Multiscale Numerical Analysis of TRM-Reinforced Masonry under Diagonal Compression Tests
Abstract
:1. Introduction
2. Experimental Campaign
2.1. Building and Strengthening of Masonry Panels
2.2. Mechanical Characterisation of Materials
2.3. Characterisation of Mortar–Brick Interfaces
2.4. In-Plane Diagonal Compression Tests
3. Numerical Investigation of Interface Properties
3.1. Triplet Numerical Model and Shear Test Simulation
3.2. Analytical Procedure to Estimate cb
- If < 1, the area corresponding to the ith element is not a crack initiation site.
- If = 1, the ith element is a CE, i.e., cracking initiates in the corresponding area.
- If > 1, the corresponding area is assumed to be already fractured.
- For the CB-GM system, the IL was assumed to be located between the interior brick and the mortar joint because of the experimental evidence (cf. Figure 3c).
4. Numerical Model for the Diagonal Compression Test
4.1. Reinforcement Layer Modelling
4.2. Constitutive Behaviour of Interface Joints
4.3. Modelling of Anchors
5. Results and Discussion
- symmetry plane YZ;
- FE analyses performed in a dynamic regime, in order to better deal with the nonlinearity of the constitutive cohesive law;
- imposed vertical displacements at the boundary (Figure 12a) in quasi-static conditions to simulate the low jack displacement rate of the experimental tests (0.08 mm/s).
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Basaglia, A.; Aprile, A.; Spacone, E.; Pelà, L. Assessing community resilience, housing recovery and impact of mitigation strategies at the urban scale: A case study after the 2012 Northern Italy Earthquake. Bull. Earthq. Eng. 2020, 18, 6039–6074. [Google Scholar] [CrossRef]
- Grossi, E.; Zerbin, M.; Aprile, A. Advanced techniques for pilotis RC frames seismic retrofit: Performance comparison for a strategic building case study. Buildings 2020, 10, 149. [Google Scholar] [CrossRef]
- Basili, M.; Vestroni, F.; Marcari, G. Brick masonry panels strengthened with textile reinforced mortar: Experimentation and numerical analysis. Constr. Build. Mater. 2019, 227, 117061. [Google Scholar] [CrossRef]
- Bisoffi-Sauve, M.; Morel, S.; Dubois, F. Modelling mixed mode fracture of mortar joints in masonry buildings. Eng. Struct. 2019, 182, 316–330. [Google Scholar] [CrossRef] [Green Version]
- Corradi, M.; Borri, A.; Castori, G.; Sisti, R. Shear strengthening of wall panels through jacketing with cement mortar reinforced by GFRP grids. Compos. Part B Eng. 2014, 64, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Faella, C.; Martinelli, E.; Nigro, E.; Paciello, S. Shear capacity of masonry walls externally strengthened by a cement-based composite material: An experimental campaign. Constr. Build. Mater. 2010, 24, 84–93. [Google Scholar] [CrossRef]
- Gabor, A.; Ferrier, E.; Jacquelin, E.; Hamelin, P. Analysis of the in-plane shear behaviour of FRP reinforced hollow brick masonry walls. Struct. Eng. Mech. 2005, 19, 237–260. [Google Scholar] [CrossRef]
- Garcia-Ramonda, L.; Pelá, L.; Roca, P.; Camata, G. In-plane shear behaviour by diagonal compression testing of brick masonry walls strengthened with basalt and steel textile reinforced mortars. Constr. Build. Mater. 2020, 240, 117905. [Google Scholar] [CrossRef]
- Ismail, N.; Ingham, J.M. In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Eng. Struct. 2016, 118, 167–177. [Google Scholar] [CrossRef]
- Kouris, L.A.S.; Triantafillou, T.C. State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Constr. Build. Mater. 2018, 188, 1221–1233. [Google Scholar] [CrossRef]
- Marcari, G.; Basili, M.; Vestroni, F. Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar. Compos. Part B Eng. 2017, 108, 131–142. [Google Scholar] [CrossRef]
- Papanicolaou, C.; Triantafillou, T.; Lekka, M. Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Constr. Build. Mater. 2011, 25, 504–514. [Google Scholar] [CrossRef]
- Parisi, F.; Iovinella, I.; Balsamo, A.; Augenti, N.; Prota, A. In-plane behaviour of tuff masonry strengthened with inorganic matrix–grid composites. Compos. Part B Eng. 2013, 45, 1657–1666. [Google Scholar] [CrossRef]
