A Simplified Approach for the Seismic Loss Assessment of RC Buildings at Urban Scale: The Case Study of Potenza (Italy)
Abstract
:1. Introduction
2. Overview of the Direct Estimation of Expected Annual Loss
3. Building Typologies Identification for the City Center of Potenza
4. Archetype Buildings
4.1. Overview
- M,h/D represents the modification factor related to the h/D ratio, equal to M,h/D = 2/(1.5 + D/h);
- M,dia represents the diameter modification factor (1.06 for D = 50 mm, 1.00 for D = 100 mm and 0.98 for D = 150 mm);
- M,a is the modification factor related to the presence of steel bars (ranging from 1.03 to 1.13 as a function of the bar diameter) [32];
- M,d is the modification factor accounting for damage occurring during the extraction activities, equal to 1.06 [33].
4.2. Numerical Modeling and Analysis Results
5. Expected Annual Loss Estimation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, L.; David, Y.Y.; Dan, M.F. Determining target reliability index of structures based on cost optimization and acceptance criteria for fatality risk. In ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering; American Society of Civil Engineers: Reston, VA, USA, 2021; Volume 7. [Google Scholar]
- Cardone, D.; Flora, A.; Manganelli, B. Cost-benefit analysis of different retrofit strategies following a displacement based loss assessment approach: A case study. In Proceedings of the Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering, Anchorage, AL, USA, 21–25 July 2014. [Google Scholar] [CrossRef]
- Vona, M.; Manganelli, B.; Tataranna, S.; Anelli, A. An optimized procedure to estimate the economic seismic losses of existing reinforced concrete buildings due to seismic damage. Buildings 2018, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Cardone, D.; Perrone, G.; Flora, A. Displacement-Based Simplified Seismic Loss Assessment of Pre-70S RC Buildings. J. Earth. Eng. 2020, 24, 82–113. [Google Scholar] [CrossRef]
- Porter, K.A. An overview of PEER’s performance-based earthquake engineering methodology. In Proceedings of the Ninth International Conference on Applications of Probability and Statistics in Engineering, San Francisco, CA, USA, 6–9 July 2003. [Google Scholar]
- Porter, K.A.; Beck, J.L.; Shaikhutdinov, R.V. Simplified estimation of economic seismic risk for buildings. Earth. Spectra 2004, 20, 1239–1263. [Google Scholar] [CrossRef] [Green Version]
- Krawinkler, H. Van Nuys Hotel Building Testbed Report: Exercising Seismic Performance Assessment; Pacific Earthquake Engineering Research Center College of Engineering University of California: Berkeley, CA, USA, 2005. [Google Scholar]
- Anelli, A.; Hidalgo, S.S.C.; Vona, M.; Tarque, N.; Laterza, M. A proactive and resilient seismic risk mitigation strategy for existing school buildings. Struct. Infrastruct. Eng. 2019, 15, 137–151. [Google Scholar] [CrossRef]
- Vona, M. Proactive Actions Based on a Resilient Approach to Urban Seismic Risk Mitigation. Open Constr. Build. Technol. J. 2020, 14, 321–335. [Google Scholar] [CrossRef]
- Sullivan, T.J.; Calvi, G.M. Considerations for the seismic assessment of buildings using the direct displacement-based assessment approach. In Proceedings of the ANIDIS Conference, Bari, Italy, 18–22 September 2011. [Google Scholar]
- Ramirez, C.M.; Miranda, E. Building Specific Loss Estimation Methods Tools for Simplified Performance Based Earthquake Engineering; Technical Report No. 171; John A. Blume Earthquake. Engineering Center: Palo Alto, CA, USA, May 2009. [Google Scholar]
- Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni; numero 58 del; Decreto Ministeriale: Rome, Italy, 2017.
