Urban Residential Building Energy Consumption by End-Use in Malawi
Abstract
:1. Background
2. Literature Review
3. Methodology
3.1. Study Location
3.2. Data Collection
3.3. Data Processing and Analysis
4. Results and Discussion
4.1. Penetration of Energy End-Use
4.2. Ideal Total Annual Appliance Energy Consumption
4.3. Household Expenditure on Electricity
4.4. Electricity Supply Sufficiency
4.5. Actual Total Annual Appliance Energy Consumption
4.6. Alternative Energy Sources
5. Conclusions
6. Limitations
Funding
Conflicts of Interest
Appendix A
Questionnaire
- (a)
- Lights ⧠
- (b)
- Space Heater ⧠
- (c)
- Space Cooling ⧠
- (d)
- Water Heater ⧠
- (e)
- Refrigerator ⧠
- (f)
- TV ⧠
- (g)
- Cooker ⧠
- (h)
- Dish Washing Machine ⧠
- (i)
- Clothes Washing Machine ⧠
- (j)
- Other Specify _______ ⧠
- (a)
- Lights ⧠
- (b)
- Space Heater ⧠
- (c)
- Space Cooling ⧠
- (d)
- Water Heater ⧠
- (e)
- Refrigerator ⧠
- (f)
- TV ⧠
- (g)
- Cooker ⧠
- (h)
- Dish Washing Machine ⧠
- (i)
- Clothes Washing Machine ⧠
- (j)
- Other Specify _______ ⧠
- (a)
- Lights ⧠
- (b)
- Space Heater ⧠
- (c)
- Space Cooling ⧠
- (d)
- Water Heater ⧠
- (e)
- Refrigerator ⧠
- (f)
- TV ⧠
- (g)
- Cooker ⧠
- (h)
- Dish Washing Machine ⧠
- (i)
- Clothes Washing Machine ⧠
- (j)
- Other Specify _______ ⧠
- (a)
- Lights ⧠
- (b)
- Space Heater ⧠
- (c)
- Space Cooling ⧠
- (d)
- Water Heater ⧠
- (e)
- Refrigerator ⧠
- (f)
- TV ⧠
- (g)
- Cooker ⧠
- (h)
- Dish Washing Machine ⧠
- (i)
- Clothes Washing Machine ⧠
- (j)
- Other Specify _______ ⧠
- (a)
- Lights ⧠
- (b)
- Space Heater ⧠
- (c)
- Space Cooling ⧠
- (d)
- Water Heater ⧠
- (e)
- Refrigerator ⧠
- (f)
- TV ⧠
- (g)
- Cooker ⧠
- (h)
- Dish Washing Machine ⧠
- (i)
- Clothes Washing Machine ⧠
- (j)
- Other Specify _______ ⧠
- (a)
- Yes ⧠
- (b)
- No ⧠
- (a)
- Firewood ⧠
- (b)
- Charcoal ⧠
- (c)
- Gas ⧠
- (d)
- Other Specify _______ ⧠
References
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Xing, Y.; Hewitt, N.; Griffiths, P. Zero carbon buildings refurbishment—A Hierarchical pathway. Renew. Sustain. Energy Rev. 2011, 15, 3229–3236. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Greenough, R.; Taylor, S.; Ozawa-Meida, L.; Acquaye, A. Operational vs. embodied emissions in buildings—A review of current trends. Energy Build. 2013, 66, 232–245. [Google Scholar] [CrossRef]
- IEA. Clean Energy Progress Report; International Energy Agency (IEA): Abu Dhabi, UAE, 2011. [Google Scholar]
- IEA. Transition to Sustainable Buildings: Strategies and Opportunities to 2050; International Energy Agency (IEA): Paris, France, 2013. [Google Scholar]
- IEA. International Energy Outlook 2017; International Energy Agency (IEA): Paris, France, 2017. [Google Scholar]
- Yau, Y.; Hasbi, S. A review of climate change impacts on commercial buildings and their technical services in the tropics. Renew. Sustain. Energy Rev. 2013, 18, 430–441. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Balaras, C.A.; Gaglia, A.G.; Georgopoulou, E.; Mirasgedis, S.; Sarafidis, Y.; Lalas, D.P. European residential buildings and empirical assessment of the Hellenic building stock, energy consumption, emissions and potential energy savings. Build. Environ. 2007, 42, 1298–1314. [Google Scholar] [CrossRef]
- ExxonMobil. 2018 Outlook for Energy: A View to 2040; ExxonMobil: Irving, TX, USA, 2018. [Google Scholar]
- Abergel, T.; Dean, B.; Dulac, J. Towards a Zero-Emission, Efficient, and Resilient Buildings and Construction Sector: Global Status Report 2017; UN Environment and International Energy Agency: Paris, France, 2017. [Google Scholar]
- GoM. Intended Nationally Determined Contribution (INDC): Submission to the UNFCCC by the Government of Malawi (GoM); United Nations Framework Convention on Climate Change (UNFCCC): Geneva, Switzerland, 2015. [Google Scholar]
- Kumwembe, W. Gensets Cost K1.6 Billion Monthly. The Daily Times, 7 June 2018; 9. [Google Scholar]
- Shearer, C.; Ghio, N.; Myllyvirta, L.; Nace, T. Boom and Bust: Tracking the Global Coal Plant Pipeline; Sierra Club: Washington, DC, USA, 2015; p. 14. Available online: http://action.sierraclub.org/site/DocServer/Coal_Tracker_report_final_3-9-15.pdf (accessed on 30 September 2019).