- Shabdin, M.; Zargaran, M.; Attari, N.K.A. Experimental diagonal tension (shear) test of Un-Reinforced Masonry (URM) walls strengthened with textile reinforced mortar (TRM). Constr. Build. Mater. 2018, 164, 704–715. [Google Scholar] [CrossRef]
- Wang, X.; Lam, C.C.; Iu, V.P. Experimental investigation of in-plane shear behaviour of grey clay brick masonry panels strengthened with SRG. Eng. Struct. 2018, 162, 84–96. [Google Scholar] [CrossRef]
- Wang, X.; Lam, C.C.; Iu, V.P. Comparison of different types of TRM composites for strengthening masonry panels. Constr. Build. Mater. 2019, 219, 184–194. [Google Scholar] [CrossRef]
- Wei, C.Q.; Zhou, X.G.; Ye, L.P. Experimental study of masonry walls strengthened with CFRP. Struct. Eng. Mech. 2007, 25, 675–690. [Google Scholar] [CrossRef]
- Yardim, Y.; Lalaj, O. Shear strengthening of unreinforced masonry wall with different fiber reinforced mortar jacketing. Constr. Build. Mater. 2016, 102, 149–154. [Google Scholar] [CrossRef]
- Mininno, G.; Ghiassi, B.; Oliveira, D.V. Modelling of the in-plane and out-of-plane performance of TRM-strengthened masonry walls. Key Eng. Mater. 2017, 747, 60–68. [Google Scholar] [CrossRef]
- Caggegi, C.; Lanoye, E.; Djama, K.; Bassil, A.; Gabor, A. Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios. Compos. Part B Eng. 2017, 130, 90–102. [Google Scholar] [CrossRef]
- Lignola, G.; Caggegi, C.; Ceroni, F.; De Santis, S.; Krajewski, P.; Lourenço, P.B.; Morganti, M.; Papanicolaou, C.; Pellegrino, C.; Prota, A.; et al. Performance assessment of basalt FRCM for retrofit applications on masonry. Compos. Part B Eng. 2017, 128, 1–18. [Google Scholar] [CrossRef]
- Tomazevic, M. Earthquake-Resistant Design of Masonry Buildings; Imperial College Press: London, UK, 1999. [Google Scholar]
- Kouris, L.A.S.; Triantafillou, T.C. Design methods for strengthening masonry buildings using textile-reinforced mortar. J. Compos. Constr. 2019, 23, 04018070. [Google Scholar] [CrossRef]
- Bui, L.; Reboul, N.; Si Larbi, A.; Ferrier, E. Mechanical in-plane behaviour of masonry walls reinforced by composite materials: Experimental and analytical approaches. J. Compos. Mater. 2017, 51, 4231–4249. [Google Scholar] [CrossRef]
- Larrinaga, P.; Chastre, C.; Biscaia, H.C.; San-José, J.T. Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress. Mater. Des. 2014, 55, 66–74. [Google Scholar] [CrossRef]
- Grande, E.; Imbimbo, M.; Sacco, E. Numerical investigation on the bond behavior of FRCM strengthening systems. Compos. Part B Eng. 2018, 145, 240–251. [Google Scholar] [CrossRef]
- Grande, E.; Milani, G. Interface modeling approach for the study of the bond behavior of FRCM strengthening systems. Compos. Part B Eng. 2018, 141, 221–233. [Google Scholar] [CrossRef]
- Razavizadeh, A.; Ghiassi, B.; Oliveira, D.V. Bond behavior of SRG-strengthened masonry units: Testing and numerical modeling. Constr. Build. Mater. 2014, 64, 387–397. [Google Scholar] [CrossRef]
- Wang, X.; Lam, C.C.; Iu, V.P. Bond behaviour of steel-TRM composites for strengthening masonry elements: Experimental testing and numerical modelling. Constr. Build. Mater. 2020, 253, 119157. [Google Scholar] [CrossRef]
- Wang, X.; Lam, C.C.; Sun, B.C.; Noguchi, T.; Iu, V.P. Effect of curing environment on the tensile behaviour of FRCM composites. Constr. Build. Mater. 2020, 238, 117729. [Google Scholar] [CrossRef]
- Basili, M.; Marcari, G.; Vestroni, F. Nonlinear analysis of masonry panels strengthened with textile reinforced mortar. Eng. Struct. 2016, 113, 245–258. [Google Scholar] [CrossRef]
- De Carvalho Bello, C.B.; Cecchi, A.; Meroi, E.; Oliveira, D.V. Experimental and numerical investigations on the behaviour of masonry walls reinforced with an innovative sisal FRCM system. Key Eng. Mater. 2017, 747, 190–195. [Google Scholar] [CrossRef]