- Perrone, G.; Cardone, D.; O’Reilly, G.J.; Sullivan, T.J. Developing a direct approach for estimating expected annual losses of Italian buildings. J. Earth. Eng. 2019, 1–32. [Google Scholar] [CrossRef]
- Cardone, D.; Sullivan, T.J.; Gesualdi, G.; Perrone, G. Simplified estimation of the expected annual loss of reinforced concrete buildings. Earth. Eng. Struct. Dyn. 2017, 46, 2009–2032. [Google Scholar] [CrossRef]
- McKenna, F. OpenSees: A Framework for Earthquake Engineering Simulation. Comput. Sci. Eng. 2011, 13, 58–66. [Google Scholar] [CrossRef]
- Cardone, D.; Flora, A.; Picione, M.D.L.; Martoccia, A. Estimating direct and indirect losses due to earthquake damage in residential RC buildings. Soil Dyn. Earthq. Eng. 2019, 126, 105801. [Google Scholar] [CrossRef]
- Vamvatsikos, D. Derivation of new SAC/FEMA performance evaluation solutions with second-order hazard approximation. Earthq. Eng. Struct. Dyn. 2013, 42, 1171–1188. [Google Scholar] [CrossRef]
- Norme Tecniche per le Costruzioni; NTC2018; Ufficio Pubblicazione Leggi E Decreti: Rome, Italy, 2018.
- Cardone, D.; Perrone, G. Damage and Loss Assessment of Pre-70 RC Frame Buildings with FEMA P-58. J. Earthq. Eng. 2016, 21, 1–39. [Google Scholar] [CrossRef]
- Applied Technology Council. Next-Generation Seismic Performance Assessment for Buildings; FEMA P-58-1 Federal; Emergency Management Agency: Washington, DC, USA, 2012. [Google Scholar]
- Cardone, D.; Flora, A. Multiple inelastic mechanisms analysis (MIMA): A simplified method for the estimation of the seismic response of RC frame buildings. Eng. Struct. 2017, 145, 368–380. [Google Scholar] [CrossRef]
- Italian National Statistics Institute (ISTAT). 15th National Census on Buildings and Population; Italian National Statistics Institute (ISTAT): Rome, Italy, 2014. (In Italian) [Google Scholar]
- Gizzi, F.T.; Masini, N. Historical earthquakes and damage patterns in Potenza (Basilicata, Southern Italy). Ann. Geophys. 2007, 50, 676–687. [Google Scholar]
- Chiauzzi, L.; Masi, A.; Mucciarelli, M.; Vona, M.; Pacor, F.; Cultrera, G.; Gallovič, F.; Emolo, A. Building damage scenarios based on exploitation of Housner intensity derived from finite faults ground motion simulations. Bull. Earthq. Eng. 2011, 10, 517–545. [Google Scholar] [CrossRef] [Green Version]
- Grunthal, G. European Macroseismic Scale (EMS–98); Cahiers du Centre Européen de Géodynamique et de Séismologie: Luxembourg, 1998. [Google Scholar]
- Dolce, M.; Kappos, A.; Masi, A.; Penelis, G.; Vona, M. Vulnerability assessment and earthquake damage scenarios of the building stock of Potenza (Southern Italy) using Italian and Greek methodologies. Eng. Struct. 2006, 28, 357–371. [Google Scholar] [CrossRef]
- Brzev, S.; Scawthorn, C.; Charleson, A.W.; Jaiswal, K. Interim Overview of GEM Build-ing Taxonomy V2.0; GEM Technical Report Version 1.0; GEM Foundation: Pavia, Italy, 2013. [Google Scholar]
- Flora, A.; Iacovino, C.; Cardone, D.; Vona, M. Typological Inventory of Residential Reinforced Concrete Buildings for the City of Potenza; Lecture Notes in Computer Science: Cagliari, Italy, 2020; pp. 899–913. [Google Scholar]
- Masi, A.; Vona, M. Vulnerability assessment of gravity-load designed RC buildings: Evaluation of seismic capacity through non-linear dynamic analyses. Eng. Struct. 2012, 45, 257–269. [Google Scholar] [CrossRef]
- Collegio degli ingegneri e degli architetti di Milano. Prezzo Tipologie Edilizie. 2014; Tipografica del Genio Civile: Rome, Italy, 2014. (in Italian) [Google Scholar]
