Evaluation for Low Temperature Performance of SBS Modified Asphalt by Dynamic Shear Rheometer Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparations and Test Methodologies
2.2.1. Bending Beam Rheometer (BBR) Test
2.2.2. Dynamic Shear Rheometer Temperature–Frequency Sweep Tests
2.2.3. Method of Determining Complex Modulus and Phase Angle Master Curves
Time–Temperature Equivalence Principle
Complex Modulus Master Curve Model
2.2.4. Derivation of the Formula for the Glass Transition Temperature
3. Results and Discussion
3.1. Analysis of BBR Test Results
3.2. Analysis of Tg Calculation Results of SBS Modified Asphalt Based on Master Curve Test
3.3. Validation of Glass Transition Temperature Results
3.3.1. The Glass Transition Temperatures of Different Asphalt Binder Sources
3.3.2. The Glass Transition Temperature of Asphalt with Different Aging Degrees
4. Conclusions
- (1)
- The DSR device could be used to characterize the rheological properties of asphalt binders at different temperatures, which would be a potential for low temperature performance evaluation.
- (2)
- A new method for evaluating the low temperature properties of asphalt was proposed. The glass transition temperature of base asphalt and SBS modified asphalt was determined by the viscoelastic parameters of the master curve and the WLF equation coefficients. By establishing a relationship with the critical temperature of asphalt, the effectiveness of the method developed in this paper was verified.
- (3)
- The advantage of this method was the ability to use DSR test for the rapid evaluation of the low temperature performance of asphalt, which could save testing materials and time.
- (4)
- The glass transition temperature of SBS modified asphalt was closely related to aging degree, asphalt source and SBS content. This was mainly due to the different sensitivity of asphalts from different sources, to aging.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, J.; Cao, P.; Liu, Z.; Wang, Z.; Xia, S. Developing of a SBS polymer modified bitumen to avoid low temperature cracks in the asphalt facing of a reservoir in a harsh climate region. Constr. Build. Mater. 2017, 150, 105–113. [Google Scholar] [CrossRef]
- Kök, B.V.; Yilmaz, M.; Geçkil, A. Evaluation of Low-Temperature and Elastic Properties of Crumb Rubber–and SBS-Modified Bitumen and Mixtures. J. Mater. Civ. Eng. 2013, 25, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Xu, L. Application of Dynamic Shear and Bending Beam Rheometer Evaluation of Asphalt Performance. J. Petrochem. Univ. 2003, 16, 27–30. [Google Scholar]
- Wang, T.; Xiao, F.; Amirkhanian, S.; Huang, W.; Zheng, M. A review on low temperature performances of rubberized asphalt materials. Constr. Build. Mater. 2017, 145, 483–505. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, F.; Zhu, X.; Huang, B.; Wang, J.; Amirkhanian, S. Energy consumption and environmental impact of rubberized asphalt pavement. J. Clean. Prod. 2018, 180, 139–158. [Google Scholar] [CrossRef]
- Riccardi, C.; Cannone Falchetto, A.; Wang, D.; Wistuba, M.P. Effect of cooling medium on low-temperature properties of asphalt binder. Road Mater. Pavement Des. 2017, 18 (Suppl. 4), 234–255. [Google Scholar] [CrossRef]
- Lu, X.; Uhlback, P.; Soenen, H. Rheological testing of bitumen at low temperatures with 4-mm DSR. In Proceedings of the 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, Ancona, Italy, 7–9 October 2015; Springer: Dordrecht, The Netherlands, 2016; pp. 643–653. [Google Scholar]
