Ultrasonic Assessment of the Concrete Residual Strength after a Real Fire Exposure
Abstract
:1. Introduction
- evaporation of free water and dissociation of ettringite up to 100 °C;
- dehydration of cement binder (decomposition of portlandite) at a temperature above 400 °C;
- decarbonisation of the binder at a temperature of about 700 °C;
- thermal deformation of materials: aggregate and reinforcing steel;
- crack net formation accompanying the rapid evaporation of water.
2. Basic Information on the Case of Study
- the air temperature—(26 °C);
- no precipitation;
- the air humidity—(36%);
- the average speed of the southeast wind—(9 m/s).
- concrete cracking and spalling;
- concrete compressive strength (reported in the paper);
- reinforcing steel strength;
- masonry walls cracking;
- silicate element compressive strength;
- load test;
- deposition of chemical substances on the building elements;
- material moisture.
3. Materials and Methods
3.1. Subsection
3.2. UPV Model Calibration
3.3. UPV Non-Destructive Tests
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khoury, G.A. Effect of fire on concrete and concrete structures. Prog. Struct. Eng. Mater. 2000, 2, 429–447. [Google Scholar] [CrossRef]
- Ma, Q.; Guo, R.; Zhao, Z.; Lin, Z.; He, K. Mechanical properties of concrete at high temperature—A review. Constr. Build. Mater. 2015, 93, 371–383. [Google Scholar] [CrossRef]
- Arioz, O. Effects of elevated temperatures on properties of concrete. Fire Saf. J. 2007, 42, 516–522. [Google Scholar] [CrossRef]
- Hager, I. Colour Change in Heated Concrete. Fire Technol. 2014, 50, 945–958. [Google Scholar] [CrossRef] [Green Version]
- Wróblewski, R.; Gierczak, J.; Smardz, P.; Kmita, A. Fire and collapse modelling of a precast concrete hall. Struct. Infrastruct. Eng. 2016, 12, 714–729. [Google Scholar] [CrossRef]
- Szymanowski, J.; Sadowski, Ł. The influence of the addition of tetragonal crystalline titanium oxide nanoparticles on the adhesive and functional properties of layered cementitious composites. Compos. Struct. 2020, 233, 111636. [Google Scholar] [CrossRef]
- Krzywiński, K.; Sadowski, Ł.; Szymanowski, J.; Żak, A.; Piechówka-Mielnik, M. Attempts to Improve the Subsurface Properties of Horizontally-Formed Cementitious Composites Using Tin(II) Fluoride Nanoparticles. Coatings 2020, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Ervine, A. Damaged Reinforced Concrete Structures in Fire. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, 2012. [Google Scholar]
- Fletcher, I.A.; Borg, A.; Hitchen, N.; Welch, S. Performance of Concrete in Fire: A Review of the State of the Art, with a Case Study of the Windsor Tower Fire. In Proceedings of the 4th International Workshop in Structures in Fire, Aveiro, Portugal, 10–12 May 2006; pp. 779–790. [Google Scholar]
- Neves, I.C.; Rodrigues, J.P.C.; Loureiro, A.D.P. Mechanical Properties of Reinforcing and Prestressing Steels after Heating. J. Mater. Civ. Eng. 1996, 8, 189–194. [Google Scholar] [CrossRef]
- Sahamitmongkol, R.; Choktaweekarn, P.; Sancharoen, P.; Tangtermsirikul, S. Damage analysis of an RC column subjected to long-term transient elevated temperature. Struct. Infrastruct. Eng. 2011, 7, 921–930. [Google Scholar] [CrossRef]
- Kodur, V. Properties of Concrete at Elevated Temperatures. ISRN Civ. Eng. 2014, 2014, 1–15. [Google Scholar] [CrossRef]
- Felicetti, R.; Gambarova, P.G.; Meda, A. Residual behavior of steel rebars and R/C sections after a fire. Constr. Build. Mater. 2009, 23, 3546–3555. [Google Scholar] [CrossRef]
- Cree, D.; Green, M.; Noumowé, A. Residual strength of concrete containing recycled materials after exposure to fire: A review. Constr. Build. Mater. 2013, 45, 208–223. [Google Scholar] [CrossRef]
- Poon, C.S.; Azhar, S.; Anson, M.; Wong, Y.L. Strength and durability recovery of fire-damaged concrete after post-fire-curing. Cem. Concr. Res. 2001, 31, 1307–1318. [Google Scholar] [CrossRef]
- Hsu, J.H.; Lin, C.S. Residual Bearing Capabilities of Fire-Exposed Reinforced Concrete Beams. Int. J. Appl. Sci. Eng. 2006, 4, 151–163. [Google Scholar]
- Kodur, V.K.R.; Raut, N.K.; Mao, X.Y.; Khaliq, W. Simplified approach for evaluating residual strength of fire-exposed reinforced concrete columns. Mater. Struct. Constr. 2013, 46, 2059–2075. [Google Scholar] [CrossRef]
- Biolzi, L.; Cattaneo, S.; Rosati, G. Evaluating residual properties of thermally damaged concrete. Cem. Concr. Compos. 2008, 30, 907–916. [Google Scholar] [CrossRef]
- Kirchhof, L.D.; Lorenzi, A.; Silva Filho, L.C.P. Assessment of Concrete Residual Strength at High Temperatures using Ultrasonic Pulse Velocity. e-J. Nondestruct. Test. 2015, 20, 1–10. [Google Scholar]
- Yang, H.; Lin, Y.; Hsiao, C.; Liu, J.Y. Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity. Fire Saf. J. 2009, 44, 121–130. [Google Scholar] [CrossRef]