- Vona, M. A Review of Experimental Results about In Situ Concrete Strength. Adv. Mater. Res. 2013, 773, 278–282. [Google Scholar] [CrossRef]
- Masi, A.; Chiauzzi, L. An experimental study on the within-member variability of in situ concrete strength in RC building structures. Constr. Build. Mater. 2013, 47, 951–961. [Google Scholar] [CrossRef]
- Applied Technology Council. Commentary on the Guidelines for the Seismic Rehabilitation of Buildings; FEMA 274-NEHRP; Federal Emergency Management Agency: Washington, DC, USA, 1997. [Google Scholar]
- Verderame, G.M.; Ricci, P.; Esposito, M.; Manfredi, G. STIL v1.0–Software Per La Carat-Terizzazione Delle Proprietà Meccaniche Degli Acciai Da c.a. Tra il 1950 e il 2000; ReLUIS: Naples, Italy, 2012. [Google Scholar]
- Ibarra, L.F.; Medina, R.A.; Krawinkler, H. Hysteretic models that incorporate strength and stiffness deterioration. Earthq. Eng. Struct. Dyn. 2005, 34, 1489–1511. [Google Scholar] [CrossRef]
- Haselton, C.B.; Liel, A.B.; Lange, S.T.; Deierlein, G.G. Beam-Column Element Model Cal-Ibrated for Predicting Flexural Response Leading to Global Collapse of RC Frame Buildings; Pacific Earthquake Engineering Research Center: Berkeley, CA, USA, 2008. [Google Scholar]
- Braga, F.; Gigliotti, R.; Laterza, M.; D‘Amato, M.; Kunnath, S.F. Modified Steel Bar Model Incorporating Bond-Slip for Seismic Assessment of Concrete Structures. J. Struct. Eng. 2012, 138, 1342–1350. [Google Scholar] [CrossRef]
- Gesualdi, G.; Viggiani, L.R.S.; Cardone, D. Seismic performance of RC frame buildings accounting for the out-of-plane behavior of masonry infills. Bull. Earthq. Eng. 2020, 18, 1–39. [Google Scholar] [CrossRef]
- Aslani, H.; Miranda, E. Probabilistic Earthquake Loss Estimation and Loss Disaggregation in Buildings; Report No., 157; The John A. Blume Earthquake Engineering Center Department of Civil and Environmental Engineering Stanford University: Palo Alto, CA, USA, June 2005. [Google Scholar]
- Alath, S.; Kunnath, S.K. Modelling Inelastic Shear Deformations in RC Beam-Column Joints; American Society of Civil Engineers: Boulder, CO, USA, 1995. [Google Scholar]
- De Risi, M.T.; Ricci, P.; Verderame, G.M.; Manfredi, G. Experimental assessment of un-reinforced exterior beam-column joints with deformed bars. Eng. Struct. 2016, 112, 215–232. [Google Scholar] [CrossRef]
- Ricci, P.; Manfredi, V.; Noto, F.; Terrenzi, M.; De Risi, M.T.; Di Domenico, M.; Camata, G.; Franchin, P.; Masi, A.; Mollaioli, F.; et al. RINTC-e: Towards seismic risk assessment of existing residential reinforced concrete buildings in Italy. In Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, Greece, 24–26 June 2019. [Google Scholar] [CrossRef] [Green Version]
- Sassun, K.; Sullivan, T.J.; Morandi, P.; Cardone, D. Characterising the in-plane seismic performance of infill masonry. Bull. New Zealand Soc. Earthq. Eng. 2016, 49, 100–117. [Google Scholar] [CrossRef]
- Cardone, D.; Perrone, G.; Piesco, V. Developing collapse fragility curves for base-isolated buildings. Earthq. Eng. Struct. Dyn. 2019, 48, 78–102. [Google Scholar] [CrossRef] [Green Version]
- Richard, W.N. Seismic Evaluation and Retrofit of Concrete Buildings; Report No. SSC 96-01; Applied Technology Council (ATC): Redwood City, CA, USA, November 1996. [Google Scholar]
- Eurocode 8: Design of Structures for Earthquake Resistance–Part 1: General Rules, Seismic Actions and Rules for Buildings, German Version; EN 1998-1:2004; European Committee for Standardization: Brussels, Belgium, December 2010.
