The Effect of Red Mud Content on the Compressive Strength of Geopolymers under Different Curing Systems
Abstract
:1. Introduction
2. Materiaals and Methods
2.1. Materials
2.2. Geopolymer Synthesis
2.3. Characterization Methods
2.3.1. Compressive Strength Test
2.3.2. Structural Characterization of the Geopolymers
3. Results and Discussion
3.1. Compressive Strength
3.2. X-ray Diffraction (XRD) Analysis
3.3. Scanning Electron Microscopy (SEM) Analysis
4. Conclusions
- The curing system affects the synthesis and mechanical properties of the geopolymers tremendously. Curing at room temperature and 80 °C, the higher the proportion of red mud, the lower the strength of the geopolymer. Yet, curing at high pressure, the higher red mud content improves the strength. A 50% red mud content is the optimal value at which the geopolymers have their highest compressive strength.
- The curing method affects the first step of the polymerization of the red mud-based polymer: dissolution of aluminosilicate in an alkali solution. Compared with curing under atmospheric pressure, autoclave solidification can make it possible for the silica in the red mud to dissolve in an alkaline solution, and a more silica-rich gel phase is produced. Furthermore, the alkali in the red mud accelerates the dissolution of the aluminosilicate under high pressure.
- The results of the XRD and SEM analyses show that more amorphous silicate gel products and zeolite structures are generated at a high pressure. This result illustrates that the geopolymer reaction is more sufficient. With the decrease in porosity and the densification of the structure, the geopolymers show good mechanical properties.
Author Contributions
Funding
Conflicts of Interest
References
- Zeng, H.; Lyu, F.; Sun, W.; Zhang, H.; Wang, L.; Wang, Y. Progress on the Industrial Applications of Red Mud with a Focus on China. Minerals 2020, 10, 773. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Li, S.; Lin, C.; Gao, Y.; Liu, C. Feasibility of preparing red mud-based cementitious materials: Synergistic utilization of industrial solid waste, waste heat, and tail gas. J. Clean. Prod. 2020, 285, 124896. [Google Scholar] [CrossRef]
- Wang, P.; Liu, D.-Y. Physical and Chemical Properties of Sintering Red Mud and Bayer Red Mud and the Implications for Beneficial Utilization. Materials 2012, 5, 1800–1810. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Xiao, R.; Zhang, M.; Hu, W.; Bai, Y.; Huang, B. A laboratory investigation of steel to fly ash-based geopolymer paste bonding behavior after exposure to elevated temperatures. Constr. Build. Mater. 2020, 254, 119267. [Google Scholar] [CrossRef]
- Joseph, C.G.; Taufiq-Yap, Y.H.; Krishnan, V.; Puma, G.L. Application of modified red mud in environmentally-benign applications: A review paper. Environ. Eng. Res. 2019, 25, 795–806. [Google Scholar] [CrossRef]
- Sutar, H.; Mishra, S.C. Progress of Red Mud Utilization: An Overview. Am. Chem. Sci. J. 2014, 4, 255–279. [Google Scholar] [CrossRef]
- Wang, S.; Jin, H.; Deng, Y.; Xiao, Y. Comprehensive utilization status of red mud in China: A critical review. J. Clean. Prod. 2020, 289, 125136. [Google Scholar] [CrossRef]
- Xu, X.; Song, J.; Li, Y.; Wu, J.; Liu, X.; Zhang, C. The microstructure and properties of ceramic tiles from solid wastes of Bayer red muds. Constr. Build. Mater. 2019, 212, 266–274. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Chen, P.; Wei, H.J.; Zhang, J.F.; Liu, R.J. Preparation of Belite sulphate aluminum cement with fly ash and Bayer process red mud. J. Guilin Univ. Technol. 2015, 35, 581–584. [Google Scholar]
