Most Frequent Problems of Building Structures of Urban Apartment Buildings from 2nd Half of 19th Century and the Start of 20th Century
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vertical Structures
2.2. Horizontal Structures
- -
- combustible floor structures (e.g., a simple wooden beamed ceiling with a flap, i.e., with visible wooden beams),
- -
- semi-combustible floor structures, fitted with a ceiling embankment of at least 80 mm thick at the upper face, while at the lower face, the wooden beam structure is usually protected by undercover of planks covered by reed plaster (e.g., beam ceiling with reed plaster, flap and ceiling embankment etc.),
- -
- non-combustible floor structures, i.e., made of bricks, concrete, cast or wrought iron or later mild steel, “… in which wood is not used at all. … A safe, non-combustible ceiling is provided by a vault. Large spaces cannot be bridged by individual arches for several reasons, mainly because they require strong retaining walls, narrow the spaces and are expensive. The effort to eliminate these defects leads to division of by structures serving as support for smaller vaults. First, it tracks the vault, then the iron beams of either rolling surface (traverse) or riveted (tin) in shape, providing at least a quantity of the spent materials greatest resistance against bending.” [7] (p. 77).
3. Results
3.1. Vertical Structures
- poor quality of mortar (composition, excessive grain size of aggregates, low adhesion, shrinkage, poor workability, non-homogeneity) [25],
- non-observance of the planeness and verticality of masonry elements.
- tensile and shear cracks due to the effect of spatial stress states arising in the place of the concentration of compressive stresses in masonry exerted by the mounting of floor beams and girders (or masonry crushing due to the effect of concentrated compression);
- weakening of masonry of e.g., load-bearing pillars by continuous horizontal or vertical grooves, larger openings or the installation of elements differing significantly in stiffness, which contribute to the masonry damage and cracking;
- volume changes due to temperature: unequal or different susceptibility to volume changes caused by the temperature effect can result in different stress states and subsequent failures, e.g., formation of shear cracks, e.g., in the contact between mutually perpendicular masonry walls (perimeter and internal) [34];
- shear forces between the parts of masonry with different temperatures cause micro-bending deformations and, as a result, can lead e.g., to the failure of the vault mounted on the masonry wall by tensile cracks or damage to the joint between the masonry and the floor structure, etc.;
- sinking of a cantilevered floor structure on which the perimeter masonry of a bay window is mounted; the sinking will cause the appearance of tensile cracks in the bay window masonry whose pattern corresponds to the time pattern of compression trajectories;
- failures of vertical masonry structures built on heterogeneous foundations, in unstable subsoil conditions or in undermined areas is caused by forced deformations, due to the effect of a change in the shape of the footing bottom, i.e., non-uniform subsidence (e.g., due to waterlogging of the foundation joint, e.g., due to leaks in utility networks, waste pipes and incorrect slope of the prepared terrain) or curvature of the footing bottom [35,36].
3.2. Horizontal Structures
- excessive overall or local loading, wood damaged by unprofessional interventions,
- loosening of joints due to the natural aging and deterioration of major wood properties (water absorption, natural impregnation, elasticity, hardness, strength, toughness),
- thermal bridges in the perimeter masonry in places where wooden beams are mounted in beam pockets, where the wall is weakened by 200 to 250 mm and thus, at the same time, the thermal resistance of these structures is significantly reduced and thermal and moisture conditions of the mounting ends of wooden beams are deteriorated,
- insufficient bending and shear bearing capacity and stiffness of floor beams manifested by their excessive deflection, formation of longitudinal cracks and “slippage” of beams in the places of their mounting and local supports,
- insufficient load-bearing capacity and stiffness of beam floor structures in the horizontal direction (particularly in cases of ineffective or missing wall and beam ties, loosely or insufficiently fixed subflooring to floor beams) can be the cause of a serious threat to structural safety—spatial stiffness—of masonry structures, especially in the case of a building with several storeys, due to horizontal loading effects (eccentricity of vertical loading, non-uniform settlement, wind effects, temperature effects), but mainly dynamic loading effects (caused by technical, induced and natural seismicity); the absence of wall and beam ties, insufficient effectiveness (loosening of joints, insufficient anchoring, etc.) is usually directly manifested by the formation of tensile cracks, damage to the load-bearing masonry and the integrity of the load-bearing system.