- In Bilancio di Previsione dello Stato per l’Anno Finanziario 2019 e Bilancio Pluriennale per il Triennio 2019–2021 (Legge di Bilancio 2019); Law 145/2018,.n.302 del; Gazzetta U_ciale della Repubblica Italiana: Roma, Italy, 2018. (In Italian)
- Recante Misure Urgenti in Materia di Salute, Sostegno al Lavoro e all’Economia, Nonche’ di Politiche Sociali Connesse all’Emergenza Epidemiologica da COVID-19; Law 77/2020, n.180 del; Gazzetta U_ciale della Repubblica Italiana: Roma, Italy, 2020. (In Italian)
Compartment | n° of Buildings | Masonry (Nr.(%)) | RC (Nr.(%)) | Pre-81 (%) | Post-81 (%) | Ns ≤ 3 (%) | Ns > 3 (%) |
---|---|---|---|---|---|---|---|
C1 | 429 | 327 (76%) | 102 (24%) | 90 | 10 | 49 | 51 |
C2 | 128 | 88 (69%) | 40 (31%) | 90 | 10 | 22 | 78 |
ID | Description |
---|---|
L (Low) | Bi-directional lateral resisting system Light masonry infills Seismic Resistant Design |
M (Medium) | Mono-directional resisting system Light masonry infills Gravity load design |
H (High) | Mono- directional resisting system Heavy masonry infills Gravity load design |
Macro Typology | Nr. of Stories | Staircase Typolgy | Vertical Irregularities | ID | ||||||
---|---|---|---|---|---|---|---|---|---|---|
L | M | H | Lr | Mr | Hr | k | s | PF | IF | |
x | x | x | x | L, Lr, k, PF | ||||||
x | x | x | x | L, Lr, k, IF | ||||||
x | x | x | x | L, Lr, s, PF | ||||||
x | x | x | x | x | L, Lr, s, IF | |||||
x | x | x | L, Mr, k, PF | |||||||
x | x | x | x | L, Mr, k, IF | ||||||
x | x | x | x | L, Mr, s, PF | ||||||
x | x | x | x | L, Mr, s, IF | ||||||
x | x | x | x | L, Hr, k, PF | ||||||
x | x | x | x | L, Hr, k, IF | ||||||
x | x | x | x | L, Hr, s, PF | ||||||
x | x | x | x | L, Hr, s, IF | ||||||
x | x | x | x | M, Lr, k, PF | ||||||
x | x | x | x | M, Lr, k, IF | ||||||
x | x | x | x | M, Lr, s, PF | ||||||
x | x | x | x | M, Lr, s, IF | ||||||
x | x | x | x | M, Mr, k, PF | ||||||
x | x | x | x | M, Mr, k, IF | ||||||
x | x | x | x | M, Mr, s, PF | ||||||
x | x | x | x | M, Mr, s, IF | ||||||
x | x | x | x | M, Hr, k, PF | ||||||
x | x | x | x | M, Hr, k, IF | ||||||
x | x | x | x | M, Hr, s, PF | ||||||
x | x | x | x | M, Hr, s, IF | ||||||
x | x | x | x | H, Lr, k, PF | ||||||
x | x | x | x | H, Lr, k, IF | ||||||
x | x | x | x | H, Lr, s, PF | ||||||
x | x | x | x | H, Lr, s, IF | ||||||
x | x | x | x | H, Mr, k, PF | ||||||
x | x | x | x | H, Mr, k, IF | ||||||
x | x | x | x | H, Mr, s, PF | ||||||
x | x | x | x | H, Mr, s, IF | ||||||
x | x | x | x | H, Hr, k, PF | ||||||
