Failure Analysis of Apennine Masonry Churches Severely Damaged during the 2016 Central Italy Seismic Sequence
Abstract
:1. Introduction
2. Apennine Churches
2.1. San Francesco Church in Montefortino (Marche Region, Fermo Province)
2.2. San Francesco Church in Sarnano (Marche Region, Macerata Province)
2.3. Sant’Anna Church in Camerino (Marche Region, Macerata Province)
2.4. Sant’Antonio Church in Ussita (Marche Region, Macerata Province)
2.5. Madonna of Valcora Sanctuary in Fiuminata (Marche Region, Macerata Province)
2.6. Santissimo Crocifisso in Arquata del Tronto (Marche Region, Ascoli Piceno Province)
3. The Numerical Models
3.1. Eigenfrequency Analysis
- 34 modes for San Francesco Church in Montefortino;
- 271 modes San Francesco Church in Sarnano;
- 30 modes Sant’Anna Church in Camerino;
- 28 modes for Sant’Antonio Church in Ussita;
- 40 modes Madonna of Valcora Sanctuary in Fiuminata;
- 52 modes for Santissimo Crocifisso in Arquata del Tronto.
- 24 August 2016 Amatrice with ML = 6.0 and MW = 6.0 (AMT station in Italian Accelerometric Archive (ITACA)),
- 26 October 2016 Campi with ML = 5.9 and MW = 5.9 (CMI station in ITACA),
- 30 October 2016 Forca Canapine ML = 6.1 and MW = 6.5 (FCC station in ITACA).
3.1.1. San Francesco Church in Montefortino
3.1.2. San Francesco Church in Sarnano
3.1.3. Sant’Anna Church in Camerino
3.1.4. Sant’Antonio Church in Ussita
3.1.5. Madonna of Valcora Sanctuary in Fiuminata
3.1.6. Santissimo Crocifisso Church in Arquata del Tronto
4. Damage Assessment by Nonlinear Static Analysis
4.1. San Francesco Church in Montefortino
4.2. San Francesco Church in Sarnano
4.3. Sant’Anna Church in Camerino
4.4. Sant’Antonio Church in Ussita
4.5. Madonna of Valcora Sanctuary in Fiuminata
4.6. Santissimo Crocifisso in Arquata del Tronto
5. Conclusions
- Classical eigenfrequency analyses associated with natural spectra from real earthquakes can, even qualitatively, identify the possible areas or better macro-blocks that could cause collapse during a seismic event. However, such analyses turn out to be defective when masonry is loaded beyond the elastic limit.
- Nonlinear static analyses appear to be able to represent the failure mechanisms with a more truthful detail, and to replicate case by case the geometric specificities of each church. Despite the large amount of approximations introduced, collapse mechanisms seem in reasonable agreement with reality.
Funding
Data Availability Statement
Conflicts of Interest
References
- Italian Department of Civil Protection. Terremoto Centro Italia 2016. Available online: http://www.protezionecivile.gov.it/attivita-rischi/rischio-sismico/emergenze/centro-italia-2016 (accessed on 27 January 2021). (In Italian)
- Maio, R.; Vicente, R.; Formisano, A.; Varum, H. Seismic vulnerability of building aggregates through hybrid and indirect assessment techniques. Bull. Earthq. Eng. 2015, 13, 2995–3014. [Google Scholar] [CrossRef] [Green Version]
- GU Serie Generale n.42 del 20-02-2018—Suppl. Ordinario n. 8. Decreto Ministeriale 17/01/2018—Aggiornamento delle “Norme Tecniche per le Costruzioni”; Ministero delle Infrastrutture e dei Trasporti: Rome, Italy, 2018; pp. 1–198. (In Italian) [Google Scholar]
- GU Serie Generale n.35 del 11-02-2019—Suppl. Ordinario n. 5. Circolare 21 gennaio 2019 n. 7 C.S.LL.PP—Istruzioni per l’applicazione dell’Aggiornamento delle “Norme Tecniche per le Costruzioni” di cui al D.M. 17/01/2018; Ministero delle Infrastrutture e dei Trasporti: Rome, Italy, 2019; pp. 1–337. (In Italian) [Google Scholar]
- Angelillo, M. Mechanics of Masonry Structures; Angelillo, M., Ed.; CISM International Centre for Mechanical Sciences; Springer Vienna: Vienna, Austria, 2014; Volume 551, ISBN 978-3-7091-1773-6. [Google Scholar]
- Pacheco-Torgal, F.; Lourenço, P.B.; Labrincha, J.A.; Kumar, S.; Chindaprasirt, P. Eco-Efficient Masonry Bricks and Blocks: Design, Properties and Durability; Woodhead Publishing: Oxford, UK, 2014; ISBN 978-178242318-8. [Google Scholar]
