How Long Can a Wood Flooring System Last?
Abstract
:1. Introduction
2. Materials and Methods
- Aesthetic anomalies, related to the visual or surface alteration of wooden floors, namely staining or colour change, cigarette marks, scratches or wrinkles, wear or detachment of the finishing layer, stains; anomalies due to inadequate maintenance, and wear of the wood material;
- Functional anomalies, which compromise the use of the flooring system (e.g., the presence of detached elements may jeopardize the users’ safety) and can also affect the mechanical resistance and the performance of the wood flooring, namely, warping; swelling or other flatness deficiencies; either cracking of elements, joints, or both; broken or splintered elements; rot (identified either by changes in colour, texture in the finishing layer, or both); moisture stains; disaggregation; pulverulence; xylophage attack; and loss of wood elements; and
- Anomalies in joints, which are related to the deterioration of the filling material of the joints; the presence of these anomalies may promote the degradation of the wood flooring system. In this group, three anomalies are considered, namely, colour change of the filling material, detachment, or loss of the filling material of the joints and change of the joint size.
3. Results and Discussion
3.1. Definition of a Degradation Curve for Wood Flooring Systems
3.2. Influence of the Characteristics of Wood Flooring Systems on Their Service Life
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdul-Wahab Sabah, A. (Ed.) Sick Building Syndrome in Public Buildings and Workplaces; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Schweizer, C.; Edwards, R.D.; Bayer-Oglesby, L.; Gauderman, W.J.; Ilacqua, V.; Jantunen, M.J.; Lai, H.K.; Nieuwenhuijsen, M.; Künzli, N. Indoor time-microenvironment-activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 170–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strobel, K.; Nyrud, A.Q.; Bysheim, K. Interior wood use: Linking user perceptions to physical properties. Scand. J. For. Res. 2017, 32, 798–806. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Darshil, S.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Larsen, K.E.; Marstein, N. Conservation of Historic Timber Structures: An Ecological Approach; Manual, Butterworth-Heinemann Series in Conservation and Museology; Riksantikvaren: Oslo, Norway, 2016. [Google Scholar]
- Verbist, M.; Nunes, L.; Jones, D.; Branco, J.M. Service life design of timber structures. In Long-Term Performance and Durability of Masonry Structures; Ghiassi, B., Lourenco, P.B., Eds.; Woodhead Publishing: Duxford, UK, 2019; pp. 311–336. [Google Scholar]
- Romagnoli, M.; Fragiacomo, M.; Brunori, A.; Follesa, M.; Scarascia Mugnozza, G. Solid wood and wood based composites: The challenge of sustainability looking for a short and smart supply chain. In Digital Wood Design. Lecture Notes in Civil Engineering; Bianconi, F., Filippucci, M., Eds.; Springer: Cham, Switzerland, 2019; Volume 24. [Google Scholar]
- Treu, A.; Zimmer, K.; Brischke, C.; Larnøy, E.; Gobakken, L.R.; Aloui, F.; Cragg, S.M.; Flæte, P.-O.; Humar, M.; Westin, M.; et al. Durability and protection of timber structures in marine environments in Europe: A review. Bioresources 2019, 14, 10161–10184. [Google Scholar]
- Marais, B.N.; Brischke, C.; Militz, H. Wood durability in terrestrial and aquatic environments—A review of biotic and abiotic influence factors. Wood Mater. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Björdal, C.G.; Nilsson, T. Reburial of shipwrecks in marine sediments: A long-term study on wood degradation. J. Archaeol. Sci. 2008, 35, 862–872. [Google Scholar] [CrossRef]
- Leicester, R.H. Engineered durability for timber construction. Prog. Struct. Eng. Mater. 2001, 3, 2016–2227. [Google Scholar] [CrossRef]
- Morrell, J.J. Estimated Service Life of Wood Poles; No. 16-U-101; North American Wood Pole Council: Vancouver, WA, USA, 2016. [Google Scholar]
- Foliente, G.C.; Leicester, R.H.; Wang, C.-H.; Mackenzie, C.; Cole, I. Durability design of wood construction. For. Prod. J. 2002, 52, 10–19. [Google Scholar]
- Gaspar, P.; de Brito, J. Service life estimation of cement-rendered facades. Build. Res. Inf. 2008, 36, 44–55. [Google Scholar] [CrossRef]
