Operational Modal Analysis, Model Update and Fragility Curves Estimation, through Truncated Incremental Dynamic Analysis, of a Masonry Belfry
Abstract
:1. Introduction
2. The Case Study: The St.Silvestro Belfry
2.1. The St.Silvestro Complex: Historical Information and Description of The Building
2.2. The 2009 Earthquake: Suffered Damage
2.3. The Diagnostic Campaign and the Rehabilitation Works
3. Dynamic Identification of the St.Silvestro Belfry: Description and Results
4. Numerical Simulations of the St.Silvestro Belfry
Model Updating
5. Fragility Curve Estimate
5.1. Theoretical Background
5.2. Fragility Curve
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Torelli, G.; D’Ayala, D.; Betti, M.; Bartoli, G. Analytical and numerical seismic assessment of heritage masonry towers. Bull. Earthq. Eng. 2020, 18, 969–1008. [Google Scholar] [CrossRef] [Green Version]
- Azzara, R.; Girardi, M.; Padovani, C.; Pellegrini, D.; Robol, L. Fe Model Updating of Masonry Towers: Modeling and Numerical Issues. 2020. Available online: https://openportal.isti.cnr.it/data/2020/436119/2020_%20436119.published.pdf (accessed on 16 March 2021).
- Pena, F.; Lourenco, P.; Mendes, N.; Oliveira, D. Numerical models for the seismic assessment of an old masonry tower. Eng. Struct. 2010, 32, 1466–1478. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, A.; Clementi, F.; Milani, G. Dynamic Behavior of an Inclined Existing Masonry Tower in Italy. Front. Built Environ. 2019, 5, 16. [Google Scholar] [CrossRef]
- Facchini, L.; Gusella, V.; Betti, M. Non-Linear Dynamic Analysis for Collapse Probability Assessment of Historic Masonry Towers; Springer: Cham, Switzerland, 2020; pp. 1376–1386. [Google Scholar] [CrossRef]
- Ferraioli, M.; Lavino, A.; Abruzzese, D.; Avossa, A.M. Seismic Assessment, Repair and Strengthening of a Medieval Masonry Tower in Southern Italy. Int. J. Civ. Eng. 2020, 18, 967–994. [Google Scholar] [CrossRef]
- Milani, G.; Shehu, R.; Valente, M. A kinematic limit analysis approach for seismic retrofitting of masonry towers through steel tie-rods. Eng. Struct. 2018, 160, 212–228. [Google Scholar] [CrossRef]
- Silva, L.; Mendes, N.; Lourenco, P.; Ingham, J. Seismic Structural Assessment of the Christchurch Catholic Basilica, New Zealand. Structures 2018, 15, 115–130. [Google Scholar] [CrossRef] [Green Version]
- Preciado, A.; Bartoli, G.; Budelmann, H. Fundamental aspects on the seismic vulnerability of ancient masonry towers and retrofitting techniques. Earthquakes Struct. 2015, 9, 339–352. [Google Scholar] [CrossRef]
- Preciado, A.; Bartoli, G.; Ramirez-Gaytan, A. Earthquake Protection of the Torre Grossa Medieval Tower of San Gimignano, Italy by Vertical External Prestressing. Eng. Fail. Anal. 2017, 71, 31–42. [Google Scholar] [CrossRef]
- García-Macías, E.; Ubertini, F. Seismic interferometry for earthquake-induced damage identification in historic masonry towers. Mech. Syst. Signal Process. 2019, 132, 380–404. [Google Scholar] [CrossRef]
- Azzara, R.; Girardi, M.; Iafolla, V.; Padovani, C.; Pellegrini, D. Long-Term Dynamic Monitoring of Medieval Masonry Towers. Front. Built Environ. 2020, 6. [Google Scholar] [CrossRef]
- Invernizzi, S.; Lacidogna, G.; Lozano-Ramírez, N.; Carpinteri, A. Structural monitoring and assessment of an ancient masonry tower. Eng. Fract. Mech. 2019, 210, 429–443. [Google Scholar] [CrossRef]
- Barsocchi, P.; Bartoli, G.; Betti, M.; Girardi, M.; Mammolito, S.; Pellegrini, D.; Zini, G. Wireless Sensor Networks for Continuous Structural Health Monitoring of Historic Masonry Towers. Int. J. Archit. Herit. 2020, 1–23. [Google Scholar] [CrossRef]
- Capanna, I.; Aloisio, A.; Di Fabio, F.; Fragiacomo, M. Sensitivity Assessment of the Seismic Response of a Masonry Palace via Non-Linear Static Analysis: A Case Study in L’Aquila (Italy). Infrastructures 2021, 6, 8. [Google Scholar] [CrossRef]
