The Influence of Improved Strength Grading In Situ on Modelling Timber Strength Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Data
2.2. The Stochastic Grading Model by Pöhlmann and Rackwitz
3. Results—The Material Model Applying the Stochastic Grading Model
3.1. General Remarks
3.2. Oak Samples
3.3. Spruce Samples
3.4. Pine Samples
4. Discussion
4.1. Evaluation of Results
4.2. Options to Consider Updated Information within the Evaluation of Load-Bearing Capacities
4.2.1. General Idea
4.2.2. Application on Test Data
4.2.3. Bayes Update of the Material Model (KL 3)
4.2.4. Update of the Partial Safety Factor Based on Testing (KL 2c)
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schweizerischer Ingenieur- und Architektenverein. Grundlagen der Erhaltung von Tragwerken; SIA 269:2011; SIA: Zürich, Switzerland, 2011. [Google Scholar]
- DBV. Modifizierte Teilsicherheitsbeiwerte für Stahlbetonbauteile. Modified Partial Safety Factors for Reinforced Concrete Members; Merkblätter Deutscher Beton- und Bautechnik-Verein, Bauen Im Bestand: Berlin, Germany, 2013. [Google Scholar]
- FIB. Partial Factor Methods for Existing Concrete Structures. Recommendation; Fédération Internationale Du Betón: Lausanne, Switzerland, 2016; ISBN 978-2-88394-120-5. [Google Scholar]
- DIN. Structural Timber—Strength Classes; DIN EN 338:2016-07; Beuth: Berlin, Germany, 2016. [Google Scholar]
- DIN. Structural timber—Strength Classes—Assignment of Visual Grades and Species; DIN EN 1912:2013-10; Beuth: Berlin, Germany, 2013. [Google Scholar]
- Faber, M.H.; Köhler, J.; Sørensen, J.D. Probabilistic modelling of graded timber material properties. Struct. Saf. 2004, 26, 295–309. [Google Scholar] [CrossRef]
- Lißner, K.; Rug, W. Holzbausanierung beim Bauen im Bestand, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-662-50376-8. [Google Scholar]
- Loebjinski, M.; Köhler, J.; Rug, W.; Pasternak, H. Development of an optimisation-based and practice orientated assessment scheme for the evaluation of existing timber structures. In Proceedings of the 6th International Symposium on Life-cycle Analysis and Assessment in Civil Engineering, IALCCE 2018, Ghent, Belgium, 28–31 October 2018; CRC Press: London, UK, 2019; pp. 353–360, ISBN 978-1-138-62633-1. [Google Scholar]
- Loebjinski, M.; Linke, G.; Rug, W. Instandsetzung einer denkmalgeschützten Dachkonstruktion in Holzbauweise. Bauingenieur 2019, 94, 378–385. [Google Scholar]
- European Commission; Joint Research Centre. New European Technical Rules for the Assessment and Retrofitting of Existing Structures; EUR—Scientific and Technical Research Series; European Commission: Luxembourg, 2015. [Google Scholar]
- Pöhlmann, S.; Rackwitz, R. Zur Verteilungsfunktion von Werkstoffeigenschaften bei kontinuierlich durchgeführten Sortierungen. Materialprüfung 1981, 23, 277–278. [Google Scholar]
- Linke, G.; Rug, W.; Pasternak, H. Strength grading of timber in historic structures—Material testing concerning the application of the ultrasonic-time-of-flight measurement. In Proceedings of the 5th International Conference on Structural Health Assessment of Timber Structures, Guimarães, Portugal, 25–27 September 2019; SHATiS 2019: Guimarães, Portugal, 2019; pp. 589–598. [Google Scholar]
- Linke, G.; Mühlisch, S. Versuchsbericht. Festigkeitssortierung von Holzbauteilen beim Bauen im Bestand—Vergleichende Materialuntersuchungen an Neuholz—Holzart: Eiche (QCXE). Unveröffentlicht. 2019. [Google Scholar]
- Linke, G.; Mühlisch, S. Versuchsbericht. Festigkeitssortierung von Holzbauteilen beim Bauen im Bestand—Vergleichende Materialuntersuchungen an Neuholz—Holzart: Kiefer (PNSY). Unveröffentlicht. 2019. [Google Scholar]
- Linke, G.; Mühlisch, S. Versuchsbericht. Festigkeitssortierung von Holzbauteilen beim Bauen im Bestand—Vergleichende Materialuntersuchungen an Neuholz—Holzart: Fichte (PCAB). Unveröffentlicht. 2019. [Google Scholar]
- Kiesel, M. Stellungnahme zu den Festigkeitsklassen Eurocode 5 in Auswertung eines Stochastischen Modells der Holzsortierung. In Folge 2: Bauforschung—Baupraxis, Proceedings of the 22. Jahrestagung der AG “Timber Structures”, Berlin, Germany, 25–28 September 1989; Bauakademie der DDR Bauinformation, Ed.; Bauakademie Der DDR Bauinformation: Berlin, Germany, 1990; pp. 8–11. [Google Scholar]
- DIN. Sortierung von Holz nach der Tragfähigkeit—Teil 3: Apparate zur Unterstützung der visuellen Sortierung von Schnittholz; Anforderungen und Prüfung; DIN 4074-3:2008-12; Beuth: Berlin, Germany, 2008. [Google Scholar]
- Joint Committee on Structural Safety. Probabilistic Model Code Part 3—Resistance Models. 2006. Available online: http://www.jcss.byg.dtu.dk/ (accessed on 8 March 2016).