- Berto, L.; Saetta, A.; Scotta, R.; Vitaliani, R. An orthotropic damage model for masonry structures. Int. J. Numer. Methods Eng. 2002, 55, 127–157. [Google Scholar] [CrossRef]
- Liberatore, D.; Addessi, D. Strength domains and return algorithm for the lumped plasticity equivalent frame model of masonry structures. Eng. Struct. 2015, 91, 167–181. [Google Scholar] [CrossRef]
- Addessi, D.; Sacco, E.; Paolone, A. Cosserat model for periodic masonry deduced by nonlinear homogenization. Eur. J. Mech. A/Solids 2010, 29, 724–737. [Google Scholar] [CrossRef]
- Gambarotta, L.; Lagomarsino, S. Damage models for the seismic response of brick masonry shear walls. Part II: The continuum model and its applications. Earthq. Eng. Struct. Dyn. 1997, 26, 441–462. [Google Scholar] [CrossRef]
- Gambarotta, L.; Lagomarsino, S. Damage models for the seismic response of brick masonry shear walls. Part I: The mortar joint model and its applications. Earthq. Eng. Struct. Dyn. 1997, 26, 423–439. [Google Scholar] [CrossRef]
- Giordano, E.; Clementi, F.; Nespeca, A.; Lenci, S. Damage Assessment by Numerical Modeling of Sant’Agostino’s Sanctuary in Offida during the Central Italy 2016–2017 Seismic Sequence. Front. Built Environ. 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Clementi, F.; Gazzani, V.; Poiani, M.; Mezzapelle, P.A.; Lenci, S. Seismic Assessment of a Monumental Building through Nonlinear Analyses of a 3D Solid Model. J. Earthq. Eng. 2018, 22, 35–61. [Google Scholar] [CrossRef]
- Adhikari, R.; Jha, P.; Gautam, D.; Fabbrocino, G. Seismic Strengthening of the Bagh Durbar Heritage Building in Kathmandu Following the Gorkha Earthquake Sequence. Buildings 2019, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Petracca, M.; Pelà, L.; Rossi, R.; Zaghi, S.; Camata, G.; Spacone, E. Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Constr. Build. Mater. 2017, 149, 296–314. [Google Scholar] [CrossRef] [Green Version]
- Peruch, M.; Spacone, E.; Camata, G. Nonlinear analysis of masonry structures using fiber-section line elements. Earthq. Eng. Struct. Dyn. 2019, 48, 1345–1364. [Google Scholar] [CrossRef]
- Quagliarini, E.; Maracchini, G.; Clementi, F. Uses and limits of the Equivalent Frame Model on existing unreinforced masonry buildings for assessing their seismic risk: A review. J. Build. Eng. 2017, 10, 166–182. [Google Scholar] [CrossRef]
- Betti, M.; Vignoli, A. Numerical assessment of the static and seismic behaviour of the basilica of Santa Maria all’Impruneta (Italy). Constr. Build. Mater. 2011, 25, 4308–4324. [Google Scholar] [CrossRef]
- Sarhosis, V.; Milani, G.; Formisano, A.; Fabbrocino, F. Evaluation of different approaches for the estimation of the seismic vulnerability of masonry towers. Bull. Earthq. Eng. 2018, 16, 1511–1545. [Google Scholar] [CrossRef] [Green Version]
- Lemos, J.V. Discrete Element Modeling of Masonry Structures. Int. J. Archit. Herit. 2007, 1, 190–213. [Google Scholar] [CrossRef]
- Casolo, S. Modelling in-plane micro-structure of masonry walls by rigid elements. Int. J. Solids Struct. 2004, 41, 3625–3641. [Google Scholar] [CrossRef]
- Poiani, M.; Gazzani, V.; Clementi, F.; Milani, G.; Valente, M.; Lenci, S. Iconic crumbling of the clock tower in Amatrice after 2016 central Italy seismic sequence: Advanced numerical insight. Procedia Struct. Integr. 2018, 11, 314–321. [Google Scholar] [CrossRef]
- Ferrante, A.; Clementi, F.; Milani, G. Dynamic Behavior of an Inclined Existing Masonry Tower in Italy. Front. Built Environ. 2019, 5. [Google Scholar] [CrossRef]
- Saisi, A.; Gentile, C.; Ruccolo, A. Continuous monitoring of a challenging heritage tower in Monza, Italy. J. Civ. Struct. Health Monit. 2018, 8, 77–90. [Google Scholar] [CrossRef]
- Clementi, F.; Pierdicca, A.; Formisano, A.; Catinari, F.; Lenci, S. Numerical model upgrading of a historical masonry building damaged during the 2016 Italian earthquakes: The case study of the Podestà palace in Montelupone (Italy). J. Civ. Struct. Health Monit. 2017, 7, 703–717. [Google Scholar] [CrossRef]