- Hager, I. Methods for assessing the state of concrete in fire damaged structures | Metody oceny stanu betonu w konstrukcji po pożarze. Cem. Wapno Bet. 2009, 29, 167–178. [Google Scholar]
- Hager, I.; Tracz, T.; Krzemień, K. The usefulness of selected non-destructive and destructive methods in the assessment of concrete after fi re|Przydatność wybranych metod nieniszczących i niszczących w ocenie stanu betonu po pożarze. Cem. Wapno Bet. 2014, 2014, 145–151. [Google Scholar]
- Colombo, M.; Felicetti, R. New NDT techniques for the assessment of fire-damaged concrete structures. Fire Saf. J. 2007, 42, 461–472. [Google Scholar] [CrossRef]
- Grantham, M.; Mechtcherine, V.; Schneck, U.; Eden, M. Fire damaged concrete—The potential for on-going deterioration post-fire in concrete heated to temperatures of less than 300 °C. Comput. Vis. Med. Image Process. 2012, 2, 497–502. [Google Scholar]
- Stawiski, B. Attempt to estimate fire damage to concrete building structure. Arch. Civ. Mech. Eng. 2006, 6, 23–29. [Google Scholar] [CrossRef]
- Hawileh, R.A.; Kodur, V.K.R. Performance of reinforced concrete slabs under hydrocarbon fire exposure. Tunn. Undergr. Space Technol. 2018, 77, 177–187. [Google Scholar] [CrossRef]
- Stawiski, B. Ultradźwiękowe Badania Betonów i Zapraw Głowicami Punktowymi; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2009. [Google Scholar]
- Stawiski, B. The heterogeneity of mechanical properties of concrete in formed constructions horizontally. Arch. Civ. Mech. Eng. 2012, 12, 90–94. [Google Scholar] [CrossRef]
- Toubal Seghir, N.; Benaimeche, O.; Krzywiński, K.; Sadowski, Ł. Ultrasonic Evaluation of Cement-Based Building Materials Modified Using Marble Powder Sourced from Industrial Wastes. Buildings 2020, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- EN 1992-1-2 Eurocode 2: Design of Concrete Structures—Part 1–2: General Rules—Structural Fire Design; Comité Européen de Normalisation: Brussels, Belgium, 2004.
- EN 13791: Assessment of Strength in Structures and Precast Concrete Components; Comité Européen de Normalisation: Brussels, Belgium, 2007.
- EN 1991-1-2 Eurocode 1. Actions on Structures. General Actions. Actions on Structures Exposed to Fire; Comité Européen de Normalisation: Brussels, Belgium, 2002.
- Lusas Solver Reference Manual; Lusas: Kingston upon Thames, UK, 2016.
Problem | Reference |
---|---|
Material properties: concrete, steel. Reinforced concrete basic properties in elevated temperatures (spalling, bond, deformation, cracking) | [1,2,3,8,9,10,11,12,13,14,15] |
Residual load bearing capacity of reinforced concrete elements | [13,16,17] |
Residual strength of concrete based on furnace tests | [15,18,19,20,21,22,23] |
Concrete residual strength tests based on non-destructive methods | [19,20,22,23] |
Evaluation of post fire damage of concrete | [4,15,23,24,25] |
Behaviour of reinforced concrete elements under hydrocarbon fire | [26] |
Ultrasound Pulse Velocity (UPV) assessment of concrete and cement-based materials homogeneity | [25,27,28,29] |
Core Sample No. | Structural Element | Approximate Age at Testing in Days | Compressive Strength in MPa | Remarks |
---|---|---|---|---|
001 | Ground floor, patio, north wall | 260 | 35.0 | |
002 | Ground floor, patio, south wall | 260 | 41.0 | |
003 | Slab over the garage with a crack | 300 | Not tested | |
004 | Slab over the garage | 300 | 42.5 | Test sample no. 004/1 exposed to fire |
40.9 | Test sample no. 004/2 | |||
48.4 | Test sample no. 004/3 | |||
005 | Slab over the garage | 300 | 39.9 | Test sample no. 005/1 exposed to fire |
39.7 | Test sample no. 005/2 | |||
006 | Balcony in patio, north wall, 2nd floor | 100 | 45.3 | |
007 | Slab of north roof | 110–125 | Not tested | |
008 | Slab of south roof | 110–125 | Not tested | |
009 | Slab of south roof | 110–125 | 48.2 | Test sample no. 009/1 exposed to fire |
44.0 | Test sample no. 009/2 | |||
010 | Slab of south roof | 110–125 | 48.4 | |
011 | Slab of north roof | 110–125 | 33.4 | Test sample no. 011/1 exposed to fire |
35.2 | Test sample no. 011/2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewski, R.; Stawiski, B. Ultrasonic Assessment of the Concrete Residual Strength after a Real Fire Exposure. Buildings 2020, 10, 154. https://doi.org/10.3390/buildings10090154
Wróblewski R, Stawiski B. Ultrasonic Assessment of the Concrete Residual Strength after a Real Fire Exposure. Buildings. 2020; 10(9):154. https://doi.org/10.3390/buildings10090154
Chicago/Turabian StyleWróblewski, Roman, and Bohdan Stawiski. 2020. "Ultrasonic Assessment of the Concrete Residual Strength after a Real Fire Exposure" Buildings 10, no. 9: 154. https://doi.org/10.3390/buildings10090154
APA StyleWróblewski, R., & Stawiski, B. (2020). Ultrasonic Assessment of the Concrete Residual Strength after a Real Fire Exposure. Buildings, 10(9), 154. https://doi.org/10.3390/buildings10090154