x | x | x | x | H, Hr, k, IF | ||||||
x | x | x | x | H, Hr, s, PF | ||||||
x | x | x | x | H, Hr, s, IF |
Building Typology | Number of Elements | RepC (€) |
---|---|---|
L, Hr, s, IF | 7 | 2,858,000 |
L, Mr, s, IF | 5 | 2,135,000 |
M, Hr, k, IF | 25 | 2,858,000 |
M, Mr, k, IF | 22 | 2,135,000 |
M, Lr, k, IF | 6 | 1,077,640 |
H, Hr, k, IF | 14 | 2,858,000 |
H, Mr, k, PF | 12 | 2,135,000 |
H, Mr, k, IF | 40 | 2,135,000 |
Total | 131 | - |
Archetype | Nr. of Frames | Column Section (mm) | Beam Section (mm) | Long. Reinforcements Ratio | Transv. Reinforcements Ratio | Reinforcement Type | Masonry Infills |
---|---|---|---|---|---|---|---|
L, Hr, s, IF | E (X): 2 I (X): 2 E (Y): 2 I (Y): 6 | E: 300 × 300–300 × 550 I: 350 × 300–650 × 300 SC: 300 × 650 Cr: 300 × 300 | E (X): 300 × 500 I (X): 300 × 550 E (Y): 300 × 500 I (Y): 300 × 400 KB: 300 × 500 | B: 0.54–1.07% C: 0.59–1.19% | B: Ø8/150 mm C: Ø8/150 mm SC: Ø8/150 mm | deformed (FeB44k) | 100 + 100 mm |
L, Mr, s, IF | E (X): 2 I (X): 2 E (Y): 2 I (Y): 6 | E: 300 × 300–300 × 450 I: 350 × 300–550 × 300 SC: 300 × 550 Cr: 300 × 300 | E (): 300 × 500 I (X): 300 × 550 E (Y): 300 × 500 I (Y): 300 × 400 KB: 300 × 500 | B: 0.54–0.94% C: 0.59–1.10% | B: Ø8/150 mm C: Ø8/150 mm SC: Ø8/150 mm | deformed (FeB44k) | 100 + 100 mm |
M, Hr, k, IF | E (X): 2 I (X): 2 E (Y): 2 I (Y): 0 | E: 300 ×3 00–300 × 550 I: 350 × 300–650 × 300 SC: 300 × 650 Cr: 300 × 300 | E (X): 300 × 500 I (X): 300 × 550 E (Y):300 × 500 KB: 300 × 500 | B: 0.31–0.72% C: 0.58–0.75% | B: Ø6/200 mm C: Ø6/200 mm SC: Ø6/200 mm | smooth (Aq50) | 100 + 100 mm |
M, Mr, k, IF | E (X): 2 I (dir X): 2 E (Y): 2 I (Y): 0 | E: 300 × 300–300 × 450 I: 350 × 300–550 × 300 SC: 300 × 550 Cr: 300 × 300 | E (X):300 × 500 I (X):300 × 550 E (Y):300 × 500 KB: 300 × 500 | B: 0.31–0.62% C: 0.58–0.70% | B: Ø6/200 mm C: Ø6/200 mm SC: Ø6/200 mm | smooth (Aq50) | 100 + 100 mm |
M, Lr, k, IF | E (X): 2 I (X): 2 E (Y): 2 I (Y): 0 | E: 300 × 300–300 × 350 I: 350 × 300–450 × 300 SC: 300 × 550 Cr: 300 × 300 | E (X): 300 × 500 I (X): 300 × 550 E (Y): 300 × 500 KB: 300 × 500 | B: 0.31–0.41% C: 0.58–0.68% | B: Ø6/200 mm C: Ø6/200 mm SC: Ø6/200 mm | smooth (Aq50) | 100 + 100 mm |
H, Hr, k, IF | E (X): 2 I (X): 2 E (Y): 2 I (Y): 0 | E: 300 × 300–300 × 550 I: 350 × 300–650 × 300 SC: 300 × 550 Cr: 300 ×3 00 | E (X): 300 × 500 I (X): 300 × 550 E (Y): 300 × 500 KB: 300 × 500 | B: 0.31–0.72% C: 0.58–0.74% | B: Ø6/250 mm C: Ø6/250 mm SC: Ø6/250 mm | smooth (Aq42) | 130 + 100 mm |
