet® process (70–80 µm) By Praxair ST | VPS with AMDRY 997 (70–80 µm) By LERMPS | |
Substrate | AM3 | AM3/MCNG | AM3/CMSX-4 |
Coated surface | Both sides | One side | |
TBC systems | |||
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vande Put, A.; Oquab, D.; Raffaitin, A.; Monceau, D. Influence of Pt Addition and Manufacturing Process on the Failure Mechanisms of NiCoCrAlYTa-Base Thermal Barrier Coating Systems under Thermal Cycling Conditions. Metals 2018, 8, 771. https://doi.org/10.3390/met8100771
Vande Put A, Oquab D, Raffaitin A, Monceau D. Influence of Pt Addition and Manufacturing Process on the Failure Mechanisms of NiCoCrAlYTa-Base Thermal Barrier Coating Systems under Thermal Cycling Conditions. Metals. 2018; 8(10):771. https://doi.org/10.3390/met8100771
Chicago/Turabian StyleVande Put, Aurelie, Djar Oquab, Aymeric Raffaitin, and Daniel Monceau. 2018. "Influence of Pt Addition and Manufacturing Process on the Failure Mechanisms of NiCoCrAlYTa-Base Thermal Barrier Coating Systems under Thermal Cycling Conditions" Metals 8, no. 10: 771. https://doi.org/10.3390/met8100771
APA StyleVande Put, A., Oquab, D., Raffaitin, A., & Monceau, D. (2018). Influence of Pt Addition and Manufacturing Process on the Failure Mechanisms of NiCoCrAlYTa-Base Thermal Barrier Coating Systems under Thermal Cycling Conditions. Metals, 8(10), 771. https://doi.org/10.3390/met8100771