- Ministero dei beni e delle attività culturali e del turismo, C.n. Linee Guida per la Valutazione e Riduzione del Rischio Sismico del Patrimonio Culturale Allineate alle Nuove Norme Tecniche per le Costruzioni (D.M. 14 Gennaio 2008); Gangemi Editore spa: Roma, Italy, 2010. [Google Scholar]
- Lagomarsino, S.; Podesta, S. Damage and Vulnerability Assessment of Churches after the 2002 Molise, Italy, earthquake. Earthq. Spectra 2004, 20, S271–S283. [Google Scholar] [CrossRef]
- Doglioni, F.; Moretti, A.; Petrini, V. Le Chiese e il Terremoto [Churches and Earthquake]; Edizioni Lint: Trieste, Italy, 1994. [Google Scholar]
- Sorrentino, L.; Liberatore, L.; Decanini, L.D.; Liberatore, D. The performance of churches in the 2012 Emilia Earthquake. Bull. Earthq. Eng. 2014, 12, 2299–2331. [Google Scholar] [CrossRef]
- Ministerial Decree of Public Works. Updating of Technical codes for constructions. M.D. 17/01/2018. Official Gazzette of the Italian Republic n.42, 20 February 2018. (In Italian) [Google Scholar]
- Ministerial Decree n.7. Instructions for the Application of the Updating. Technical Codes for Constructions. M.D. 17/01/2018. Official Gazzette of the Italian Republic, n.7, 17 January 2019. (In Italian) [Google Scholar]
- Diaferio, M.; Foti, D.; Potenza, F. Prediction of the fundamental frequencies and modal shapes of historic masonry towers by empirical equations based on experimental data. Eng. Struct. 2018, 156, 433–442. [Google Scholar] [CrossRef]
- Ranieri, C. On the Estimation of the Fundamental Modal Properties of Italian Historical Masonry Towers. 2014. Available online: https://iris.unimol.it/handle/11695/48344 (accessed on 16 March 2021).
- Gentile, C.; Saisi, A. Radar-based vibration measurement on historic masonry towers. In Emerging Technologies in Non-Destructive Testing V-Proceedings of the 5th Conference on Emerging Technologies in NDT; CRC Press: Boca Raton, FL, USA, 2012; pp. 51–56. [Google Scholar] [CrossRef]
- Ramos, L.F.; Marques, L.; Lourenço, P.B.; De Roeck, G.; Campos-Costa, A.; Roque, J. Monitoring historical masonry structures with operational modal analysis: Two case studies. Mech. Syst. Signal Process. 2010, 24, 1291–1305. [Google Scholar] [CrossRef] [Green Version]
- Rainieri, C.; Fabbrocino, G. Predictive correlations for the estimation of the elastic period of masonry towers. In Proceedings of the 4th International Conference on Experimental Vibration Analysis for Civil Engineering Structures–EVACES, Varenna, Italy, 3–5 October 2011. [Google Scholar]
- Alaggio, R.; Aloisio, A.; Antonacci, E.; Cirella, R. Two-years static and dynamic monitoring of the santa maria di collemaggio basilica. Constr. Build. Mater. 2021, 268, 121069. [Google Scholar] [CrossRef]
- Aloisio, A.; Di Battista, L.; Alaggio, R.; Antonacci, E.; Fragiacomo, M. Assessment of structural interventions using Bayesian updating and subspace-based fault detection methods: The case study of S. Maria di Collemaggio basilica, L’Aquila, Italy. Struct. Infrastruct. Eng. 2020, 17, 141–155. [Google Scholar] [CrossRef]
- Diaferio, M.; Foti, D.; Mongelli, M.; Giannoccaro, N.I.; Andersen, P. Operational modal analysis of a historic tower in Bari. In Civil Engineering Topics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 4, pp. 335–342. [Google Scholar]
- Ferraioli, M.; Miccoli, L.; Abruzzese, D.; Mandara, A. Dynamic characterisation and seismic assessment of medieval masonry towers. Nat. Hazards 2017, 86, 489–515. [Google Scholar] [CrossRef]
- Gentile, C.; Saisi, A.; Cabboi, A. Structural identification of a masonry tower based on operational modal analysis. Int. J. Archit. Herit. 2015, 9, 98–110. [Google Scholar] [CrossRef]
- Milani, G.; Clementi, F. Advanced Seismic Assessment of Four Masonry Bell Towers in Italy after Operation Modal Analysis Identification. Int. J. Archit. Herit. 2019. [Google Scholar] [CrossRef]
- Pavlovic, M.; Trevisani, S.; Cecchi, A. A Procedure for the Structural Identification of Masonry Towers. J. Nondestruct. Eval. 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Ranieri, C.; Fabbroncino, G. Operational modal analysis for the characterization of heritage structures. Geofizikal 2011, 28, 109–126. [Google Scholar]