- NSO-MERA. Malawi Energy Survey Report 2012—National Statistical Office (NSO) and Malawi Energy Regulatory Authority (MERA); National Statistical Office (NSO) and Malawi Energy Regulatory Authority (MERA): Zomba, Malawi, 2012.
- IEA. World Energy Outlook 2004; International Energy Agency: Paris, France, 2004. [Google Scholar]
- Dorian, J.P.; Franssen, H.T.; Simbeck, D.R. Global challenges in energy. Energy Policy 2006, 34, 1984–1991. [Google Scholar] [CrossRef]
- Belkin, P. The European Union’s energy security challenges. Connections 2008, 7, 76–102. [Google Scholar] [CrossRef] [Green Version]
- Bahgat, G. Europe’s energy security: Challenges and opportunities. Int. Aff. 2006, 82, 961–975. [Google Scholar] [CrossRef]
- Karki, S.K.; Mann, M.D.; Salehfar, H. Energy and environment in the ASEAN: Challenges and opportunities. Energy Policy 2005, 33, 499–509. [Google Scholar] [CrossRef]
- Nicolas, F. ASEAN Energy Cooperation: An Increasingly Daunting Challenge; Institut Francais des Relations Internationles (IFRI): Paris, France, 2009; Available online: www.ifri.org/downloads/fnicolas.pdf (accessed on 30 September 2019).
- Anugrah, P. How Self-Sufficient is ASEAN in Energy? Available online: http://www.aseanenergy.org/blog/how-self-sufficient-is-asean-in-energy/ (accessed on 16 May 2019).
- Streatfeild, J.E. Low Electricity Supply in Sub-Saharan Africa: Causes, Implications, and Remedies. J. Int. Commer. Econ. 2018, 1. [Google Scholar]
- Ramachandran, V.; Shah, M.K.; Moss, T.J. How Do African Firms Respond to Unreliable Power? Exploring Firm Heterogeneity Using K-Means Clustering; Center for Global Development Working Paper: Washington, DC, USA, 2018. [Google Scholar]
- Brew-Hammond, A. Energy access in Africa: Challenges ahead. Energy Policy 2010, 38, 2291–2301. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2006; International Energy Agency: Paris, France, 2006. [Google Scholar]
- Openshaw, K. Biomass energy: Employment generation and its contribution to poverty alleviation. Biomass Bioenergy 2010, 34, 365–378. [Google Scholar] [CrossRef]
- Kruyt, B.; van Vuuren, D.P.; de Vries, H.J.; Groenenberg, H. Indicators for energy security. Energy Policy 2009, 37, 2166–2181. [Google Scholar] [CrossRef]
- Campbell, C.J.; Laherrère, J.H. The end of cheap oil. Sci. Am. 1998, 278, 78–83. [Google Scholar] [CrossRef]
- Chiari, L.; Zecca, A. Constraints of fossil fuels depletion on global warming projections. Energy Policy 2011, 39, 5026–5034. [Google Scholar] [CrossRef]
- Bardi, U. Energy prices and resource depletion: Lessons from the case of whaling in the nineteenth century. Energy Sources Part B 2007, 2, 297–304. [Google Scholar] [CrossRef]
- Kavgic, M.; Mavrogianni, A.; Mumovic, D.; Summerfield, A.; Stevanovic, Z.; Djurovic-Petrovic, M. A review of bottom-up building stock models for energy consumption in the residential sector. Build. Environ. 2010, 45, 1683–1697. [Google Scholar] [CrossRef]
- Fumo, N.; Biswas, M.R. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 2015, 47, 332–343. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.C. Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology. Appl. Energy 2016, 183, 182–192. [Google Scholar] [CrossRef]
- Shimoda, Y.; Fujii, T.; Morikawa, T.; Mizuno, M. Residential end-use energy simulation at city scale. Build. Environ. 2004, 39, 959–967. [Google Scholar] [CrossRef]
- Wan, K.; Yik, F. Building design and energy end-use characteristics of high-rise residential buildings in Hong Kong. Appl. Energy 2004, 78, 19–36. [Google Scholar] [CrossRef]
- Farahbakhsh, H.; Ugursal, V.; Fung, A. A residential end-use energy consumption model for Canada. Int. J. Energy Res. 1998, 22, 1133–1143. [Google Scholar] [CrossRef]
- Hu, T.; Yoshino, H.; Jiang, Z. Analysis on urban residential energy consumption of Hot Summer & Cold Winter Zone in China. Sustain. Cities Soc. 2013, 6, 85–91. [Google Scholar]
- IEA. Energy Efficiency: Buildings; IEA: Paris, France, 2019. [Google Scholar]
- EIA. Residential Energy Consumption Survey. Available online: https://www.eia.gov/consumption/residential/index.php (accessed on 15 September 2019).
