Effect of Zr Addition on Overaging and Tensile Behavior of 2618 Aluminum Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Hardness and Overaging Behavior
3.3. Tensile Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cantore, G.; Giacopini, M.; Rosi, R.; Strozzi, A.; Pelloni, P.; Forte, C.; Achiluzzi, M.; Bianchi, G.M.; Ceschini, L.; Morri, A. Validation of a combined CFD/FEM methodology for the evaluation of thermal load acting on aluminum alloy pistons through hardness measurements in internal combustion engines. Met. Sci. Technol. 2011, 29, 16–25. [Google Scholar]
- Miers, S.A.; Anderson, C.L.; Blough, J.R.; Inal, M.K. Impingement identification in a high speed diesel engine using piston surface temperature measurements. SAE Tech. Pap. 2005, 1, 1909. [Google Scholar] [CrossRef]
- Hatch, J. Properties of Commercial Wrought Alloys. In Aluminium: Properties and Physical Metallurgy; ASM International; American Society for Metals: Metals Park, OH, USA, 1984. [Google Scholar]
- Wilson, R.N.; Forsyth, P. Effects of dditions of 1% Iron and 1% Nickel on age-hardening of an Aluminum-2.5% Copper-1.2% Magnesium alloy. J. Inst. Met. 1966, 94, 8–13. [Google Scholar]
- Novy, F.; Janecekb, M.; Král, R. Microstructure changes in a 2618 aluminium alloy during aging and creep. J. Alloys Compd. 2009, 487, 146–151. [Google Scholar] [CrossRef]
- Cho, Y.H.; Joo, D.H.; Kim, C.H.; Lee, H.C. The Effect of Alloy Addition on the High Temperature Properties of Over-Aged Al-Si(CuNiMg) Cast Alloys. Mater. Sci. Forum. 2006, 519–521, 461–466. [Google Scholar] [CrossRef]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Criteria for developing castable, creep-resistant aluminum-based alloys—A review. Zeitschrift Für Met. 2006, 97, 246–265. [Google Scholar] [CrossRef]
- Kasprzak, W.; Amirkhiz, B.S.; Niewczas, M. Structure and properties of cast Al–Si based alloy with Zr–V–Ti additions and its evaluation of high temperature performance. J. Alloys Compd. 2014, 595, 67–79. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, D.; Zhang, W.; Kang, S. Effect of Zr addition on microstructure and properties of Al-Mn-Si-Zn-based alloy. Trans. Nonferrous Met. Soc. China 2014, 24, 3872–3878. [Google Scholar] [CrossRef]
- Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L. Thermal stability of (AlSi)x(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr. Thermochim. Acta 2014, 595, 11–16. [Google Scholar] [CrossRef]
- Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L. Effect of Zr, V and Ti on hot compression behavior of the Al-Si cast alloy for powertrain applications. J. Alloys Compd. 2014, 615, 1019–1031. [Google Scholar] [CrossRef]
- Rakhmonov, B.J.; Timelli, G.; Bonollo, F. The Effect of Transition Elements on High-Temperature Mechanical Properties of Al–Si Foundry Alloys–A Review. Adv. Eng. Mater. 2016, 18, 1096. [Google Scholar] [CrossRef]
- Zedalis, M.S.; Fine, M.E. Precipitation and ostwald ripening in dilute Al Base-Zr-V alloys. Met. Mater. Trans. A 1986, 17, 2187–2198. [Google Scholar] [CrossRef]
- Totten, G.E.; MacKenzie, D.S. Handbook of Aluminum—Volume 2: Alloy Production and Materials Manufacturing; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during aging at 450–600 °C. Acta Mater. 2008, 56, 1182–1195. [Google Scholar] [CrossRef]
- Knipling, K.; Dunand, D.C. Creep resistance of cast and aged Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys at 300–400°C. Scr. Mater. 2008, 59, 387–390. [Google Scholar] [CrossRef]
- Knipling, K.E.; Seidman, D.N.; Dunand, D.C. Ambient- and high-temperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc-0.06Zr (at.%) alloys. Acta Mater. 2011, 59, 943–954. [Google Scholar] [CrossRef]
- Booth-Morrison, C.; Dunand, D.C.; Seidman, D.N. Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater. 2011, 59, 7029–7042. [Google Scholar] [CrossRef]
- Vo, N.Q.; Dunand, D.C.; Seidman, D.N. Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er. Acta Mater. 2014, 63, 73–85. [Google Scholar] [CrossRef]
- Ceschini, L.; Morri, A.; Morri, A.; Di Sabatino, M. Effect of thermal exposure on the residual hardness and tensile properties of the EN AW-2618A piston alloy. Mater. Sci. Eng. A 2015, 639, 288–297. [Google Scholar] [CrossRef]
- ASM International. ASTM E 10-08 Standard Test Method for Brinell Hardness of Metallic Materials; ASM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- International Organization for Standardization. ISO 6892-1:2009, Metallic Materials–Tensile Testing–Part 1: Method of Test at Room Temperature; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- International Organization for Standardization. ISO 6892-2:2011, Metallic Materials–Tensile Testing–Part 2: Method of Test at Elevated Temperature; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- Elgallad, E.M.; Shen, P.; Zhang, Z.; Chen, X. Effects of heat treatment on the microstructure and mechanical properties of AA2618 DC cast alloy. Mater. Des. 2014, 61, 133–140. [Google Scholar] [CrossRef]
- Shen, P.; Elgallad, E.M.; Chen, X.G. On the aging Behavior of AA2618 DC cast alloy. In Light Metals 2013; The Minerals, Metals & Materials Series; Sadler, B.A., Ed.; Springer: Cham, Switzerland.