- Gaspar, P.; de Brito, J. Limit states and service life of cement renders on façades. J. Mater. Civ. Eng. 2011, 23, 1393–1404. [Google Scholar] [CrossRef]
- Silva, A.; de Brito, J.; Gaspar, P. Methodologies for Service Life Prediction of Buildings: With a Focus on Façade Claddings; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Serralheiro, M.I.; de Brito, J.; Silva, A. Methodology for service life prediction of architectural concrete facades. Constr. Build. Mater. 2017, 133, 261–274. [Google Scholar] [CrossRef]
- Prieto, A.J.; Silva, A. Service life prediction and environmental exposure conditions of timber claddings in South Chile. Build. Res. Inf. 2020, 48, 191–206. [Google Scholar] [CrossRef]
- Delgado, A.; de Brito, J.; Silvestre, J.D. Inspection and diagnosis system for wood flooring. J. Perform. Constr. Facil. 2013, 27, 564–574. [Google Scholar] [CrossRef]
- Moubray, J. Reliability-Centred Maintenance, 2nd ed.; Butterworth-Heinemann: Oxford, MS, USA, 1997. [Google Scholar]
- Shohet, I.; Rosenfeld, Y.; Puterman, M.; Gilboa, E. Deterioration patterns for maintenance management—A methodological approach. In Proceedings of the Eighth International Conference on Durability of Building Materials and Components, Vancouver, BC, Canada, 30 May–3 June 1999; pp. 1666–1678. [Google Scholar]
- Shohet, I.M.; Paciuk, M. Service life prediction of exterior cladding components under standard conditions. Constr. Manag. Econ. 2004, 22, 1081–1090. [Google Scholar] [CrossRef]
- Lavy, S.; Shohet, I.M. A strategic integrated healthcare facility management model. Int. J. Strateg. Prop. Manag. 2007, 11, 125–142. [Google Scholar] [CrossRef]
- Williams, R.S. Weathering of wood. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Madison, WI, USA, 2005. [Google Scholar]
- Moser, K. Engineering design methods for service life prediction. In CIB W080/RILEM 175 SLM: Service Life Methodologies Prediction of Service Life for Buildings and Components, Task Group: Performance Based Methods of Service Life Prediction; CIB: Trondheim, Norway, 2004; pp. 52–95. [Google Scholar]
- Nebel, B.; Zimmer, B.; Wegener, G. Life cycle assessment of wood floor coverings. Int. J. Life Cycle Assess. 2006, 11, 172–182. [Google Scholar] [CrossRef]
- Seiders, D.; Ahluwalia, G.; Melman, S.; Quint, R.; Chaluvadi, A.; Liang, M.; Silverberg, A.; Bechler, C. Study of Life Expectancy of Home Components; National Association of Home Builders: Washington, DC, USA, 2007; pp. 1–15. [Google Scholar]
- Anderson, J.; Shiers, D.E.; Sinclair, M. The Green Guide to Specification: An Environmental Profiling System for Building Materials and Components, 3rd ed.; Consignia, Oxford Brookes University and The Building Research Establishment, Malden Blackwell Science: Oxford, UK, 2002. [Google Scholar]
- Jönsson, Å.; Tillman, A.-M.; Svensson, T. Life cycle assessment of flooring materials: Case study. Build. Environ. 1997, 32, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, A. Including the use phase in LCA of floor coverings. Int. J. Life Cycle Assess. 1999, 4, 321–328. [Google Scholar] [CrossRef]
- Scharai-Rad, M.; Welling, J. Environmental and Energy Balances of Wood Products and Substitutes; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Petersen, A.K.; Solberg, B. Greenhouse gas emissions, life cycle inventory and cost-efficiency of using laminated wood instead of steel construction. Case: Beams at Gardermoen Airport. Environ. Sci. Policy 2002, 5, 169–182. [Google Scholar] [CrossRef]
- Eaton, R.A.; Hale, M.D.C. Wood: Decay, Pests and Protection; Chapman and Hall Ltd.: London, UK, 1993. [Google Scholar]
- Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Build. Environ. 2017, 114, 307–332. [Google Scholar] [CrossRef]
- Adalberth, K. Energy use during the life cycle of buildings: A method. Build. Environ. 1997, 32, 317–320. [Google Scholar] [CrossRef]
- Mithraratne, N.; Vale, B. Life cycle analysis model for New Zealand houses. Build. Environ. 2004, 39, 483–492. [Google Scholar] [CrossRef]
- Gunther, A.; Langowski, H.-C. Life cycle assessment study on resilient floor coverings. Int. J. Life Cycle Assess. 1997, 2, 73–80. [Google Scholar] [CrossRef]
