Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. First Method
3.1.1. Electron Densities Determination
3.1.2. Electron Temperatures
ln (Iijλ/Aijgi) = ln(N/U(T)) − (Ei/kT)
3.2. Second Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Askar’yan, G.A.; Moroz, E.M. Pressure on evaporation of matter in a radiation beam. JETP 1963, 16, 1638–1644. [Google Scholar]
- Fairand, B.P.; Wilcox, B.A.; Gallagher, W.J.; Willians, D.N. Laser Shock-Induced microstructural and mechanical property changes in 7075 Aluminum. J. Appl. Phys. 1972, 43, 3893–3895. [Google Scholar] [CrossRef]
- Yang, L.C. Stress waves generated in thin metallic films by a Q-switched ruby laser. J. Appl. Phys. 1974, 45, 2601–2607. [Google Scholar] [CrossRef]
- Fabbro, R.; Foumier, J.; Ballard, P.; Devaux, D.; Virmont, J. Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 1990, 68, 775–784. [Google Scholar] [CrossRef]
- Berthe, L.; Fabbro, R.; Peyre, P.; Tollier, L.; Bartnicki, E. Shock waves from a water-confined laser-generated plasma. J. Appl. Phys. 1997, 82, 2826–2833. [Google Scholar] [CrossRef]
- Sano, Y.; Mukai, N.; Okazaki, K.; Obata, M. Residual stress improvement in metal surface by underwater laser irradiation. Nucl. Instrum. Methods Phys. Res. B 1997, 121, 432–436. [Google Scholar] [CrossRef]
- Morales, M.; Porro, J.A.; Blasco, M.; Molpeceres, C.; Ocaña, J.L. Numerical simulation of plasma dynamics in laser shock processing experiments. Appl. Surf. Sci. 2009, 255, 5181–5185. [Google Scholar] [CrossRef]
- Ocaña, J.L.; Molpeceres, C.; Porro, J.A.; Gómez, G.; Morales, M. Experimental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys. Appl. Surf. Sci. 2004, 238, 501–505. [Google Scholar] [CrossRef]
- Martí-López, L.; Ocaña, R.; Porro, J.A.; Morales, M.; Ocaña, J.L. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes. Appl. Opt. 2009, 48, 3671–3680. [Google Scholar] [CrossRef]
- Ocaña, J.L.; Correa, C.; Porro, J.A.; Díaz, M.; Ruiz de Lara, L.; Peral, D. Induction of through-thickness compressive residual stress fields in thin Al2024-T351 plates by laser shock processing. IJMSI 2015, 6, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Correa, C.; Peral, D.; Porro, J.A.; Díaz, M.; Ruiz de Lara, L.; García-Beltrán, A.; Ocaña, J.L. Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: A solution to reduce residual stress anisotropy. Opt. Laser Technol. 2015, 73, 179–187. [Google Scholar] [CrossRef]
- Wu, B.; Shin, C. A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments. J. Appl. Phys. 2005, 97, 113517-1–113517-11. [Google Scholar] [CrossRef]