H, Mr, k, PF | E (X): 2 I (X): 2 E (Y): 2 I (Y): 0 | E: 300 × 300–300 × 450 I: 350 × 300–550 × 300 SC: 300 × 500 Cr: 300 × 300 | E (X): 300 × 500 I (X): 300 × 550 E (Y): 300 × 500 KB: 300 × 500 | B: 0.30–0.62% C: 0.58–0.68% | B: Ø6/250 mm C: Ø6/250 mm SC: Ø6/250 mm | smooth (Aq42) | 130 + 100 mm |
H, Mr, k, IF | E (X): 2 I (X): 2 E (Y): 2 I (Y): 0 | E: 300 × 300 I: 300 × 300 SC: 300 × 300 Cr: 300 × 300 | E (X): 250 × 450 I (X): 250 × 450 E (Y): 250 × 450 KB: 250 × 550 | B: 0.30–0.60% C: 0.50–0.66% | B: Ø6/250 mm C: Ø6/250 mm SC: Ø6/250 mm | smooth (Aq42) | 130 + 100 mm |
Statistical Values | Construction Period | |||
---|---|---|---|---|
Pre 1961 | 1961–71 | 1972–81 | Post 1981 | |
Number of specimens | 28 | 132 | 264 | 360 |
Mean value (N/mm2) | 16.32 | 19.12 | 22.21 | 24.73 |
Standard Deviation | 4.34 | 10.68 | 11.32 | 10.59 |
C.V. | 0.25 | 0.12 | 0.08 | 0.07 |
Statistical Parameter | Construction Period | |||
---|---|---|---|---|
Pre 1961 | 1961–71 | 1972–81 | Post 1981 | |
Mean Value (N/mm2) | 321.2 | 369.8 | 433.1 | 490.3 |
Standard Deviation | 26.8 | 33.6 | 32.5 | 68.6 |
Brick Type | Mortar | Masonry Panel | ||
---|---|---|---|---|
m0 (MPa) | m0 (MPa) | Em (MPa) | ||
Solid bricks thickness 130 mm | Cement + sand | 12.00 | 0.84 | 6000 |
Hollow clay bricks thickness 100 mm | Cement + sand | 1.20 | 0.20 | 1050 |
Story | Destination of Use | Unit RepC €865/m2 | |
---|---|---|---|
IDRin | IDRfin | ||
First Story | Pilotis-type | 0.05% | 1.50% |
First Story | Partially Infilled | 0.05% | 1.00% |
First Story | Fully Infilled | 0.05% | 0.8% |
Typical Story | Residential | 0.05% | 0.60% |
Top Story | Residential | 0.05% | 0.40% |
Building Typology | T* (s) | Sa,ZL (T*) (g) | Sa,OP (T*) (g) | Sa,DC (T*) (g) | µZL (%RepC) | µOP (%RepC) | µC (%RepC) |
---|---|---|---|---|---|---|---|
L, Hr, s, IF | 0.95 | 0.046 | 0.104 | 0.291 | 3.11 | 17.91 | 72.76 |
L, Mr, s, IF | 0.73 | 0.056 | 0.129 | 0.375 | 2.30 | 16.84 | 67.01 |
M, Hr, k, IF | 1.02 | 0.041 | 0.090 | 0.227 | 2.75 | 16.75 | 67.69 |
M, Mr, k, IF | 0.77 | 0.05 | 0.107 | 0.286 | 2.65 | 15.52 | 64.36 |
M, Lr, k, IF | 0.42 | 0.066 | 0.178 | 0.407 | 2.20 | 17.73 | 70.17 |
H, Hr, k, IF | 0.78 | 0.063 | 0.135 | 0.317 | 2.15 | 15.30 | 50.60 |
H, Mr, k, PF | 0.99 | 0.015 | 0.036 | 0.114 | 0.30 | 1.85 | 7.19 |
H, Mr, k, IF | 0.61 | 0.068 | 0.119 | 0.235 | 1.63 | 10.86 | 21.94 |
Building Typology | EALR (%RepC) | EALR,retrofit (%RepC) | EALD,LB (%RepC) | EALD,UB (%RepC) | EALT,LB (%RepC) | EALT,LB (%RepC) |
---|---|---|---|---|---|---|
L, Hr, s, IF | 1.76 | 1.00 | 0.14 | 0.22 | 1.9 | 1.98 |