- Garofano, A.; Ceroni, F.; Pecce, M. Modelling of the in-plane behaviour of masonry walls strengthened with polymeric grids embedded in cementitious mortar layers. Compos. Part B Eng. 2016, 85, 243–258. [Google Scholar] [CrossRef]
- Hamdy, G.A.; Kamal, O.A.; El-Hariri, M.O.R.; El-Salakawy, T.S. Nonlinear analysis of contemporary and historic masonry vaulted elements externally strengthened by FRP. Struct. Eng. Mech. 2018, 65, 611–619. [Google Scholar] [CrossRef]
- Wang, X.; Ghiassi, B.; Oliveira, D.V.; Lam, C.C. Modelling the nonlinear behaviour of masonry walls strengthened with textile reinforced mortars. Eng. Struct. 2017, 134, 11–24. [Google Scholar] [CrossRef]
- Gulinelli, P.; Aprile, A.; Rizzoni, R.; Grunevald, Y.H.; Lebon, F.; Lovisetto, R.; Tralli, S. A fe model for TRM reinforced masonry walls with interface effects. Key Eng. Mater. 2019, 817, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lam, C.C.; Iu, V.P. Characterization of mechanical behaviour of grey clay brick masonry in China. Constr. Build. Mater. 2020, 262, 119964. [Google Scholar] [CrossRef]
- Pelà, L.; Canella, E.; Aprile, A.; Roca, P. Compression test of masonry core samples extracted from existing brickwork. Constr. Build. Mater. 2016, 119, 230–240. [Google Scholar] [CrossRef]
- Pelà, L.; Roca, P.; Aprile, A. Combined in-situ and laboratory minor destructive testing of historical mortars. Int. J. Arch. Herit. 2018, 12, 334–349. [Google Scholar] [CrossRef]
- UNI EN 772-1. Methods of Test for Masonry Units—Part 1: Determination of Compressive Strength; CEN: Brussels, Belgium, 2015.
- UNI EN 1015-11. Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar; CEN: Brussels, Belgium, 2007.
- EN 1052-1. Methods of Test for Masonry—Part 1: Determination of Compressive Strength; CEN: Brussels, Belgium, 2001.
- UNI EN 1992-1-1. Eurocode 2. Design of Concrete Structures Part 1-1: General Rules and Rules for Buildings; CEN: Brussels, Belgium, 2005.
- Galano, L.; Betti, M. Elementi Di Statica Delle Costruzioni Storiche In Muratura; Esculapio: Bologna, Italy, 2019. [Google Scholar]
- UNI EN 1052-3. Methods of Test for Masonry Part 3: Determination of Initial Shear Strength; CEN: Brussels, Belgium, 2007.
- Ravula, M.B.; Subramaniam, K.V.L. Cohesive-frictional interface fracture behavior in soft-brick masonry: Experimental investigation and theoretical development. Mater. Struct. 2019, 52, 34. [Google Scholar] [CrossRef]
- ASTM International. ASTM E519. Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages; ASTM: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Abdulla, K.F.; Cunningham, L.S.; Gillie, M. Simulating masonry wall behaviour using a simplified micro-model approach. Eng. Struct. 2017, 151, 349–365. [Google Scholar] [CrossRef]
- Lourenço Paulo, B.; Rots Jan, G. Multisurface interface model for analysis of masonry structures. J. Eng. Mech. 1997, 123, 660–668. [Google Scholar] [CrossRef]
- Gay, D.; Hoa, S.V.; Tsai, S.W. Composite Materials: Design and Applications; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Thamboo, J.A.; Dhanasekar, M. Nonlinear finite element modelling of high bond thin-layer mortared concrete masonry. Int. J. Mason. Res. Innov. 2016, 1, 5–26. [Google Scholar] [CrossRef]
- Abaqus. Abaqus 6.13-1; Dassault Systemes Simulia Corp.: Providence, RI, USA, 2013. [Google Scholar]
- Fouchal, F.; Lebon, F.; Titeux, I. Contribution to the modelling of interfaces in masonry construction. Constr. Build. Mater. 2009, 23, 2428–2441. [Google Scholar] [CrossRef] [Green Version]
- Lebon, F.; Dumont, S.; Rizzoni, R.; López-Realpozo, J.C.; Guinovart-Díaz, R.; Rodríguez-Ramos, R.; Bravo-Castillero, J.; Sabina, F.J. Soft and hard anisotropic interface in composite materials. Compos. Part B Eng. 2016, 90, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Rizzoni, R.; Dumont, S.; Lebon, F.; Sacco, E. Higher order model for soft and hard elastic interfaces. Int. J. Solids Struct. 2014, 51, 4137–4148. [Google Scholar] [CrossRef]
- Camanho, P.P.; Dàvila, C.G. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials: NASA/TM-2002–211737; NASA: Hanover, MD, USA, 2002; pp. 1–37.