- Büchner, J.; Wistuba, M.P.; Remmler, T.; Wang, D. On low temperature binder testing using DSR 4 mm geometry. Mater. Struct. 2019, 52, 1–11. [Google Scholar] [CrossRef]
- Filonzi, A.; Lee, S.K.; Ferreira, W.; Hajj, R.; Bhasin, A. A micro-extraction method for use with 4 mm plate geometry in the Dynamic Shear Rheometer to evaluate asphalt binder rheology. Constr. Build. Mater. 2020, 252, 119024. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, T.; Hou, X.; Yuan, J.; Jiang, C.; Luo, Y. Waterproof and Antiscour Properties of Asphalt-Based Composite Seals for Airfield Base Layer. J. Mater. Civ. Eng. 2020, 32, 04019328. [Google Scholar] [CrossRef]
- Soliman, H.; Shalaby, A.; Kavanagh, L. Performance evaluation of joint and crack sealants in cold climates using DSR and BBR tests. J. Mater. Civ. Eng. 2008, 20, 470–477. [Google Scholar] [CrossRef]
- Kai, C.; Wenyuan, X.; Dan, C.; Huimin, F. High-and low-temperature properties and thermal stability of silica fume/SBS composite-modified asphalt mortar. Adv. Mater. Sci. Eng. 2018, 2018, 1317436. [Google Scholar] [CrossRef] [Green Version]
- Laukkanen, O.V.; Soenen, H.; Winter, H.H.; Seppälä, J. Low-temperature rheological and morphological characterization of SBS modified bitumen. Constr. Build. Mater. 2018, 179, 348–359. [Google Scholar] [CrossRef]
- Hou, X.; Xiao, F.; Guo, R.; Xiang, Q.; Wang, T.; Wang, J. Application of spectrophotometry on detecting asphalt content of emulsified asphalt. J. Clean. Prod. 2019, 215, 626–633. [Google Scholar] [CrossRef]
- Khong, T.D.; Malhotra, S.L.; Blanchard, L.P. A study of the glass transition temperature of asphalts and their viscosity. Rheol. Acta 1978, 17, 654–662. [Google Scholar] [CrossRef]
- Kriz, P.; Stastna, J.; Zanzotto, L. Glass transition and phase stability in asphalt binders. Road Mater. Pavement Des. 2008, 9 (Suppl. 1), 37–65. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Hou, X.; Xiao, F. Effects of SARA fractions on low temperature properties of asphalt binders. Road Mater. Pavement Des. 2021, 22, 539–556. [Google Scholar] [CrossRef]
- Masson, J.F.; Polomark, G.M. Bitumen microstructure by modulated differential scanning calorimetry. Thermochim. Acta 2001, 374, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Hirose, H. Glass transition phenomena and rheological properties of petroleum asphalt. J. Physical Soc. Jpn. 1960, 15, 1885–1894. [Google Scholar] [CrossRef]
- Ghavibazoo, A.; Abdelrahman, M. Effect of crumb rubber dissolution on low-temperature performance and aging of asphalt–rubber binder. Transp. Res. Rec. 2014, 2445, 47–55. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Wang, W.; Chen, J. Using the viscoelastic parameters to estimate the glass transition temperature of asphalt binders. Constr. and Build. Mater. 2017, 153, 908–917. [Google Scholar] [CrossRef]
- Zhiqiang, C.; Polaczyk Pawel Andrzej, Z.D. A method for determining impact locking point of asphalt mixtures based on dynamic response. J. Cent. South. Univ. (Sci. Technol.) 2021, 52, 2232–2245. [Google Scholar]
- Kriz, P.; Stastna, J.; Zanzotto, L. Physical aging in semi-crystalline asphalt binders. Asph. Paving Technol. Proc. 2008, 77, 795. [Google Scholar]
- Sun, Y.; Huang, B.; Chen, J.; Jia, X.; Ding, Y. Characterizing rheological behavior of asphalt binder over a complete range of pavement service loading frequency and temperature. Constr. Build. Mater. 2016, 123, 661–672. [Google Scholar] [CrossRef]