- Aktas, C.B.; Bilec, M.M. Service life prediction of residential interior finishes for life cycle assessment. Int. J. Life Cycle Assess. 2012, 17, 362–371. [Google Scholar] [CrossRef]
- ISO 15686-1. Buildings and Constructed Assets—Service Life Planning—Part 1: General Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- Reinprecht, L. Wood Deterioration, Protection and Maintenance; John Wiley & Sons, Ltd.: Chichester, UK, 2016. [Google Scholar]
- Knapic, S.; Santos, J.; Santos, J.; Pereira, H. Natural durability assessment of thermo-modified young wood of eucalyptus. MaderasCienc. Y Tecnol. 2018, 20, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Acker, J.V.; Stevens, M.; Carey, J.; Sierra-Alvarez, R.; Militz, H.; Bayon, I.L.; Kleist, G.; Peek, R.D. Biological durability of wood in relation to end-use. Part 1. Towards a European standard for laboratory testing of the biological durability of wood. Holz Als Roh-Und Werkst. 2003, 61, 35–45. [Google Scholar] [CrossRef]
- Thornton, J.D.; Johnson, G.C.; Nugyen, N.K. Condition of natural durability specimens from CSIRO in-ground field test after 23 years of exposure. In Proceedings of the Twenty-fourth Forest Products Research Conference, Melbourne, Australia, 15–18 November 1993. [Google Scholar]
- Scheffer, T.C.; Morrell, J.J. Natural Durability of Wood: A Worldwide Checklist of Species; Research Contribution, Forest Research Laboratory publications: Corvallis, OR, USA, 1998. [Google Scholar]
- Tenwolde, A.; McNatt, J.D.; Krahn, L. Thermal Properties of Wood and Wood Panel Products for Use in Buildings; National Program for Building Thermal Envelope Systems and Materials. Prepared for the U.S. Department of Energy Conservation and Renewable Energy Office of Buildings and Community Systems Building Systems Division; Oak Ridge national laboratory: Madison, WI, USA, 1988. [Google Scholar]
- Cruz, H.; Jones, D.; Nunes, L. Wood. In Materials for Construction and Civil Engineering; Gonçalves, M.C., Margarido, F., Eds.; Springer: Cham, Switzerland, 2015; pp. 557–585. [Google Scholar]
- NP 747. Floors for buildings. In Wooden Tiles, General Characteristics and Definitions; Instituto Português de Qualidade (Portuguese Institute of Quality): Lisbon, Portugal, 1969. (In Portuguese) [Google Scholar]
- EN 13488. Wood flooring. In Mosaic Parquet Elements; British Standards Institute: London, UK, 2002. [Google Scholar]
- Gallego, G.M. Wood Flooring: Installation Manual; AITIM Publishing: Madrid, Spain, 2005. (In Spanish) [Google Scholar]
- Gurleyen, L.; Ayata, U.; Esteves, B.; Cakicier, N. Effects of heat treatment on the adhesion strength, pendulum hardness, surface roughness, color and glossiness of Scots pine laminated parquet with two different types of UV varnish application. Maderas. Cienc. Y Tecnol. 2017, 19, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Kokten, E.S.; Kol, H.Ş. A factorial design approach in the optimization of wood thermal modification parameters for flooring. Pro Ligno 2018, 14, 29–36. [Google Scholar]
- Swaczyna, I.; Kędzierski, A.; Tomusiak, A.; Cichy, A.; Różańska, A.; Policińska-Serwa, A. Hardness and wear resistance tests of the wood species most frequently used in flooring panels. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2011, 76, 82–87. [Google Scholar]
- Todaro, L. Effect of steaming treatment on resistance to footprints in Turkey oak wood for flooring. Eur. J. Wood Wood Prod. 2012, 70, 209–214. [Google Scholar] [CrossRef]
- Lozhechnikova, A.; Bellanger, H.; Michen, B.; Burgert, I.; Österberg, M. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood. Appl. Surf. Sci. 2017, 396, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- Richardson, B. Defects and Deterioration in Buildings: A Practical Guide to the Science and Technology of Material Failure, 2nd ed.; Spon Press, Taylor & Francis Group: London, UK, 2011. [Google Scholar]
- Lesar, B.; Humar, M. Use of wax emulsions for improvement of wood durability and sorption properties. Eur. J. Wood Wood Prod. 2011, 69, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Kurt, R.; Krause, A.; Militz, H.; Mai, C. Hydroxymethylated resorcinol (HMR) priming agent for improved bondability of waxtreated wood. Holz Als Roh-Und Werkst. 2008, 66, 333–338. [Google Scholar] [CrossRef]