- Morales, M.; Ocaña, J.L.; Molpeceres, C.; Porro, J.A.; García-Beltrán, A. Model based optimization criteria for the generation of deep compressive residual stress fields in high elastic limit metallic alloys by ns-laser shock processing. Surf. Coat. Technol. 2008, 202, 2257–2262. [Google Scholar] [CrossRef] [Green Version]
- Ocaña, J.L.; Porro, J.A.; Morales, M.; Iordachescu, D.; Díaz, M.; Ruiz de Lara, L.; Correa, C.; Gil Santos, A. Laser Shock Processing: An emerging technique for the enhancement of surface properties and fatigue life of high-strength metal alloys. IJMMP 2013, 8, 38–52. [Google Scholar] [CrossRef]
- Musazzi, S.; Perini, U. Laser Induced Breakdown Spectroscopy Theory and Applications; Springer: Berlin, Germany, 2014. [Google Scholar]
- Colón, C.; Alonso-Medina, A. Application of a laser produced plasma. Experimental Stark widths of single ionized lead lines. Spectrochim. Acta B 2006, 61, 856–863. [Google Scholar] [CrossRef]
- Alonso-Medina, A. Measured Stark widths of several spectral lines of Pb III. Spectrochim. Acta B 2011, 66, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Noll, R.; Sturm, V.; Aydin, Ü.; Eilers, D.; Gehlen, C.; Höhne, M.; Lamott, A.; Makowe, J.; Vrenegor, J. Laser-induced breakdown spectroscopy—From research to industry, new frontiers for process control. Spectrochim. Acta B 2008, 63, 1159–1166. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; Heagzy, H.; El Sherbini, T.M. Measurement of electron density utilizing the Hα-line from laser produced plasma in air. Spectrochim. Acta B 2006, 61, 532–539. [Google Scholar] [CrossRef]
- Parigger, C.G.; Oks, E. Hydrogen Balmer series spectroscopy in laser-induced breakdown plasmas International. IRAMP 2010, 1, 13–23. [Google Scholar]
- El Sherbini, A.M.; Al Amer, A.A.S.; Hassan, A.T.; El Sherbini, T.M. Measurements of plasma electron temperature utilizing magnesium lines appeared in laser produced aluminum plasma in air. OPJ 2012, 2, 278–285. [Google Scholar] [CrossRef]
- De Giacomo, A.; Dell´aglio, M.; De Pascale, O. Single Pulse-Laser Induced Breakdown Spectroscopy in aqueous solution. Appl. Phys. A 2004, 79, 1035–1038. [Google Scholar] [CrossRef]
- Nath, A.; Khare, A. Spectroscopic Investigations on Laser Induced Breakdown in Water. J. Phys. Conf. Ser. 2010, 208, 012090-1–012090-4. [Google Scholar] [CrossRef]
- Moreno-Díaz, C.; Alonso-Medina, A.; Colón, C.; Porro, J.A.; Ocaña, J.L. Measurement of plasma electron density generated in an experiment of Laser Shock Processing, utilizing the Hα-line. J. Mater. Process. Technol. 2016, 232, 9–18. [Google Scholar] [CrossRef]