- Gavini, I.C. Storia Dell’Architettura in Abruzzo; Studio bibliografico Adelmo Polla; University Park: State College, PA, USA, 1983; Volume 1. [Google Scholar]
- Aloisio, A.; Capanna, I.; Cirella, R.; Alaggio, R.; Di Fabio, F.; Fragiacomo, M. Identification and model update of the dynamic properties of the San Silvestro Belfry in L’Aquila and Estimation of Bell’s Dynamic Actions. Appl. Sci. 2020, 10, 4289. [Google Scholar] [CrossRef]
- Ceci, A.; Contento, A.; Fanale, L.; Galeota, D.; Gattulli, V.; Lepidi, M.; Potenza, F. Structural performance of the historic and modern buildings of the University of L’Aquila during the seismic events of April 2009. Eng. Struct. 2010, 32, 1899–1924. [Google Scholar] [CrossRef]
- Kaplan, H.; Bilgin, H.; Yilmaz, S.; Binici, H.; Öztas, A. Structural damages of L’Aquila (Italy) earthquake. Nat. Hazards Earth Syst. Sci. 2010, 10, 499–507. [Google Scholar] [CrossRef]
- Monaco, P.; Totani, G.; Totani, F.; Grasso, S.; Maugeri, M. Site Effects in the Urban Area of L’Aquila Damaged by the April 6, 2009 Earthquake. In Earthquake-Soil Interaction; WIT Press: Ashurst, UK, 2014; p. 71. [Google Scholar]
- Capanna, I.; Cirella, R.; Aloisio, A.; Di Fabio, F.; Fragiacomo, M. The St. Silvestro belfry in L’Aquila: From the rehabilitation works to the actual performance in terms of dynamic properties and fragility functions estimation. In Proceedings of the XI International Conference on Structural Dynamics, EURODYN2020, Athens, Greece, 23–26 November 2020. [Google Scholar]
- Aloisio, A.; Pasca, D.; Tomasi, R.; Fragiacomo, M. Dynamic identification and model updating of an eight-storey CLT building. Eng. Struct. 2020, 213, 110593. [Google Scholar] [CrossRef]
- Arun, K.; Kung, S. Balanced approximation of stochastic systems. SIAM J. Matrix Anal. Appl. 1990, 11, 42–68. [Google Scholar] [CrossRef]
- Peeters, B.; De Roeck, G. Reference-based stochastic subspace identification for output-only modal analysis. Mech. Syst. Signal Process. 1999, 13, 855–878. [Google Scholar] [CrossRef] [Green Version]
- Döhler, M.; Reynders, E.; Magalhaes, F.; Mevel, L.; De Roeck, G.; Cunha, A. Pre-and post-identification merging for multi-setup OMA with covariance-driven SSI. In Dynamics of Bridges; Springer: Berlin/Heidelberg, Germany, 2011; Volume 5, pp. 57–70. [Google Scholar]
- Magenes, G.; Calvi, G. In-plane seismic response of brick masonry walls. Earthq. Eng. Struct. Dyn. 1997, 26, 1091–1112. [Google Scholar] [CrossRef]
- Formisano, A.; Massimilla, A. A Novel Procedure for Simplified Nonlinear Numerical Modeling of Structural Units in Masonry Aggregates. Int. J. Archit. Herit. 2018, 12, 1162–1170. [Google Scholar] [CrossRef]
- Quagliarini, E.; Maracchini, G.; Clementi, F. Uses and limits of the Equivalent Frame Model on existing unreinforced masonry buildings for assessing their seismic risk: A review. J. Build. Eng. 2017, 10, 166–182. [Google Scholar] [CrossRef]
- Betti, M.; Galano, L.; Vignoli, A. Comparative analysis on the seismic behaviour of unreinforced masonry buildings with flexible diaphragms. Eng. Struct. 2014, 61, 195–208. [Google Scholar] [CrossRef]
- Plevris, V.; Asteris, P. Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures (2 Volumes); IGI Global: Hershey, PA, USA, 2015. [Google Scholar] [CrossRef] [Green Version]
- Pasticier, L.; Amadio, C.; Fragiacomo, M. Non-linear seismic analysis and vulnerability evaluation of a masonry building by means of the SAP2000 V. 10 code. Earthq. Eng. Struct. Dyn. 2008, 37, 467–485. [Google Scholar] [CrossRef]
- European Union. Design of the Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings EC-1; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- Girardi, M.; Padovani, C.; Pellegrini, D.; Porcelli, M.; Robol, L. Finite element model updating for structural applications. J. Comput. Appl. Math. 2020, 370, 112675. [Google Scholar] [CrossRef] [Green Version]