Sample ID | Number of Samples | Matrix | Grid | Anchors |
---|---|---|---|---|
UM | 1 | --- | --- | --- |
GTRM | 2 | Hydraulic lime mortar (GM) sprayed in a single layer 30 mm thick on each side | Preformed GFRP square grid (GG), average thickness 3 mm, spacing 33 × 33 mm2 each side | Coupled L-shaped preformed GFRP anchors (GA) of 70 mm2 section, 100 mm long each |
BTRM | 2 | Mineral binder-added lime mortar (BM) sprayed in two layers 10 mm thick each side | Balanced basalt–stainless steel AISI 304 square grid (BG), average thickness 0.064 mm, spacing 8 × 8 mm2 each side | Helical stainless steel AISI 316 anchors (BA) of 14.5 mm2 section, 200 mm long each |
Test Type | Standard Reference | Specimen Description | Materials ID | Corresponding Symbols |
---|---|---|---|---|
Compression | UNI EN 772-1, 2015 [40] | Cubes 40 × 40 × 40 mm3 | CB, LM, GM, BM | fc |
Three-point bending | UNI EN 1015-11, 2007 [41] | Prisms 160 × 40 × 40 mm3 | LM, GM, BM | ft |
Uniaxial compression | EN 1052-1, 2001 [42] | Single-leaf wall 645 × 630 × 120 mm3 (bricks: 250 × 55 × 120 mm3) | CB + LM | E, ν |
Bending Tests | Compression Tests | |||||||
---|---|---|---|---|---|---|---|---|
Material ID | Number of Samples | ft (N/mm2) | CV (%) | Number of Samples | fc (N/mm2) | CV (%) | E (N/mm2) | ν |
CB | --- | --- | --- | 20 | 19.37 | 12 | 20176 | 0.23 |
LM | 18 | 0.84 | 25 | 36 | 4.64 | 15 | 2499 | --- |
GM | 3 | 1.14 | 10 | 6 | 4.58 | 5 | --- | --- |
BM | 3 | 2.05 | 17 | 6 | 8.16 | 3 | --- | --- |
Material ID | Tensile Strength (N/mm2) | Elastic Modulus (N/mm2) | Ultimate Strain (%) |
---|---|---|---|
GG | ≥350 | ≥27 | ≥1.5 |
BG | ≥1700 | ≥70 | ≥1.9 |
GA | ≥440 | ≥26 | ≥1.7 |
BA | ≥700 (ε = 0.2%) | ≥150 | ≥3.0 |
Material ID | kc | E (N/mm2) | Ν |
---|---|---|---|
LM | --- | 2499 | 0.15 |
GM | 3146 | 2489 | 0.15 |
BM | --- | 9000 | 0.15 |
Interface ID | Number of Samples | fv0 (N/mm2) | CV (%) |
---|---|---|---|
CB-LM | 8 | 0.29 | 23 |
CB-GM | 3 | 0.36 | 36 |
CB-BM | 3 | 0.37 | 68 |
Specimen ID | Pp (kN) | Pp, av (kN) | ΔPp, TRM/UM (%) | δp (mm) | δp, av (mm) | Δδp, TRM/UM (%) | Failure Mode |
---|---|---|---|---|---|---|---|
UM | 71 | 71 | --- | 0.28 | 0.28 | --- | Bed joint sliding |
GTRM-1 | 146 | 154 | +117 | 0.65 | 0.72 | +157 | TRM debonding |
GTRM-2 | 162 | 0.78 | |||||
BTRM-1 | 198 | 183 | +158 | 0.35 | 0.33 | +18 | Diagonal traction |
BTRM-2 | 167 | 0.31 |
Sample ID | Pk (kN) | Pk, av (kN) | δk (mm) | δk, av (mm) | K (kN/mm) | Kav (kN/mm) | ΔKTRM/UM (%) |
---|---|---|---|---|---|---|---|