- Oguocha, I.N.; Yannacopoulos, S.; Jin, Y. The structure of AlxFeNi phase in Al-Cu-Mg-Fe-Ni alloy (AA2618). J. Mater. Sci. 1996, 31, 5615–5621. [Google Scholar] [CrossRef]
- Moreau, E.; Donaldson, I.W.; Hexemer, R.; Bishop, D. Effects of Fe and Ni additions on PM alloy. Part 2-Influence of elevated temperature exposure. Can. Metall. Q. 2013, 52, 380–390. [Google Scholar] [CrossRef]
- Lu, H.; Kadolkar, P.; Nakazawa, K.; Ando, T.; Blue, C. Precipitation Behavior of AA2618. Metall. Mater. Trans. A 2007, 38, 2379–2388. [Google Scholar] [CrossRef]
- Lefebvre, W.; Masquelier, N.; Houard, J.; Patte, R.; Zapolsky, H. Tracking the path of dislocations across ordered Al3Zr nano-precipitates in three dimensions. Scr. Mater. 2014, 70, 43–46. [Google Scholar] [CrossRef]
- Tiryakioğlu, M.; Campbell, J.; Staley, J. On macrohardness testing of Al–7 wt. Si–Mg alloys 2-An evaluation of models for hardness-yield strenght relationship. Mater. Sci. Eng. A 2003, 361, 240–248. [Google Scholar] [CrossRef]
- Warren, A.; Campbell, J. The Metallurgy of Light Alloys. In Proceedings of the Metallurgy of Light Alloys: Spring Residential Conference, Loughborough, UK, March 1983; pp. 195–207. [Google Scholar]
Element (wt %) | Cu | Mg | Ni | Fe | Zr | Si | Ti | Al. |
---|---|---|---|---|---|---|---|---|
2618 | 2.146 | 1.243 | 0.992 | 0.876 | 0.119 | 0.111 | 0.092 | Bal. |
2618 + Zr | 2.081 | 1.165 | 0.981 | 0.865 | 0.281 | 0.118 | 0.088 | Bal. |
Al | Mg | Si | Fe | Ni | Cu | Suggested |
---|---|---|---|---|---|---|
80.16 | - | 0.35 | 8.33 | 9.47 | 1.69 | Al9FeNi |
61.57 | - | - | 0.68 | 7.15 | 30.60 | Al7Cu4Ni |
72.60 | 0.40 | - | 1.77 | 5.98 | 19.25 | Al7Cu2(Fe,Ni) |
59.07 | 4.65 | 1.92 | 0.20 | 1.20 | 32.95 | Al2Cu |
52.23 | 6.37 | 11.37 | - | - | 0.51 | Mg2Si |
Al | Mg | Si | Fe | Ni | Cu | Suggested |
---|---|---|---|---|---|---|
85.93 | 0.71 | 0.72 | 5.66 | 6.03 | 0.94 | Al9FeNi |
78.51 | 0.82 | - | 5.18 | 2.64 | 12.85 | Al7Cu2(Fe,Ni) |
95.87 | 1.54 | - | 0.35 | 0.22 | 2.02 | (Al–Cu–Mg) |
97.36 | 1.43 | - | - | - | 1.21 | (Al–Cu–Mg) |
50.58 | 9.20 | 10.91 | - | 0.22 | 0.98 | Mg2Si |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toschi, S.; Balducci, E.; Ceschini, L.; Mørtsell, E.A.; Morri, A.; Di Sabatino, M. Effect of Zr Addition on Overaging and Tensile Behavior of 2618 Aluminum Alloy. Metals 2019, 9, 130. https://doi.org/10.3390/met9020130
Toschi S, Balducci E, Ceschini L, Mørtsell EA, Morri A, Di Sabatino M. Effect of Zr Addition on Overaging and Tensile Behavior of 2618 Aluminum Alloy. Metals. 2019; 9(2):130. https://doi.org/10.3390/met9020130
Chicago/Turabian StyleToschi, Stefania, Eleonora Balducci, Lorella Ceschini, Eva Anne Mørtsell, Alessandro Morri, and Marisa Di Sabatino. 2019. "Effect of Zr Addition on Overaging and Tensile Behavior of 2618 Aluminum Alloy" Metals 9, no. 2: 130. https://doi.org/10.3390/met9020130
APA StyleToschi, S., Balducci, E., Ceschini, L., Mørtsell, E. A., Morri, A., & Di Sabatino, M. (2019). Effect of Zr Addition on Overaging and Tensile Behavior of 2618 Aluminum Alloy. Metals, 9(2), 130. https://doi.org/10.3390/met9020130