A Brief Note on the Nix–Gao Strain Gradient Plasticity Theory
Abstract
:1. Introduction
- Is Equation (1) a constitutive relation, a balance law, or a combination of both?
- Whether the nonlocal term is energetic or dissipative, or even whether or not the theory is consistent with thermodynamics?
2. Kinematic Relations
3. Virtual-Power Principle and Force Balances
- Macroscopic force balance with concomitant macrotraction condition
- Microscopic force balance and its concomitant microtraction condition
4. Free Energy, Constitutive Relations, and Gurtin–Anand Flow Rule [34]
5. Mathematical Nature of the Nix–Gao Flow Rule
- Is the Nix–Gao flow rule, Equation (28), a constitutive relation, a balance law, or a combination of both?
- Whether the nonlocal term is energetic or dissipative, or even whether or not the theory is consistent with the laws of thermodynamics?
- (i)
- Microforce balance
- (ii)
- Constitutive relations for the microscopic stresses
- (iii)
- Flow rule of Aifantis (i.e., Equation (27))
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Fleck, N.A.; Muller, G.M.; Ashby, M.F.; Hutchinson, J.W. Strain gradient plasticity: Theory and experiment. Acta Met. Mater. 1994, 42, 475–487. [Google Scholar] [CrossRef]
- Liu, D.; He, Y.; Dunstan, D.J.; Zhang, B.; Gan, Z.; Hu, P.; Ding, H. Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment. Int. J. Plast. 2013, 41, 30–52. [Google Scholar] [CrossRef]
- Liu, D.; He, Y.; Dunstan, D.J.; Zhang, B.; Gan, Z.; Hu, P.; Ding, H. Anomalous plasticity in the cyclic torsion of micron scale metallic wires. Phys. Rev. Lett. 2013, 110, 244301. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; He, Y.; Lei, J.; Li, Z.; Liu, D. Individual strain gradient effect on torsional strength of electropolished microscale copper wires. Scr. Mater. 2017, 130, 124–127. [Google Scholar] [CrossRef]
- Stölken, J.S.; Evans, A.G. A microbend test method for measuring the plasticity length scale. Acta Mater. 1998, 46, 5109–5115. [Google Scholar] [CrossRef]
- Ehrler, B.; Hou, X.; Zhu, T.T.; P'Ng, K.M.Y.; Walker, C.J.; Bushby, A.J.; Dunstan, D.J. Grain size and sample size interact to determine strength in a soft metal. Philos. Mag. 2008, 88, 3043–3050. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y. Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM 2016, 68, 1216–1226. [Google Scholar] [CrossRef]
- Estrin, Y.; Vinogradov, A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013, 61, 782–817. [Google Scholar] [CrossRef]
- Beygelzimer, Y. Vortices and mixing in metals during severe plastic deformation. Mater. Sci. Forum 2011, 683, 213–224. [Google Scholar] [CrossRef]
- Beygelzimer, Y.; Valiev, R.; Varyukhin, V. Simple shear: Double-stage deformation. Mater. Sci. Forum 2010, 667–669, 97–102. [Google Scholar] [CrossRef]
- Kulagin, R.; Beygelzimer, Y.; Ivanisenko, Y.; Mazilkin, A.; Straumal, B.; Hahn, H. Instabilities of interfaces between dissimilar metals induced by high pressure torsion. Mater. Lett. 2018, 222, 172–175. [Google Scholar] [CrossRef]
- Lapovok, R.; Dalla Torre, F.H.; Sandlin, J.; Davies, C.H.J.; Pereloma, E.V.; Thomson, P.F.; Estrin, Y. Gradient plasticity constitutive model reflecting the ultrafine micro-structure scale: The case of severely deformed copper. J. Mech. Phys. Solids 2005, 53, 729–747. [Google Scholar] [CrossRef]
- Aifantis, E.C. On the microstructural origin of certain inelastic models. J. Eng. Mater. ASME 1984, 106, 326–330. [Google Scholar] [CrossRef]
- Aifantis, E.C. The physics of plastic deformation. Int. J. Plast. 1987, 3, 211–247. [Google Scholar] [CrossRef]
- Kröner, E. Kontinuumstheorie der Versetzungen und Eigenspannungen; Springer: Berlin/Heidelberg, Germany, 1958; ISBN 978-3-540-02261-9. [Google Scholar]
- Teodosiu, C. A Dynamic Theory of Dislocations and Its Applications to Theory of Elastic-Plastic Continuum, Fundamental Aspects of Dislocation Theory; U.S. Government Printing Office: Washington, WA, USA, 1970; pp. 837–876.