- Iwaro, J.; Mwasha, A. A review of building energy regulation and policy for energy conservation in developing countries. Energy Policy 2010, 38, 7744–7755. [Google Scholar] [CrossRef]
- van Blommestein, K.C.; Daim, T.U. Residential energy efficient device adoption in South Africa. Sustain. Energy Technol. Assess. 2013, 1, 13–27. [Google Scholar] [CrossRef]
- Kazoora, G.; Olweny, M.; Aste, N.; Adhikari, R.S. Energy consumption trends of residential buildings in Uganda: Case study and evaluation of energy savings potential. In Proceedings of the 2015 International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, 16–18 June 2015; pp. 695–700. [Google Scholar]
- Essah, E.A.; Ofetotse, E.L. Energy supply, consumption and access dynamics in Botswana. Sustain. Cities Soc. 2014, 12, 76–84. [Google Scholar] [CrossRef]
- Adelekan, I.O.; Jerome, A.T. Dynamics of household energy consumption in a traditional African city, Ibadan. Environmentalist 2006, 26, 99–110. [Google Scholar] [CrossRef]
- Gamula, G.E.; Hui, L.; Peng, W. An overview of the energy sector in Malawi. Energy Power Eng 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Kaunda, C.S. Energy situation, potential and application status of small-scale hydropower systems in Malawi. Renew. Sustain. Energy Rev. 2013, 26, 1–19. [Google Scholar] [CrossRef]
- Zalengera, C.; Blanchard, R.E.; Eames, P.C.; Juma, A.M.; Chitawo, M.L.; Gondwe, K.T. Overview of the Malawi energy situation and A PESTLE analysis for sustainable development of renewable energy. Renew. Sustain. Energy Rev. 2014, 38, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Taulo, J.L.; Gondwe, K.J.; Sebitosi, A.B. Energy supply in Malawi: Options and issues. J. Energy S. Afr. 2015, 26, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S.; Shyamsundar, P.; Baccini, A. Forests, biomass use and poverty in Malawi. Ecol. Econ. 2011, 70, 2461–2471. [Google Scholar] [CrossRef] [Green Version]
- Jumbe, C.B.; Angelsen, A. Modeling choice of fuelwood source among rural households in Malawi: A multinomial probit analysis. Energy Econ. 2011, 33, 732–738. [Google Scholar] [CrossRef]
- GoM. 2018 Malawi Population and Housing; National Statistical Office: Zomba, Malawi, 2019.