- Rainieri, C.; Fabbrocino, G.; Verderame, G.M. Non-destructive characterization and dynamic identification of a modern heritage building for serviceability seismic analyses. NDT E Int. 2013, 60, 17–31. [Google Scholar] [CrossRef]
- De Risi, R.; Sextos, A.; Zimmaro, P.; Simonelli, A.; Stewart, J. The 2016 central Italy earthquake sequence: Observations of incremental building damage. In Proceedings of the 11th U.S. National Conference on Earthquake Engineering Integrating Science, Engineering & Policy, Los Angeles, CA, USA, 25–29 June 2018; Volume 3, pp. 1871–1881. [Google Scholar]
- Pizzi, A.; Di Domenica, A.; Gallovič, F.; Luzi, L.; Puglia, R. Fault Segmentation as Constraint to the Occurrence of the Main Shocks of the 2016 Central Italy Seismic Sequence. Tectonics 2017, 36, 2370–2387. [Google Scholar] [CrossRef]
- Ribilotta, E.; Giordano, E.; Ferrante, A.; Clementi, F.; Lenci, S. Tracking Modal Parameter Evolution of Different Cultural Heritage Structure Damaged by Central Italy Earthquake of 2016. Key Eng. Mater. 2019, 817, 334–341. [Google Scholar] [CrossRef]
- Clementi, F.; Gazzani, V.; Poiani, M.; Lenci, S. Assessment of seismic behaviour of heritage masonry buildings using numerical modelling. J. Build. Eng. 2016, 8, 29–47. [Google Scholar] [CrossRef]
- Rots, J.G. Smeared and discrete representations of localized fracture. Int. J. Fract. 1991, 51, 45–59. [Google Scholar] [CrossRef]
- Lourenço, P.B. Recent advances in masonry modelling: Micromodelling and homogenisation. In Multiscale Modeling in Solid Mechanics: Computational Approaches; Imperial College Press: London, UK, 2009; pp. 251–294. [Google Scholar]
- Da Porto, F.; Guidi, G.; Garbin, E.; Modena, C. In-Plane Behavior of Clay Masonry Walls: Experimental Testing and Finite-Element Modeling. J. Struct. Eng. 2010, 136, 1379–1392. [Google Scholar] [CrossRef]
Church | Elements | Nodes | Degrees of Freedom |
---|---|---|---|
San Francesco Church in Montefortino | 16,466 | 5243 | 15,033 |
San Francesco Church in Sarnano | 57,889 | 16,623 | 48,516 |
Sant’Anna Church in Camerino | 29,706 | 8471 | 24,336 |
Sant’Antonio Church in Ussita | 5642 | 1859 | 6597 |
Madonna of Valcora Sanctuary in Fiuminata | 24,814 | 7358 | 20,964 |
Santissimo Crocifisso in Arquata del Tronto | 169,935 | 38,499 | 112,899 |
Church | fm (MPa) | ft (MPa) | γv (kN/m3) | E (MPa) | ν (−) | Gc (N/mm) | Gf (N/mm) | h (mm) |
---|---|---|---|---|---|---|---|---|
San Francesco Church in Montefortino | 0.741 | 0.074 | 18 | 870 | 0.49 | 0.938 | 0.009 | 400 |
San Francesco Church in Sarnano | 2.000 | 0.200 | 22 | 1500 | 0.49 | 1.880 | 0.019 | 700 |
Sant’Anna Church in Camerino | 0.741 | 0.074 | 19 | 870 | 0.49 | 0.938 | 0.009 | 400 |
Sant’Antonio Church in Ussita | 1.007 | 0.101 | 18.5 | 948 | 0.49 | 1.163 | 0.012 | 200 |
Madonna of Valcora Sanctuary in Fiuminata | 1.007 | 0.101 | 18.5 | 948 | 0.49 | 1.163 | 0.012 | 200 |
Santissimo Crocifisso in Arquata del Tronto | 1.482 | 0.148 | 20 | 1230 | 0.40 | 1.524 | 0.015 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clementi, F. Failure Analysis of Apennine Masonry Churches Severely Damaged during the 2016 Central Italy Seismic Sequence. Buildings 2021, 11, 58. https://doi.org/10.3390/buildings11020058
Clementi F. Failure Analysis of Apennine Masonry Churches Severely Damaged during the 2016 Central Italy Seismic Sequence. Buildings. 2021; 11(2):58. https://doi.org/10.3390/buildings11020058
Chicago/Turabian StyleClementi, Francesco. 2021. "Failure Analysis of Apennine Masonry Churches Severely Damaged during the 2016 Central Italy Seismic Sequence" Buildings 11, no. 2: 58. https://doi.org/10.3390/buildings11020058
APA StyleClementi, F. (2021). Failure Analysis of Apennine Masonry Churches Severely Damaged during the 2016 Central Italy Seismic Sequence. Buildings, 11(2), 58. https://doi.org/10.3390/buildings11020058