- Lardner, R.W. Dislocation dynamics and the theory of the plasticity of single crystals. ZAMP 1969, 20, 514–529. [Google Scholar] [CrossRef]
- Ashby, M.F. The deformation of plastically non-homogeneous materials. Philos. Mag. 1970, 21, 399–424. [Google Scholar] [CrossRef]
- Nye, J.F. Some geometrical relations in dislocated crystals. Acta Metall. 1953, 1, 153–162. [Google Scholar] [CrossRef]
- Fleck, N.A.; Hutchinson, J.W.; Willis, J.R. Guidelines for constructing strain gradient plasticity theories. J. Appl. Mech. 2015, 82, 071002. [Google Scholar] [CrossRef]
- Lubarda, V.A. On the recoverable and dissipative parts of higher order stresses in strain gradient plasticity. Int. J. Plast. 2016, 78, 26–43. [Google Scholar] [CrossRef]
- Bardella, L. Strain gradient plasticity. Encycl. Continuum Mech. 2017, 1–13. [Google Scholar] [CrossRef]
- Liu, D.; Dunstan, D.J. Material length scale of strain gradient plasticity: A physical interpretation. Int. J. Plast. 2017, 98, 156–174. [Google Scholar] [CrossRef]
- Beaudoin, A.; Acharya, A. A model for rate-dependent flow of metal polycrystals based on the slip plane lattice incompatibility. Mat. Sci. Eng. A Struct. 2001, 309, 411–415. [Google Scholar] [CrossRef]
- Bammann, D.J. A model of crystal plasticity containing a natural length scale. Mater. Sci. Eng. A Struct. 2001, 309, 406–410. [Google Scholar] [CrossRef]
- Clayton, J.D.; McDowell, D.L.; Bammann, D.J. Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int. J. Plast. 2006, 22, 210–256. [Google Scholar] [CrossRef] [Green Version]
- Steinmann, P. Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int. J. Eng. Sci. 1996, 34, 1717–1735. [Google Scholar] [CrossRef]
- Shizawa, K.; Zbib, H.M. A thermodynamical theory of plastic spin and internal stress with dislocation density tensor. J. Eng. Mater. 1999, 121, 247–253. [Google Scholar] [CrossRef]
- Le, K.C.; Stumpf, H. A model of elastoplastic bodies with continuously distributed dislocations. Int. J. Plast. 1996, 12, 611–627. [Google Scholar] [CrossRef]
- Fleck, N.A.; Hutchinson, J.W. A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 2001, 49, 2245–2271. [Google Scholar] [CrossRef] [Green Version]
- Mühlhaus, H.B.; Aifantis, E.C. A variational principle for gradient plasticity. Int. J. Solids Struct. 1991, 28, 845–857. [Google Scholar] [CrossRef]
- Gudmundson, P. A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 2004, 52, 1379–1406. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Anand, L. Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of aifantis and fleck and hutchinson and their generalization. J. Mech. Phys. Solids 2009, 57, 405–421. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Anand, L. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part i: Small deformations. J. Mech. Phys. Solids 2005, 53, 1624–1649. [Google Scholar] [CrossRef]
- Hutchinson, J.W. Generalizing j(2) flow theory: Fundamental issues in strain gradient plasticity. Acta Mech. Sin. 2012, 28, 1078–1086. [Google Scholar] [CrossRef] [Green Version]
- Gurtin, M.E. A gradient theory of small-deformation isotropic plasticity that accounts for the burgers vector and for dissipation due to plastic spin. J. Mech. Phys. Solids 2004, 52, 2545–2568. [Google Scholar] [CrossRef]