UM | --- | --- | --- | 0.28 | 243 | 243 | --- |
GTRM-1 | 136 | 142 | 0.41 | 0.39 | 332 | 365 | +50 |
GTRM-2 | 147 | 0.37 | 397 | ||||
BTRM-1 | --- | --- | --- | --- | 566 | 553 | +128 |
Interface ID | cb (N/mm2) |
---|---|
CB-LM | 0.53 |
CB-GM | 0.64 |
CB-BM | 0.88 |
Material ID | |||
---|---|---|---|
GG | 1000 | 2600 | --- |
BG | 400 | 2750 | --- |
GM | --- | --- | 1400 |
BM | --- | --- | 1580 |
Ply | ||||||
---|---|---|---|---|---|---|
GG + GM | 0.384 | 0.384 | 1862 | 8464 | 0.12 | 2072 |
BG + BM | 0.145 | 0.145 | 1750 | 14507 | 0.13 | 4863 |
Interface Joint | Mortar | ||||
---|---|---|---|---|---|
Bed joint in UM | LM | 17 | 149 | 61 | 0.84 |
Head joint in UM | LM | 10 | 264 | 108 | 0.84 |
TRM–wall | GM | 1 | 2640 | 1087 | 1.14 |
TRM–wall | BM | 1 | 9503 | 3913 | 2.05 |
Specimen ID | Pp, num (kN) | Pp, exp,av (kN) | ΔPp, num/exp (%) | δp, num (mm) | δp, exp,av (mm) | Δδp, num/exp (%) | Numerical Failure Mode |
---|---|---|---|---|---|---|---|
UM | 78 | 71 | +9 | 0.24 | 0.28 | −14 | Bed joint sliding |
GTRM | 161 | 154 | +5 | 0.65 | 0.72 | −10 | TRM debonding |
BTRM | 206 | 183 | +13 | 0.49 | 0.33 | +48 | TRM debonding |
Specimen ID | Pk, num (kN) | Pk,exp, av (kN) | ΔPk, num/exp (%) | δk, num (mm) | δk, exp,av (mm) | Δδk, num/exp (%) | Knum (kN/mm) | Kexp, av (kN/mm) | ΔK num/exp (%) |
---|---|---|---|---|---|---|---|---|---|
UM | --- | --- | --- | --- | --- | --- | 325 | 243 | +34 |
GTRM | 116 | 142 | −18 | 0.28 | 0.39 | −28 | 414 | 365 | +13 |
BTRM | --- | --- | --- | --- | --- | --- | 420 | 553 | −24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulinelli, P.; Aprile, A.; Rizzoni, R.; Grunevald, Y.-H.; Lebon, F. Multiscale Numerical Analysis of TRM-Reinforced Masonry under Diagonal Compression Tests. Buildings 2020, 10, 196. https://doi.org/10.3390/buildings10110196
Gulinelli P, Aprile A, Rizzoni R, Grunevald Y-H, Lebon F. Multiscale Numerical Analysis of TRM-Reinforced Masonry under Diagonal Compression Tests. Buildings. 2020; 10(11):196. https://doi.org/10.3390/buildings10110196
Chicago/Turabian StyleGulinelli, Pietro, Alessandra Aprile, Raffaella Rizzoni, Yves-Henri Grunevald, and Frédéric Lebon. 2020. "Multiscale Numerical Analysis of TRM-Reinforced Masonry under Diagonal Compression Tests" Buildings 10, no. 11: 196. https://doi.org/10.3390/buildings10110196
APA StyleGulinelli, P., Aprile, A., Rizzoni, R., Grunevald, Y. -H., & Lebon, F. (2020). Multiscale Numerical Analysis of TRM-Reinforced Masonry under Diagonal Compression Tests. Buildings, 10(11), 196. https://doi.org/10.3390/buildings10110196