L, Mr, s, IF | 1.68 | 1.00 | 0.13 | 0.21 | 1.81 | 1.89 |
M, Hr, k, IF | 1.96 | 1.00 | 0.17 | 0.26 | 2.13 | 2.22 |
M, Mr, k, IF | 2.03 | 1.00 | 0.16 | 0.25 | 2.19 | 2.28 |
M, Lr, k, IF | 2.75 | 1.50 | 0.19 | 0.31 | 2.94 | 3.06 |
H, Hr, k, IF | 1.3 | 0.50 | 0.17 | 0.26 | 1.47 | 1.56 |
H, Mr, k, PF | 0.62 | 0.50 | 0.08 | 0.12 | 0.7 | 0.74 |
H, Mr, k, IF | 1.27 | 0.50 | 0.16 | 0.25 | 1.43 | 1.52 |
Building Typology | EALT,LB (€) | EALT,UB (€) | EALR,as-built (€) | EALR,retrofitted (€) | EALR (€) |
---|---|---|---|---|---|
L, Hr, s, IF | 38,011,400 | 39,611,880 | 35,210,560 | 20,006,000 | 15,204,560 |
L, Mr, s, IF | 19,321,750 | 20,175,750 | 17,934,000 | 10,675,000 | 7,259,000 |
M, Hr, k, IF | 152,188,500 | 158,619,000 | 140,042,000 | 71,450,000 | 68,592,000 |
M, Mr, k, IF | 102,864,300 | 107,091,600 | 95,349,100 | 46,970,000 | 48,379,100 |
M, Lr, k, IF | 19,009,573 | 19,785,474 | 17,781,063 | 9,698,761 | 8,082,301 |
H, Hr, k, IF | 58,817,640 | 62,418,720 | 52,015,600 | 20,006,000 | 32,009,600 |
H, Mr, k, PF | 17,934,000 | 18,958,800 | 15,884,400 | 12,810,000 | 3,074,400 |
H, Mr, k, IF | 122,122,000 | 129,808,000 | 108,458,000 | 42,700,000 | 65,758,000 |
AEAL | 530,269,163 | 556,469,224 | 482,674,723 | 234,315,761 | - |
AEAL | - | - | - | - | 248,358,961 |
Expected Annual Loss (EALR) | Class |
---|---|
≤0.50% | A+ |
0.50%–1.0% | A |
1.0%–1.5% | B |
1.5%–2.5% | C |
2.5%–3.5% | D |
3.5%–4.5% | E |
5.5%–7.5% | F |
>7.5% | G |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flora, A.; Cardone, D.; Vona, M.; Perrone, G. A Simplified Approach for the Seismic Loss Assessment of RC Buildings at Urban Scale: The Case Study of Potenza (Italy). Buildings 2021, 11, 142. https://doi.org/10.3390/buildings11040142
Flora A, Cardone D, Vona M, Perrone G. A Simplified Approach for the Seismic Loss Assessment of RC Buildings at Urban Scale: The Case Study of Potenza (Italy). Buildings. 2021; 11(4):142. https://doi.org/10.3390/buildings11040142
Chicago/Turabian StyleFlora, Amedeo, Donatello Cardone, Marco Vona, and Giuseppe Perrone. 2021. "A Simplified Approach for the Seismic Loss Assessment of RC Buildings at Urban Scale: The Case Study of Potenza (Italy)" Buildings 11, no. 4: 142. https://doi.org/10.3390/buildings11040142
APA StyleFlora, A., Cardone, D., Vona, M., & Perrone, G. (2021). A Simplified Approach for the Seismic Loss Assessment of RC Buildings at Urban Scale: The Case Study of Potenza (Italy). Buildings, 11(4), 142. https://doi.org/10.3390/buildings11040142