- Fink, G. Lecture 11: Assessment of Timber Structures. In Lecture Notes—Training School COST Action FP1402: “Probabilistic Modelling and Reliability Assessment in Timber Engineering”; Norwegian University of Science and Technology: Trondheim/Skarøya, Norway, 2016. [Google Scholar]
- Köhler, J. Die Aktualisierung als zentrales Element in den Erhaltungsnormen—Aspekte der Probabilistik. In Erhaltung von Tragwerken—Vertiefung und Anwendung: Unterlagen zu den Einführungskursen; Bahnholzer, H., Ed.; SIA: Zürich, Switzerland, 2011; pp. 33–36. ISBN 3037320311. [Google Scholar]
- ISO. General Principles on Reliability for Structures; ISO 2394:2015(E); ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Sýkora, M.; Diamantidis, D.; Holicky, M.; Jung, K. Target reliability for existing structures considering economic and societal aspects. Struct. Infrastruct. Eng. 2017, 13, 181–194. [Google Scholar] [CrossRef]
- Vrouwenvelder, T. Developments towards full probabilistic design codes. Struct. Saf. 2002, 24, 417–432. [Google Scholar] [CrossRef]
- CEN. Basis of Structural Design; DIN EN 1990:2010-12; Beuth: Berlin, Germany, 2010. [Google Scholar]
- Steiger, R. Festigkeitssortierung von Kantholz mittels Ultraschall. Holz Zentralblatt 1991, 59, 985–989. [Google Scholar]
- Loebjinski, M.; Linke, G.; Rug, W.; Pasternak, H. Evaluation of existing timber structures—Current standards for the assessment and evaluation in Germany and Europe. In Proceedings of the 5th International Conference on Structural Health Assessment of Timber Structures, Guimarães, Portugal, 25–27 September 2019; SHATiS 2019: Guimarães, Portugal, 2019; pp. 884–893. [Google Scholar]
Grading Techniques | Visual Grading | ||
Direct ultrasonic time-of-flight measurement | Indirect ultrasonic time-of-flight measurement | Density measurement by samples acc. to DIN EN 408:2012-10 | |
Timber species | Oak (301 samples) | ||
Spruce (303 samples) | |||
Pine (300 samples) |
Strength Class | Direct US Measurement | Indirect US Measurement 1 | Density Measurement 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
ρ | covR [-] | fk [N/mm2] | ρ | covR [-] | fk [N/mm2] | ρ | covR [-] | fk [N/mm2] | |
D30 | 0.69 | 0.26 | 31.17 | 0.72 | 0.28 | 27.05 | - | No sufficient correlation! | |
D35 | 0.24 | 35.57 | 0.25 | 33.42 | |||||
D40 | 0.22 | 41.57 | 0.23 | 38.41 | |||||
>D40 | 0.17 | 60.30 | 0.16 | 61.62 |
Strength Class | Direct US Measurement | Indirect US Measurement 1 | Density Measurement 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
ρ | covR [-] | fk [N/mm2] | ρ | covR [-] | fk [N/mm2] | covR [-] | fk [N/mm2] | ||
C18 | 0.42 | 0.42 | 11.26 | 0.44 | 0.41 | 11.39 | 0.30 | 0.42 | 17.76 |
C24 | 0.36 | 17.27 | 0.36 | 17.05 | 0.39 | 19.78 | |||
C30 | 0.32 | 22.03 | 0.32 | 21.65 | 0.38 | 21.12 | |||
> C30 | 0.29 | 27.82 | 0.28 | 28.21 | 0.34 | 26.14 |
m [N/mm2] | cov [-] | xk [N/mm2] | Notes | |
---|---|---|---|---|
Prior | 57.44 | 0.22 | 40 | cov: Result of calibration tests for indirect USM (oak)m and Rk: from EN 338 D40 |
Data | 72.38 | 0.18 | 53.53 | Five randomly chosen samples from database |
Predictive | 65.17 | 0.23 | 44.61 |
Distr. | m [N/mm2] | cov [-] | xk [N/mm2] | Notes |
---|---|---|---|---|
Prior | 60.45 | 0.25 | 40 | cov: JCSS PMC [18] Rk: from EN 338 D40 |
Data | 72.38 | 0.18 | 53.53 | Five randomly chosen samples from database |
Predictive | 66.19 | 0.26 | 41.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loebjinski, M.; Rug, W.; Pasternak, H. The Influence of Improved Strength Grading In Situ on Modelling Timber Strength Properties. Buildings 2020, 10, 30. https://doi.org/10.3390/buildings10020030
Loebjinski M, Rug W, Pasternak H. The Influence of Improved Strength Grading In Situ on Modelling Timber Strength Properties. Buildings. 2020; 10(2):30. https://doi.org/10.3390/buildings10020030
Chicago/Turabian StyleLoebjinski, Maria, Wolfgang Rug, and Hartmut Pasternak. 2020. "The Influence of Improved Strength Grading In Situ on Modelling Timber Strength Properties" Buildings 10, no. 2: 30. https://doi.org/10.3390/buildings10020030
APA StyleLoebjinski, M., Rug, W., & Pasternak, H. (2020). The Influence of Improved Strength Grading In Situ on Modelling Timber Strength Properties. Buildings, 10(2), 30. https://doi.org/10.3390/buildings10020030