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janák, P. Sto Let Obytného Domu Nájemného v Praze; Styl, Roč. XIII; Styl: Prague, Czech Republic, 1933; p. 63. [Google Scholar]
- Dulla, M. Kapitoly z Historie Bydlení; CTU in Prague: Prague, Czech Republic, 2014; ISBN 978-80-01-05433-8. [Google Scholar]
- Drawing No. 312. Archive of the National Technical Museum: Fund 55—University of Technology Prague, Civil Engineering. Available online: http://www.ntm.cz/en (accessed on 12 January 2021).
- Ebel, M. Dějiny Českého Stavebního Práva; ABF—Arch: Prague, Czech Republic, 2007; ISBN 978-80-86905-21-1. [Google Scholar]
- Anzani, A.; Cardani, G.; Condoleo, P.; Garavaglia, E.; Saisi, A.; Tedeschi, C.; Tiraboschi, C.; Valluzzi, M.R. Understanding of historical masonry for conservation approaches: The contribution of Prof. Luigia Binda to research advancement. Mater. Struct. 2018, 51, 140. [Google Scholar] [CrossRef]
- Kroftova, K. (Ed.) Tradiční Městské Stavitelství a Stavební Řemesla na Přelomu 19. a 20. Století—Svislé a Vodorovné Konstrukce; CTU in Prague: Praha, Czech Republic, 2020; ISBN 978-80-01-06795-6. [Google Scholar]
- Pacold, J. Konstrukce Pozemního Stavitelství; Díl II.; Fr. Rivnac Publisher: Prague, Czech Republic, 1890. [Google Scholar]
- Niklas, J.; Šanda, F. J. P. Jöndlovo Poučení o Stavitelství Pozemním; I. L. Kober Publisher: Prague, Czech Republic, 1865. [Google Scholar]
- Archive of the Architecture of the National Technical Museum: Fund 197, No. 20090909/02.
- Drawing No. 263. Archive of the National Technical Museum: Fund 55—University of Technology Prague, Civil Engineering. Available online: http://www.ntm.cz/en (accessed on 12 January 2021).
- Maraveas, C.; Wang, Y.; Swailes, T. Fire resistance of 19th century fireproof flooring systems: A sensitivity analysis. Constr. Build. Mater. 2014, 55, 69–81. [Google Scholar] [CrossRef]
- Maraveas, C.; Wang, Y.; Swailes, T. Thermal and mechanical properties of 19th century fireproof flooring systems at elevated temperatures. Constr. Build. Mater. 2013, 48, 248–264. [Google Scholar] [CrossRef]
- Archive of the Architecture of the National Technical Museum: Fund 121—Work of pupils of various vocational schools, No. 20060524.
- Kohout, J.; Tobek, A. Konstruktivní Stavitelství; Part 1; V. Nejedly Publisher: Jaromer, Czech Republic, 1911. [Google Scholar]
- Ondřej, S. Stavba Domu v Praksi; E. Gregr and Son Publisher: Prague, Czech Republic, 1932. [Google Scholar]
- Drawing No. 275. Archive of the National Technical Museum: Fund 55—University of Technology Prague, Civil Engineering. Available online: http://www.ntm.cz/en (accessed on 12 January 2021).
- Kroftová, K. Noninvasive Methods of Stabilization and Consolidation of the Historical Surfaces; Habilitation Thesis; CTU Publishnig: Praha, Czech Republic, 2018. (In Czech) [Google Scholar]
- Thomaz, E.; Sousa, H.; Roman, H.R. Defects in Masonry Walls Guidance on Cracking: Identification, Prevention and Repair; CIB: Rotterdam, The Netherlands, 2014; ISBN 978-90-6363-090-4. [Google Scholar]
- Witzany, J.; Karas, J.; Zlesák, J.; Kupilík, V. Hodnocení vlivu degradačních procesů a historie zatížení na únosnost zděných konstrukcí. In Sborník Vědeckovýzkumných Grantových Úkolů v Roce 1994; CTU in Prague: Prague, Czech Republic, 1995; pp. 38–39. [Google Scholar]
- Drdácký, M.; Slizkova, Z.; Valach, J. (Eds.) Příspěvek Technických Věd k Záchraně a Restaurování Památek; ÚTAM AV ČR: Prague, Czech Republic, 2015. [Google Scholar] [CrossRef]
- Domingues, J.C.; Ferreira, T.M.; Vicente, R.; Negrão, J.H. Mechanical and Typological Characterization of Traditional Stone Masonry Walls in Old Urban Centres: A Case Study in Viseu, Portugal. Buildings 2019, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.J. Structural Failure Patterns of Mid-Nineteenth Century Masonry Buildings of Charleston. Master’s Thesis, Clemson University, Charleston, CA, USA, 2018. Available online: https://tigerprints.clemson.edu/all_theses/2830 (accessed on 27 December 2020).