- Garcia, J.; de Brito, J. Inspection and diagnosis of epoxy resin industrial floor coatings. J. Mater. Civ. Eng. 2008, 20, 128–136. [Google Scholar] [CrossRef]
- Gomes, T.; Gaspar, F.; Rodrigues, H. Characterisation of building stock and its pathologies. Case study of the Historical city centre of Leiria, Portugal. In Nondestructive Techniques for the Assessment and Preservation of Historic Structures; Gonçalves, L.M.S., Rodrigues, H., Gaspar, F., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar]
- Tietze, A.; Boulet, S.; Ott, S.; Winter, S. Consideration of disturbances and deficiencies in the moisture safety design of tall timber facades. In Proceedings of the World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016. [Google Scholar]
- MacKenzie, C.; Wang, C.-H.; Leicester, R.H.; Foliente, G.; Nguyen, M. Timber Service Life Design Guide; Prepared for Forest and Wood Products Australia, Project No: PN07.1052; Forest and Wood Products Australia Limited: Victoria, Australia, 2007. [Google Scholar]
- Woodard, A.C.; Milner, H.R. Sustainability of Timber and Wood in Construction. In Sustainability of Construction Materials, 2nd ed.; Woodhead Publishing: Amsterdam, The Netherlands, 2016. [Google Scholar]
Anomalies | % Affected | Degradation Level (kn) |
---|---|---|
Colour change | 0–20 | 1 |
20–60 | 2 | |
60–90 | 3 | |
90–100 | 4 | |
Cigarette marks | 0–20 | 3 |
20–100 | 4 | |
Scratches or wrinkles | 0–20 | 1 |
20–60 | 2 | |
60–90 | 3 | |
90–100 | 4 | |
Wearing or detachment of the finishing layer | 0–20 | 1 |
20–60 | 2 | |
60–90 | 3 | |
90–100 | 4 | |
Stains | 0–10 | 1 |
10–20 | 2 | |
20–60 | 3 | |
60–100 | 4 | |
Anomalies due to inadequate maintenance | 0–20 | 1 |
20–60 | 2 | |
60–90 | 3 | |
90–100 | 4 | |
Wear of wood material | 0–10 | 1 |
10–50 | 2 | |
50–90 | 3 | |
90–100 | 4 |
Anomalies | % Affected | Degradation Level (kn) |
---|---|---|
Colour change | 0–20 | 1 |
20–50 | 2 | |
50–90 | 3 | |
90–100 | 4 | |
Detachment or loss of the filling material of the joints | 0–20 | 1 |
20–50 | 2 | |
50–90 | 3 | |
90–100 | 4 | |
Change of joint size | 0–20 | 1 |
20–50 | 2 | |
50–90 | 3 | |
90–100 | 4 |
Anomalies | % Affected | Degradation Level (kn) |
---|---|---|
Warping, swelling or other flatness deficiencies | 0–10 | 1 |
10–30 | 2 | |
30–90 | 3 | |
90–100 | 4 | |
Cracking of elements and/or joints | 0–10 | 1 |
10–40 | 2 | |
40–90 | 3 | |
90–100 | 4 | |
Broken or splintered elements | 0–5 | 1 |
5–10 | 2 | |
10–50 | 3 | |
50–100 | 4 | |
Rot | 0–5 | 1 |
5–10 | 2 | |
10–50 | 3 | |
50–100 | 4 | |
Moisture stains | 0–5 | 1 |
5–20 | 2 | |
20–50 | 3 | |
50–100 | 4 | |
Disaggregation | 0–10 | 1 |
10–40 | 2 | |
40–90 | 3 | |
90–100 | 4 | |
Pulverulence | 0–10 | 1 |
10–30 | 2 | |
30–90 | 3 | |
90–100 | 4 | |
Xylophage attack | 0–30 | 3 |
30–100 | 4 | |
Loss of wood elements | 0–5 | 2 |
5–20 | 3 | |
20–100 | 4 |
Anomalies | Weighting Factor (ka,n) |
---|---|
Warping, swelling, or other flatness deficiencies | 1.2 |
Cracking of elements, joints, or both | 1.2 |
Broken or splintered elements | 1.2 |
Rot | 1.2 |
Moisture | 1.2 |
Disaggregation | 1.2 |
Pulverulence | 1.2 |
Xylophage attack | 1.2 |
Crumbling | 1.2 |
Anomalies | Weighting Factor (ka,n) |
---|---|
Colour change | 0.6 |
Cigarette marks | 0.6 |
Scratches or wrinkles | 0.6 |
Wearing or detachment of the finishing layer | 0.6 |
Stains | 0.6 |
Improper maintenance | 0.6 |
Wear | 0.6 |
Anomalies | Weighting Factor (ka,n) |
---|---|
Colour change | 0.6 |
Detachment or loss of the filling material of the joints | 1 |
Change of joint size | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, P.; Silva, A.; de Brito, J. How Long Can a Wood Flooring System Last? Buildings 2021, 11, 23. https://doi.org/10.3390/buildings11010023
Coelho P, Silva A, de Brito J. How Long Can a Wood Flooring System Last? Buildings. 2021; 11(1):23. https://doi.org/10.3390/buildings11010023
Chicago/Turabian StyleCoelho, Pedro, Ana Silva, and Jorge de Brito. 2021. "How Long Can a Wood Flooring System Last?" Buildings 11, no. 1: 23. https://doi.org/10.3390/buildings11010023
APA StyleCoelho, P., Silva, A., & de Brito, J. (2021). How Long Can a Wood Flooring System Last? Buildings, 11(1), 23. https://doi.org/10.3390/buildings11010023