- Liu, S.; Cao, W.; Shang, S.; Qi, H.; Fang, J. Analysis and application of relationships between low-temperature rheological performance parameters of asphalt binders. Constr. Build. Mater. 2010, 24, 471–478. [Google Scholar] [CrossRef]
- Cheng, Z.; Jia, X.; Jiang, H.; Hu, W.; Huang, B. Quantification of impact compaction locking point for asphalt mixture. Constr. Build. Mater. 2021, 302, 124410. [Google Scholar] [CrossRef]
- Asgharzadeh, S.M.; Tabatabaee, N.; Naderi, K.; Partl, M. An empirical model for modified bituminous binder master curves. Mater. Struct. 2013, 46, 1459–1471. [Google Scholar] [CrossRef]
- Pellinen, T.K.; Witczak, M.W.; Marasteanu, M.; Chehab, G.; Alavi, S.; Dongre, R. Stress dependent master curve construction for dynamic (complex) modulus. Asphalt paving technology: Association of asphalt paving technologists-proceedings of the technical sessions. Assoc. Asph. Paving Technol. 2002, 71, 281–309. [Google Scholar]
- Huang, Y.; Liu, Z.H.; Li, S. Glass transition temperature calculation and low-temperature property analysis of asphalt. Mater. Rep. 2016, 30, 141–149. [Google Scholar]
Physical Properties | Binder A70 | Binder B70 | Binder C90 | Standard | Test Method |
---|---|---|---|---|---|
Penetration (25 °C, 5 s, 100 g) (0.1 mm) | 72.3 | 73.2 | 95.2 | 60–80 | T0604 |
Softening point (R&B)/°C | 47.8 | 48.3 | 47.4 | ≥46 | T0606 |
Viscosity (60 °C)/Pa·s | 187 | 194 | 184 | ≥180 | T0620 |
Ductility (10 °C, 5 cm/min)/cm | 39 | 34 | 45 | ≥20 | T0605 |
Material Types | Temperature/°C | Frequency/Hz | Geometry/mm |
---|---|---|---|
Base Binder (unaged, RTFO and PAV) | 0–80 @10 | 0.1–25 | φ8 mm @1 mm (0–40 °C) φ25 mm @1 mm (50–80 °C) |
SBS modified binder (OB, RTFO and PAV) | 0–80 @10 | 0.1–25 | φ8 mm @2 mm (0–40 °C) φ25 mm @2 mm (50–80 °C) |
Minimum Temperature | Stiffness | m-Value | Low Temperature Determination |
---|---|---|---|
Control-A70 | −11.4 | −9.5 | −19.5 = −9.5 − 10 |
4.5SBS-A70 | −15.6 | −10.2 | −20.2 = −10.2 − 10 |
5.0SBS-A70 | −18.4 | −11.3 | −21.3 = −11.3 − 10 |
5.5SBS-A70 | −22.0 | −12.2 | −22.2 = −12.2 − 10 |
Control-A70 | −12.1 | −11.1 | −21.1 = −11.1 − 10 |
4.5SBS-B70 | −13.1 | −11.4 | −21.4 = −11.4 − 10 |
5.0SBS-B70 | −18.2 | −11.6 | −21.6 = −11.6 − 10 |
5.5SBS-B70 | −21.8 | −13.3 | −23.3 = −13.3 − 10 |
Control-C90 | −14.9 | −12.7 | −22.7 = −12.7 − 10 |
4.5SBS-C90 | −17.9 | −13.2 | −23.2 = −13.2 − 10 |
5.0SBS-C90 | −1.2 | −15.1 | −25.1 = −15.1 − 10 |
5.5SBS-C90 | 27.1 | −21.7 | −31.7 = −21.7 − 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wei, X.; Zhang, D.; Shi, H.; Cheng, Z. Evaluation for Low Temperature Performance of SBS Modified Asphalt by Dynamic Shear Rheometer Method. Buildings 2021, 11, 408. https://doi.org/10.3390/buildings11090408
Wang T, Wei X, Zhang D, Shi H, Cheng Z. Evaluation for Low Temperature Performance of SBS Modified Asphalt by Dynamic Shear Rheometer Method. Buildings. 2021; 11(9):408. https://doi.org/10.3390/buildings11090408
Chicago/Turabian StyleWang, Tao, Xuelei Wei, De Zhang, Hai Shi, and Zhiqiang Cheng. 2021. "Evaluation for Low Temperature Performance of SBS Modified Asphalt by Dynamic Shear Rheometer Method" Buildings 11, no. 9: 408. https://doi.org/10.3390/buildings11090408
APA StyleWang, T., Wei, X., Zhang, D., Shi, H., & Cheng, Z. (2021). Evaluation for Low Temperature Performance of SBS Modified Asphalt by Dynamic Shear Rheometer Method. Buildings, 11(9), 408. https://doi.org/10.3390/buildings11090408