- Böhringer, C.; Rutherford, T.F. Combining bottom-up and top-down. Energy Econ. 2008, 30, 574–596. [Google Scholar] [CrossRef] [Green Version]
- Rivers, N.; Jaccard, M. Combining top-down and bottom-up approaches to energy-economy modeling using discrete choice methods. Energy J. 2005, 26, 83–106. [Google Scholar] [CrossRef] [Green Version]
- Swan, L.G.; Ugursal, V.I. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renew. Sustain. Energy Rev. 2009, 13, 1819–1835. [Google Scholar] [CrossRef]
- Lopes, L.; Hokoi, S.; Miura, H.; Shuhei, K. Energy efficiency and energy savings in Japanese residential buildings—Research methodology and surveyed results. Energy Build. 2005, 37, 698–706. [Google Scholar] [CrossRef]
- Galante, A.; Torri, M. A methodology for the energy performance classification of residential building stock on an urban scale. Energy Build. 2012, 48, 211–219. [Google Scholar]
- Balat, M. Security of energy supply in Turkey: Challenges and solutions. Energy Convers. Manag. 2010, 51, 1998–2011. [Google Scholar] [CrossRef]
- Paone, A.; Bacher, J.-P. The impact of building occupant behavior on energy efficiency and methods to influence it: A review of the state of the art. Energies 2018, 11, 953. [Google Scholar] [CrossRef] [Green Version]
- Ihbal, A.; Rajamani, H.S.; Abd-Alhameed, R.A.; Jalboub, M.K. Statistical predictions of electric load profiles in the UK domestic buildings. In Proceedings of the 2010 1st International Conference on Energy, Power and Control (EPC-IQ), Basrah, Iraq, 30 November–2 December 2010; pp. 345–350. [Google Scholar]
- Firth, S.; Lomas, K.; Wright, A.; Wall, R. Identifying trends in the use of domestic appliances from household electricity consumption measurements. Energy Build. 2008, 40, 926–936. [Google Scholar] [CrossRef] [Green Version]
- Yin, R.K. Qualitative Research from Start to Finish; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Flyvbjerg, B. Five misunderstandings about case-study research. Qual. Inq. 2006, 12, 219–245. [Google Scholar] [CrossRef] [Green Version]
Country | Number of Outages in a Month | Duration of Outages | Percent of Sales Lost by Businesses due to Outages |
---|---|---|---|
Malawi | 7.4 | 3.6 | 7.9 |
Zambia | 5.4 | 2.9 | 9.5 |
Mozambique | 1.8 | 2.7 | 2.1 |
Zimbabwe | 5.3 | 4.5 | 5.7 |
Botswana | 5.3 | 2.9 | 6.8 |
Lesotho | 1.7 | 2.2 | 3.8 |
South Africa | 1.2 | 2.3 | 0.9 |
Tanzania | 7.0 | 5.0 | 7.5 |
Namibia | 0.8 | 1.9 | 0.8 |
Angola | 6.5 | 7.3 | 18.3 |
Appliance Name | Power Rating of Appliance (W) | Number of Appliances | Daily Duration of Use (Hours) | Yearly Duration of Use (Months) | Annual Energy Consumption (kWh) |
Lights | 13 | 10 | 12 | 12 | 493 |
Refrigerator | 200 | 1 | 24 | 12 | 1564 |
TV | 100 | 1 | 18 | 12 | 532 |
Cooker | 2500 | 1 | 4 | 12 | 2957 |
Water Heater | 3000 | 1 | 4 | 12 | 1693 |
Space Heater | 2000 | 1 | 3 | 3 | 45 |
Space Cooling (AC) | 2000 | 1 | 6 | 4 | 40 |
Clothes Washing Machine | 1200 | 1 | 1.5 | 12 | 36 |
Dish Washer | 0 | 0 | 0 | 0 | 0 |
7360 |
Expenditure Range (MWK) | Percentage | Equivalent Monthly Electricity Energy Delivered (kWh) @ Flat of MWK57/kWh | Annual Energy Delivered (kWh) |
5000–9999 | 15% | 132 | 1584 |
10,000–14,999 | 23% | 219 | 2628 |
15,000–19,999 | 0% | 0 | 0 |
20,000–24,999 | 46% | 395 | 4740 |
25,000–30,000 | 16% | 482 | 5784 |
Expenditure Range (MWK) | Percentage of Households | Total Mass (Kg) at a Cost of MWK 225/Kg | Electricity Energy Equivalent (kWh) at a Rate of 8.4 kWh/Kg [Before Conversion Losses] |
0–4999 | 19% | 11 | 92 |
5000–9999 | 38% | 33 | 277 |
10,000–14,999 | 25% | 56 | 470 |
15,000–19,999 | 6% | 78 | 655 |
20,000–24,999 | 12% | 100 | 840 |
25,000–30,000 | 0% | 0 | 0 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalua, A. Urban Residential Building Energy Consumption by End-Use in Malawi. Buildings 2020, 10, 31. https://doi.org/10.3390/buildings10020031
Kalua A. Urban Residential Building Energy Consumption by End-Use in Malawi. Buildings. 2020; 10(2):31. https://doi.org/10.3390/buildings10020031
Chicago/Turabian StyleKalua, Amos. 2020. "Urban Residential Building Energy Consumption by End-Use in Malawi" Buildings 10, no. 2: 31. https://doi.org/10.3390/buildings10020031
APA StyleKalua, A. (2020). Urban Residential Building Energy Consumption by End-Use in Malawi. Buildings, 10(2), 31. https://doi.org/10.3390/buildings10020031