- Fleck, N.A.; Willis, J.R. A mathematical basis for strain-gradient plasticity theory-part i: Scalar plastic multiplier. J. Mech. Phys. Solids 2009, 57, 161–177. [Google Scholar] [CrossRef]
- Fleck, N.A.; Willis, J.R. A mathematical basis for strain-gradient plasticity theory. Part ii: Tensorial plastic multiplier. J. Mech. Phys. Solids 2009, 57, 1045–1057. [Google Scholar] [CrossRef]
- Bardella, L. Some remarks on the strain gradient crystal plasticity modelling, with particular reference to the material length scales involved. Int. J. Plast. 2007, 23, 296–322. [Google Scholar] [CrossRef]
- Bardella, L. Size effects in phenomenological strain gradient plasticity constitutively involving the plastic spin. Int. J. Eng. Sci. 2010, 48, 550–568. [Google Scholar] [CrossRef]
- Bardella, L.; Panteghini, A. Modelling the torsion of thin metal wires by distortion gradient plasticity. J. Mech. Phys. Solids 2015, 78, 467–492. [Google Scholar] [CrossRef]
- Chiricotto, M.; Giacomelli, L.; Tomassetti, G. Torsion in strain-gradient plasticity: Energetic scale effects. SIAM J. Appl. Math. 2012, 72, 1169–1191. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; He, Y.; Shen, L.; Lei, J.; Guo, S.; Peng, K. Accounting for the recoverable plasticity and size effect in the cyclic torsion of thin metallic wires using strain gradient plasticity. Mat. Sci. Eng. A Struct. 2015, 647, 84–90. [Google Scholar] [CrossRef]
- Fleck, N.A.; Willis, J.R. Strain gradient plasticity: Energetic or dissipative? Acta Mech. Sin. 2015, 31, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Huang, Y.; Nix, W.D.; Hutchinson, J.W. Mechanism-based strain gradient plasticity-i. Theory. J. Mech. Phys. Solids 1999, 47, 1239–1263. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, H.; Nix, W.D.; Hutchinson, J.W. Mechanism-based strain gradient plasticity-ii. Analysis. J. Mech. Phys. Solids 2000, 48, 99–128. [Google Scholar] [CrossRef]
- Huang, Y.; Qu, S.; Hwang, K.C.; Li, M.; Gao, H. A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 2004, 20, 753–782. [Google Scholar] [CrossRef]
- Gao, H.; Huang, Y. Taylor-based nonlocal theory of plasticity. Int. J. Solids Struct. 2001, 38, 2615–2637. [Google Scholar] [CrossRef]
- Liu, J.; Soh, A.K. Strain gradient elasto-plasticity with a new taylor-based yield function. Acta Mech. 2016, 227, 3031–3048. [Google Scholar] [CrossRef]
- Abu Al-Rub, R.K.; Voyiadjis, G.Z. A physically based gradient plasticity theory. Int. J. Plast. 2006, 22, 654–684. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borokinni, A.S.; Liu, D. A Brief Note on the Nix–Gao Strain Gradient Plasticity Theory. Metals 2018, 8, 708. https://doi.org/10.3390/met8090708
Borokinni AS, Liu D. A Brief Note on the Nix–Gao Strain Gradient Plasticity Theory. Metals. 2018; 8(9):708. https://doi.org/10.3390/met8090708
Chicago/Turabian StyleBorokinni, A. S., and Dabiao Liu. 2018. "A Brief Note on the Nix–Gao Strain Gradient Plasticity Theory" Metals 8, no. 9: 708. https://doi.org/10.3390/met8090708
APA StyleBorokinni, A. S., & Liu, D. (2018). A Brief Note on the Nix–Gao Strain Gradient Plasticity Theory. Metals, 8(9), 708. https://doi.org/10.3390/met8090708