- Binda, L.; Saisi, A.; Tiraboschi, C. Investigation procedures for the diagnosis of historic masonries. Constr. Build. Mater. 2000, 14, 199–233. [Google Scholar] [CrossRef]
- Witzany, J.; Čejka, T.; Sýkora, M.; Holický, M. Assessment of compressive strength of historic mixed masonry. J. Civ. Eng. Manag. 2015, 22, 391–400. [Google Scholar] [CrossRef]
- Girsa, V.; Michoinova, D. Historicke Omitky—Zachrana, Konzervace, Obnova; CTU in Prague: Prague, Czech Republic, 2013; ISBN 978-80-01-05229-7. [Google Scholar]
- Witzany, J.; Zigler, R.; Čejka, T.; Pospíšil, P.; Holický, M.; Kubát, J.; Maroušková, A.; Kroftová, K. Physical and Mechanical Characteristics of Building Materials of Historic Buildings. Civ. Eng. J. 2017, 4, 343–360. [Google Scholar] [CrossRef]
- Matysek, P.; Witkowski, M. A Comparative Study on the Compressive Strength of Bricks from Different Historical Periods. Int. J. Arch. Herit. 2016, 10, 396–405. [Google Scholar] [CrossRef]
- Research MSM6840770001. Spolehlivost, Optimalizace a Trvanlivost Stavebních Materiálů a Konstrukcí; Faculty of Civil Engineering, CTU in Prague: Praha, Czech Republic, 2010. [Google Scholar]
- Kotlík, P.; Šrámek, J.; Kaše, J. Monografie STOP (2000): Opuka; STOP: Praha, Czech Republic, 2000. [Google Scholar]
- Rovnaníková, P. Monografie STOP: Omítky—Chemické a Technologické Vlastnosti; STOP: Praha, Czech Republic, 2002. [Google Scholar]
- Zigler, R. Rekonstrukce a sanace nosných zděných kosntrukcí (mechanismus porušování tlařených zděných konstrukcí). Ph.D. Thesis, ČVUT, Fakulta stavební, Katedra konstrukcí pozemních staveb, Praha, Czech Republic, 19 June 2006. [Google Scholar]
- Zigler, R. Analýza napjatosti, přetváření a porušování tlačených zděných prvků (stěna, pilíř, valená klenba) se zaměřením na vliv účinku vlhkosti. Master’s Thesis, ČVUT, Fakulta stavební, Katedra konstrukcí pozemních staveb, Praha, Czech Republic, 21 January 1999. [Google Scholar]
- Witzany, J.; Wasserbauer, R.; Cejka, T.; Kroftova, K.; Zigler, R. Obnova a Rekonstrukce Staveb. Poruchy, Degradace, Sanace; CTU in Prague: Prague, Czech Republic, 2018; ISBN 978-80-01-06360-6. [Google Scholar]
- Beran, P. The impact of the masonry temperature during restoration to the thermal stress of historic masonry. In Proceedings of the Fifteenth International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Proceedings, Praha, Czech Republic, 1–4 September 2015; Kruis, J., Tsompanakis, Y., Topping, B.H.V., Eds.; Kippen: Civil-Comp Press: Stirlingshire, UK, 2015; Volume 108. [Google Scholar] [CrossRef]
- Roca, P.; Lourenco, P.B.; Gaetani, A. Historic Construction and Conservation—Materials, systems and Damage; Routledge: Abingdon-on-Thames, UK, 2019; ISBN 9780429052767. [Google Scholar] [CrossRef]
- Kuklík, P.; Brouček, M. Vliv Hydraulických Gradientů a Kolísání Hladiny Podzemních Vod na Stabilitu Staveb; Zpravodaj ČSVTS: Prague, Czech Republic, 2017; Volume 43, pp. 48–51. [Google Scholar]
- Bradáč, J. Základové Konstrukce; Akademické Nakladatelství CERM: Brno, Czech Republic, 1995. [Google Scholar]
- Witzany, J.; Zigler, R.; Čejka, T.; Maroušková, A.; Kubát, J. Research into the effect of grouting on physical-mechanical properties of historic masonry. In Advances in Engineering Materials Structures and Systems: Innovations, Mechanics and Applications; Taylor & Francis: London, UK, 2019; pp. 617–618. ISBN 978-1-138-38696-9. [Google Scholar]