- Friswell, M.; Mottershead, J.E. Finite Element Model Updating in Structural Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 38. [Google Scholar]
- Allemang, R.J.; Brown, D.L. A correlation coefficient for modal vector analysis. In Proceedings of the 1st international modal analysis conference. SEM, Orlando, FL, USA, 8–10 November 1982; Volume 1, pp. 110–116. [Google Scholar]
- Pastor, M.; Binda, M.; Harčarik, T. Modal assurance criterion. Procedia Eng. 2012, 48, 543–548. [Google Scholar] [CrossRef]
- Baker, J.W. Efficient analytical fragility function fitting using dynamic structural analysis. Earthq. Spectra 2015, 31, 579–599. [Google Scholar] [CrossRef]
- FEMA. Multi-hazard loss estimation methodology. In Earthquake Model/Technical Manual; The National Institute of Building Sciences (NIBS): Washington, DC, USA, 2010. [Google Scholar]
- Aloisio, A.; Alaggio, R.; Fragiacomo, M. Fragility functions and behavior factors estimation of multi-story cross-laminated timber structures characterized by an energy-dependent hysteretic model. Earthq. Spectra 2020, 37. [Google Scholar] [CrossRef]
- Aloisio, A.; Fragiacomo, M. Reliability-based overstrength factors of cross-laminated timber shear walls for seismic design. Eng. Struct. 2021, 228, 111547. [Google Scholar] [CrossRef]
Lecture Point [-] | Velocity of ST1 [m/s] | Velocity of ST2 [m/s] |
---|---|---|
V1 | 940 | 890 |
V2 | 940 | 930 |
V3 | 940 | 870 |
V4 | 940 | 940 |
V5 | 940 | 920 |
V6 | 940 | 930 |
V7 | 940 | 880 |
V8 | 940 | 890 |
V9 | 900 | 930 |
mean value of velocity | 913.3 | 908.9 |
standard deviation | 27.4 | 26.2 |
Mode | Frequency [Hz] | Damping [%] |
---|---|---|
1st | 2.367 | 3.727 |
2nd | 2.749 | 1.957 |
Masonry with Irregular Units, with No Homogeneous Thickness | [MPa] | [MPa] | E [MPa] | G [MPa] | [kN/m3] |
---|---|---|---|---|---|
Un-reinforced masonry | 2 | 0.043 | 1230 | 410 | 20 |
Reinforced with grout injections | 3.4 | 0.073 | 2091 | 697 | 20 |
Reinforced with grout injections and stone diatons | 5.1 | 0.109 | 3136 | 1045 | 20 |
Mode | [Hz] | [Hz] | [%] |
---|---|---|---|
1st | 2.346 | 2.367 | −0.88 |
2nd | 2.679 | 2.749 | −2.55 |
Name | Areas Affected | Year | Mw | PGA [m/s2] | |
---|---|---|---|---|---|
1 | El Centro | United States, Mexico | 1940 | 6.9 | 3.50 |
2 | Erzican | Erzincan Province, Turkey | 1939 | 7.8 | 5.03 |
3 | Kobe | Japan | 1995 | 6.9 | 6.76 |
4 | L’Aquila | Italy | 2009 | 6.3 | 6.63 |
5 | Northridge | Southern California, United States | 1994 | 6.7 | 5.51 |
6 | Loma Prieta | San Francisco, United States | 1989 | 6.9 | 6.55 |
7 | Parkfield | California, United States | 2004 | 6.0 | 4.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capanna, I.; Cirella, R.; Aloisio, A.; Alaggio, R.; Di Fabio, F.; Fragiacomo, M. Operational Modal Analysis, Model Update and Fragility Curves Estimation, through Truncated Incremental Dynamic Analysis, of a Masonry Belfry. Buildings 2021, 11, 120. https://doi.org/10.3390/buildings11030120
Capanna I, Cirella R, Aloisio A, Alaggio R, Di Fabio F, Fragiacomo M. Operational Modal Analysis, Model Update and Fragility Curves Estimation, through Truncated Incremental Dynamic Analysis, of a Masonry Belfry. Buildings. 2021; 11(3):120. https://doi.org/10.3390/buildings11030120
Chicago/Turabian StyleCapanna, Ilaria, Riccardo Cirella, Angelo Aloisio, Rocco Alaggio, Franco Di Fabio, and Massimo Fragiacomo. 2021. "Operational Modal Analysis, Model Update and Fragility Curves Estimation, through Truncated Incremental Dynamic Analysis, of a Masonry Belfry" Buildings 11, no. 3: 120. https://doi.org/10.3390/buildings11030120
APA StyleCapanna, I., Cirella, R., Aloisio, A., Alaggio, R., Di Fabio, F., & Fragiacomo, M. (2021). Operational Modal Analysis, Model Update and Fragility Curves Estimation, through Truncated Incremental Dynamic Analysis, of a Masonry Belfry. Buildings, 11(3), 120. https://doi.org/10.3390/buildings11030120