- Qi, J.Z.; Yang, J.K.; Wang, M.; Xiao, B.; Hou, J. Experimental research on red mud as road base material. J. Highw. Transp. Res. Dev. 2005, 06, 30–33. [Google Scholar]
- Yang, J.; Zhang, D.; Hou, J.; He, B.; Xiao, B. Preparation of glass-ceramics from red mud in the aluminium industries. Ceram. Int. 2008, 34, 125–130. [Google Scholar] [CrossRef]
- Sudhir, M.R.; Beulah, M.; Sasha Rai, P.; Gayathri, G. A microstructure exploration and compressive strength determination of red mud bricks prepared using industrial wastes. Mater. Today Proc. 2020, 46, 163–169. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, N.; Chen, H.; Yuan, L.I. Preparation and properties of sintering red mud unburned road brick using orthogonal experiments. Constr. Build. Mater. 2020, 238, 117739. [Google Scholar] [CrossRef]
- Arroyo, F.; Luna-Galiano, Y.; Leiva, C.; Vilches, L.F.; Fernández-Pereira, C. Environmental risks and mechanical evaluation of recycling red mud in bricks. Environ. Res. 2020, 186, 109537. [Google Scholar] [CrossRef]
- Liu, W.C.; Yan, K.; He, X.Z.; Zhang, C.P.; Wu, G.L. Research progress on the preparation of geopolymer inorganic polymer materials from Bayer process red mud. Bull. Chin. Ceram. Soc. 2016, 35, 453–457. [Google Scholar]
- Khairul, M.A.; Zanganeh, J.; Moghtaderi, B. The composition, recycling and utilisation of Bayer red mud. Resour. Conserv. Recycl. 2019, 141, 483–498. [Google Scholar] [CrossRef]
- He, J.; Jie, Y.; Zhang, J.; Yu, Y.; Zhang, G. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 2013, 37, 108–118. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Ceramic-Like Inorganic Polymers. J. Ceram. Sci. 2017, 8, 335–350. [Google Scholar]
- Wan, Q.; Rao, F.; Song, S.; García, R.E.; Estrella, R.M.; Patino, C.L.; Zhang, Y. Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem. Concr. Compos. 2017, 79, 45–52. [Google Scholar] [CrossRef]
- Davidovits, J. GEOPOLYMERS Inorganic polymerie new materials. J. Ofthamal Anal. 1991, 37, 1633–1656. [Google Scholar]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S. Geopolymer technology: The current state of the art. J. Mater. Sci. 2006, 42, 2917–2933. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Gong, K.C. Geopolymer. J. Mater. Sci. Eng. 2003, 03, 430–436. [Google Scholar]
- Provis, J.L.; Bernal, S.A. Geopolymers and Related Alkali-Activated Materials. Annu. Rev. Mater. Res. 2014, 44, 299–327. [Google Scholar] [CrossRef]
- Van Deventer, J.S.J.; Provis, J.L.; Duxson, P. Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 2012, 29, 89–104. [Google Scholar] [CrossRef]
- Liang, X.; Ji, Y. Preparation sequences and pretreatment optimization of alkali-activated red mud and blast furnace slag-based materials. J. Mater. Cycles Waste Manag. 2020, 23, 259–271. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Yan, F. Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids Surf. A Physicochem. Eng. Asp. 2005, 268, 1–6. [Google Scholar] [CrossRef]
- Nie, Q.; Hu, W.; Ai, T.; Huang, B.; Shu, X.; He, Q. Strength properties of geopolymers derived from original and desulfurized red mud cured at ambient temperature. Constr. Build. Mater. 2016, 125, 905–911. [Google Scholar]
- Hanayneh, B. Influence of Curing Conditions on the Properties of Geopolymers from Untreated Kaolinite. J. Am. Sci. 2014, 10, 42–49. [Google Scholar]