- Witzany, J.; Hruška, A.; Zlesák, J.; Zigler, R. Vliv vlhkosti na redistribuci napětí tlačených zděných konstrukcí. In 11. Mezinárodní Vědecká Konference VUT Brno; VUT v Brně: Brno, Czech Republic, 1999; pp. 239–242. [Google Scholar]
- Skabrada, J. Konstrukce Historickych Staveb; Argo: Prague, Czech Republic, 2003; ISBN 80-7203-548-7. [Google Scholar]
- Ottosen, L.M.; Pedersen, A.J.; Rörig-Dalgaard, I. Salt-related problems in brick masonry and electrokinetic removal of salts. J. Build. Apprais. 2007, 3, 181–194. [Google Scholar] [CrossRef]
- Hendrickx, R. Using the Karsten tube to estimate water transport parameters of porous building materials. Mater. Struct. 2013, 46, 1309–1320. [Google Scholar] [CrossRef]
- Fára, P. Monografie STOP: Sanace Vlhkého Zdiva; STOP: Prague, Czech Republic, 2003. [Google Scholar]
- Drawing No. 307. Archive of the National Technical Museum: Fund 55—University of Technology Prague, Civil Engineering. Available online: http://www.ntm.cz/en (accessed on 12 January 2021).
- Delgado, J.M.P.Q.; Guimarães, A.S.; De Freitas, V.P.; Antepara, I.; Kočí, V.; Černý, R. Salt Damage and Rising Damp Treatment in Building Structures. Adv. Mater. Sci. Eng. 2016, 2016, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cejka, T. Experimentální Výzkum Vlivu Vlhkosti na Mechanické Vlastnosti Historických Zděných Konstrukcí; Habilitation Thesis; CTU Publishnig: Praha, Czech Republic, 2009. (In Czech) [Google Scholar]
- Reinprecht, L.; Štefko, J. Dřevěné Stropy a Krovy; ABF publisher: Prague, Czech Republic, 2000; ISBN 80-86165-29-9. [Google Scholar]
- Šimůnková, E.; Kučerová, I. Monografie STOP: Dřevo; STOP: Prague, Czech Republic, 2008. [Google Scholar]
- Ryparová, P.; Wasserbauer, R.; Rácová, Z. The Cause of Occurrence of Microorganisms in Civil Engineering and the Dangers Associated with their Growth. Procedia Eng. 2016, 151, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Kloiber, M.; Drdácký, M. Diagnostika Dřevěných Konstrukcí; ČKAIT: Praha, Czech Republic, 2015; ISBN 978-80-87438-64-0. [Google Scholar]
- Drdácký, M.; Kloiber, M. In Situ Compression Stress-Deformation Measurements along the Timber Depth Profile. Adv. Mater. Res. 2013, 778, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Racová, Z.; Loušová, I.; Cejka, T. Protocol No.124029/2019 about the Test: Survey of the Roof of the Tenement House on Poupetova; Prague; CTU: Praha, Czech Republic, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kroftova, K. Most Frequent Problems of Building Structures of Urban Apartment Buildings from 2nd Half of 19th Century and the Start of 20th Century. Buildings 2021, 11, 27. https://doi.org/10.3390/buildings11010027
Kroftova K. Most Frequent Problems of Building Structures of Urban Apartment Buildings from 2nd Half of 19th Century and the Start of 20th Century. Buildings. 2021; 11(1):27. https://doi.org/10.3390/buildings11010027
Chicago/Turabian StyleKroftova, Klara. 2021. "Most Frequent Problems of Building Structures of Urban Apartment Buildings from 2nd Half of 19th Century and the Start of 20th Century" Buildings 11, no. 1: 27. https://doi.org/10.3390/buildings11010027
APA StyleKroftova, K. (2021). Most Frequent Problems of Building Structures of Urban Apartment Buildings from 2nd Half of 19th Century and the Start of 20th Century. Buildings, 11(1), 27. https://doi.org/10.3390/buildings11010027