- Ocaña, J.L.; Molpeceres, C.; Morales, M.; Porro, J.A. Application of plasma monitoring methods to the optimized design of laser shock processing applications, High-Power Laser Ablation VI. Proc. SPIE 2006, 6261, 626124. [Google Scholar]
- Takata, T.; Enok, M.; Chivavibul, P.; Matsui, A.; Kobayashi, Y. Acoustic Emission Monitoring of Laser Shock Peening by Detection of Underwater Acoustic Wave. Mater. Trans. 2016, 57, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Griem, H.R. Shift of hydrogen lines from electron collisions in dense plasmas. Phys. Rev. A 1983, 28, 1596–1601. [Google Scholar] [CrossRef]
- Ashkenazy, J.; Kipper, R.; Carner, M. Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines. Phys. Rev. A 1991, 43, 5568–5574. [Google Scholar] [CrossRef]
- Griem, H.R. Spectral Line Broadening by Plasmas; Elsvier: New York, NY, USA, 1974. [Google Scholar]
- Kepple, P.; Griem, H.R. Improved Stark profile calculations for the hydrogen lines Hα, Hβ, Hγ and Hδ. Phys. Rev. 1968, 173, 317–325. [Google Scholar] [CrossRef]
Time Delay (µs) | 1000 ns Gate | 500 ns Gate | 300 ns Gate | 200 ns Gate | 100 ns Gate | |||||
---|---|---|---|---|---|---|---|---|---|---|
Δλ1/2 (Å) | d (Å) | Δλ1/2 (Å) | d (Å) | Δλ1/2 (Å) | d (Å) | Δλ1/2 (Å) | d (Å) | Δλ1/2 (Å) | d (Å) | |
5.0 | 13.0 ± 0.5 | 1.0 | 13.8 ± 0.4 | 1.0 | 13.3 ± 0.4 | 1.0 | 11.5 ± 0.9 | (1.1) | 11.8 ± 3.1 | (1.0) |
4.5 | 13.0 ± 1.4 | 1.1 | 13.9 ± 0.1 | 1.0 | 14.5 ± 0.2 | 0.9 | 12.3 ± 2.7 | (1.0) | 13.9 ± 0.2 | (1.0) |
4.0 | 13.4 ± 2.9 | 1.2 | 14.4 ± 2.5 | 1.2 | 14.5 ± 2.2 | 1.1 | 14.7 ± 1.9 | (1.2) | 15.3 ± 0.7 | (1.1) |
3.5 | 14.6 ± 0.1 | 1.2 | 15.6 ± 2.4 | 1.4 | 15.9 ± 1.8 | 1.5 | 16.8 ± 1.9 | (1.6) | 17.1 ± 3.9 | (1.7) |
3.0 | 17.2 ± 0.6 | 1.5 | 15.7 ± 1.9 | 1.3 | 17.2 ± 0.8 | 1.9 | 17.7 ± 0.8 | (2.0) | 16.9 ± 1.9 | (1.7) |
2.5 | 17.5 ± 2.5 | 1.8 | 20.2 ± 1.4 | 2.2 | 19.4 ± 3.4 | 2.4 | 19.6 ± 3.0 | (2.5) | 20.4 ± 5.3 | (2.3) |
2.0 | 18.7 ± 2.0 | 2.1 | 22.5 ± 0.4 | 2.6 | 22.5 ± 7.4 | 2.8 | 18.7 ± 2.3 | (3.0) | 21.0 ± 4.5 | (-) |
Time Delay (µs) | 1000 ns Gate | 500 ns Gate | 300 ns Gate | 200 ns Gate | 100 ns Gate |
---|---|---|---|---|---|
Ne (1017 cm−3) | Ne (1017 cm−3) | Ne (1017 cm−3) | Ne (1017 cm−3) | Ne (1017 cm−3) | |
5.0 | 1.5 ± 0.1 | 1.6 ± 0.1 | 1.5 ± 0.1 | 1.2 ± 0.1 | 1.3 ± 0.3 |
4.5 | 1.5 ± 0.2 | 1.7 ± 0.1 | 1.8 ± 0.1 | 1.4 ± 0.3 | 1.7 ± 0.1 |
4.0 | 1.6 ± 0.4 | 1.8 ± 0.3 | 1.8 ± 0.3 | 1.8 ± 0.2 | 2.0 ± 0.1 |
3.5 | 1.8 ± 0.1 | 2.0 ± 0.3 | 2.1 ± 0.2 | 2.1 ± 0.3 | 2.4 ± 0.6 |
3.0 | 2.3 ± 0.1 | 2.0 ± 0.2 | 2.4 ± 0.1 | 2.4 ± 0.1 | 2.4 ± 0.3 |
2.5 | 2.3 ± 0.3 | 2.9 ± 0.2 | 2.8 ± 0.1 | 2.8 ± 0.4 | 3.1 ± 0.8 |
2.0 | 2.6 ± 0.3 | 3.4 ± 0.1 | 3.5 ± 1.1 | 2.7 ± 0.3 | 3.2 ± 0.7 |