- Zheng, L.; Wang, W.; Shi, Y. The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 2010, 79, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Hajimohammadi, A.; Provis, J.L.; van Deventer, J.S.J. Effect of Alumina Release Rate on the Mechanism of Geopolymer Gel Formation. Chem. Mater. 2010, 22, 5199–5208. [Google Scholar] [CrossRef]
- Perera, D.S.; Uchida, O.; Vance, E.R.; Finnie, K.S. Influence of curing schedule on the integrity of geopolymers. J. Mater. Sci. 2006, 42, 3099–3106. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr. Build. Mater. 2013, 38, 865–871. [Google Scholar] [CrossRef]
- Kani, E.N.; Allahverdi, A. Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. J Mater Sci. 2009, 44, 3088–3097. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, M.; Zhang, G.; Sietins, J.M.; Granados-Focil, S.; Pepi, M.S.; Xu, Y.; Tao, M. Reaction kinetics of red mud-fly ash based geopolymers: Effects of curing temperature on chemical bonding, porosity, and mechanical strength. Cem. Concr. Compos. 2018, 93, 175–185. [Google Scholar] [CrossRef]
- Kaya, K.; Soyer-Uzun, S. Evolution of structural characteristics and compressive strength in red mud–metakaolin based geopolymer systems. Ceram. Int. 2016, 42, 7406–7413. [Google Scholar] [CrossRef]
- Hoang, M.D.; Do, Q.M.; Le, V.Q. Effect of curing regime on properties of red mud based alkali activated materials. Constr. Build. Mater. 2020, 259, 119779. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Lu, Y.; Bai, X. Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer. Constr. Build. Mater. 2020, 263, 120653. [Google Scholar] [CrossRef]
- Dimas, D.D.; Giannopoulou, I.P.; Panias, D. Utilization of Alumina Red Mud for Synthesis of Inorganic Polymeric Materials. Miner. Process. Extr. Metall. Rev. 2009, 30, 211–239. [Google Scholar] [CrossRef]
- Criado, M.; Fernández-Jiménez, A.; Palomo, A. Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description. Fuel 2010, 89, 3185–3192. [Google Scholar] [CrossRef]
- Hu, W.; Nie, Q.; Huang, B.; Shu, X.; He, Q. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. J. Clean. Prod. 2018, 186, 799–806. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
Chemical Constituent | SiO2 | Al2O3 | CaO | Fe2O3 | Na2O | K2O | TiO2 | SO3 |
---|---|---|---|---|---|---|---|---|
RM | 16.2 | 22.9 | 1.8 | 34.5 | 8.7 | − | 8.4 | − |
MK | 51.9 | 45.45 | 0.142 | 0.93 | 0.05 | 0.445 | − | − |
FA | 43 | 30.8 | 3.05 | 2.23 | 0.08 | 0.7 | − | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, T.; Zhong, D.; Zhang, Y.; Zong, J.; Yan, X.; Niu, Y. The Effect of Red Mud Content on the Compressive Strength of Geopolymers under Different Curing Systems. Buildings 2021, 11, 298. https://doi.org/10.3390/buildings11070298
Ai T, Zhong D, Zhang Y, Zong J, Yan X, Niu Y. The Effect of Red Mud Content on the Compressive Strength of Geopolymers under Different Curing Systems. Buildings. 2021; 11(7):298. https://doi.org/10.3390/buildings11070298
Chicago/Turabian StyleAi, Tao, Danni Zhong, Yao Zhang, Jingshan Zong, Xin Yan, and Yanhui Niu. 2021. "The Effect of Red Mud Content on the Compressive Strength of Geopolymers under Different Curing Systems" Buildings 11, no. 7: 298. https://doi.org/10.3390/buildings11070298
APA StyleAi, T., Zhong, D., Zhang, Y., Zong, J., Yan, X., & Niu, Y. (2021). The Effect of Red Mud Content on the Compressive Strength of Geopolymers under Different Curing Systems. Buildings, 11(7), 298. https://doi.org/10.3390/buildings11070298