Delay (µs) | 1000 ns Gate | 500 ns Gate | 300 ns Gate | 200 ns Gate | 100 ns Gate | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ne | T | Ne | T | Ne | T | Ne | T | Ne | T | |
5.0 | 1.5 ± 0.1 | 13 | 1.6 ± 0.1 | 13 | 1.5 ± 0.1 | 10 | 1.2 ± 0.1 | 10 | 1.3 ± 0.3 | 13 |
4.5 | 1.5 ± 0.2 | 13 | 1.7 ± 0.1 | 13 | 1.8 ± 0.1 | 17 | 1.4 ± 0.3 | 14 | 1.7 ± 0.1 | 18 |
4.0 | 1.6 ± 0.4 | 14 | 1.8 ± 0.3 | 14 | 1.8 ± 0.3 | 21 | 1.8 ± 0.2 | 15 | 2.0 ± 0.1 | 22 |
3.5 | 1.8 ± 0.1 | 16 | 2.0 ± 0.3 | 15 | 2.1 ± 0.2 | 23 | 2.1 ± 0.3 | 18 | 2.4 ± 0.6 | 27 |
3.0 | 2.3 ± 0.1 | 18 | 2.0 ± 0.2 | 19 | 2.4 ± 0.1 | 24 | 2.4 ± 0.1 | 20 | 2.4 ± 0.3 | 28 |
2.5 | 2.4 ± 0.3 | 20 | 2.9 ± 0.2 | 21 | 2.8 ± 0.1 | 25 | 2.8 ± 0.4 | 23 | 3.1 ± 0.8 | 28 |
2.0 | 2.7 ± 0.3 | 26 | 3.4 ± 0.1 | 24 | 3.5 ± 1.1 | 27 | 2.7 ± 0.3 | 27 | 3.2 ± 0.7 | 28 |
Delay (µs) | 1000 ns Gate | 500 ns Gate | 300 ns Gate | ||||||
---|---|---|---|---|---|---|---|---|---|
d (Å) This Work | d (Å) Griem | d (Å) Oks | d (Å) This Work | d (Å) Griem | d (Å) Oks | d (Å) This Work | d (Å) Griem | d (Å) Oks | |
5.0 | 1.0 | 0.9 | 0.6 | 1.0 | 0.9 | 0.6 | 1.0 | 0.9 | 0.6 |
4.5 | 1.1 | 0.9 | 0.6 | 1.0 | 1.0 | 0.7 | 0.9 | 1.2 | 0.8 |
4.0 | 1.2 | 1.0 | 0.7 | 1.2 | 1.1 | 0.7 | 1.1 | 1.3 | 0.9 |
3.5 | 1.2 | 1.2 | 0.8 | 1.4 | 1.3 | 0.8 | 1.5 | 1.5 | 1.0 |
3.0 | 1.5 | 1.6 | 1.1 | 1.3 | 1.4 | 0.9 | 1.9 | 1.8 | 1.3 |
2.5 | 1.8 | 1.7 | 1.2 | 2.2 | 2.1 | 1.4 | 2.4 | 2.2 | 1.5 |
2.0 | 2.1 | 2.2 | 1.5 | 2.6 | 2.6 | 1.8 | 2.8 | 2.8 | 1.9 |
Ne (1017 cm−3) | T (103 K) from Boltzmann plot | d (Å) Griem a) | d (Å) This Work | T (103 K) from Red Shifts |
---|---|---|---|---|
1.6 ± 0.1 | 11 | 0.8 | 1.0 | 13 |
2.0 ± 0.2 | 14 | 1.1 | 1.3 | 18 |
3.4 ± 0.1 | 15 | 1.8 | 2.6 | 26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colón, C.; de Andrés-García, M.I.; Moreno-Díaz, C.; Alonso-Medina, A.; Porro, J.A.; Angulo, I.; Ocaña, J.L. Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing. Metals 2019, 9, 808. https://doi.org/10.3390/met9070808
Colón C, de Andrés-García MI, Moreno-Díaz C, Alonso-Medina A, Porro JA, Angulo I, Ocaña JL. Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing. Metals. 2019; 9(7):808. https://doi.org/10.3390/met9070808
Chicago/Turabian StyleColón, Cristóbal, María Isabel de Andrés-García, Cristina Moreno-Díaz, Aurelia Alonso-Medina, Juan Antonio Porro, Ignacio Angulo, and José Luis Ocaña. 2019. "Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing" Metals 9, no. 7: 808. https://doi.org/10.3390/met9070808
APA StyleColón, C., de Andrés-García, M. I., Moreno-Díaz, C., Alonso-Medina, A., Porro, J. A., Angulo, I., & Ocaña, J. L. (2019). Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing. Metals, 9(7), 808. https://doi.org/10.3390/met9070808