Novel Technologies to Enhance Energy Performance and Indoor Environmental Quality of Buildings
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lampert, C.M. Chromogenic smart materials. Mater. Today 2004, 7, 28–35. [Google Scholar] [CrossRef]
- Cannavale, A. Chromogenic Technologies for Energy Saving. Clean Technol. 2020, 2, 29. [Google Scholar] [CrossRef]
- Granqvist, C.G. Oxide-based chromogenic coatings and devices for energy efficient fenestration: Brief survey and update on thermochromics and electrochromics. J. Vac. Sci. Technol. B 2014, 32, 060801. [Google Scholar] [CrossRef]
- Hörantner, M.T.; Nayak, P.K.; Mukhopadhyay, S.; Wojciechowski, K.; Beck, C.; McMeekin, D.; Kamino, B.; Eperon, G.E.; Snaith, H.J. Shunt-Blocking Layers for Semitransparent Perovskite Solar Cells. Adv. Mater. Interfaces 2016, 3, 1500837. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Peng, Y.; Hou, Q.; Spiccia, L.; Bach, U.; Jasieniak, J.J.; Cheng, Y.B. Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy 2015, 13, 249–257. [Google Scholar] [CrossRef]
- Chen, C.C.; Dou, L.; Zhu, R.; Chung, C.H.; Song, T.B.; Zheng, Y.B.; Hawks, S.; Li, G.; Weiss, P.S.; Yang, Y. Visibly transparent polymer solar cells produced by solution processing. ACS Nano 2012, 6, 7185–7190. [Google Scholar] [CrossRef] [PubMed]
- Cannavale, A.; Martellotta, F.; Fiorito, F.; Ayr, U. The challenge for building integration of highly transparent photovoltaics and photoelectrochromic devices. Energies 2020, 13, 1929. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U. The development of a monolithic aerogel glazed window for an energy retrofitting project. Appl. Energy 2015, 154, 603–615. [Google Scholar] [CrossRef]
- Jelle, B.P. Traditional, state-of-the-art and future thermal building insulation materials and solutions—Properties, requirements and possibilities. Energy Build. 2011, 43, 2549–2563. [Google Scholar] [CrossRef] [Green Version]
- Baetens, R.; Petter, B.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build. 2012, 42, 1361–1368. [Google Scholar] [CrossRef] [Green Version]
- De Matteis, V.; Cannavale, A.; Martellotta, F.; Rinaldi, R.; Calcagnile, P.; Ferrari, F.; Ayr, U.; Fiorito, F. Nano-encapsulation of phase change materials: From design to thermal performance, simulations and toxicological assessment. Energy Build. 2019, 188–189, 1–11. [Google Scholar] [CrossRef]
- Cannavale, A.; Martellotta, F.; Berardi, U.; Rubino, C.; Liuzzi, S.; Carlo, V.D.; Ayr, U. Modeling of an Aerogel-Based “Thermal Break” for Super-Insulated Window Frames. Buildings 2020, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Mainka, A.; Mucha, W.; Janoszek, A. Non-commercial Air Purifier—The E ffectiveness and Safety. Buildings 2020, 10, 104. [Google Scholar] [CrossRef]
- Kuru, A.; Oldfield, P.; Bonser, S.; Fiorito, F. A framework to achieve multifunctionality in biomimetic adaptive building skins. Buildings 2020, 10, 114. [Google Scholar] [CrossRef]
- Roy, A.; Ghosh, A.; Bhandari, S.; Sundaram, S.; Mallick, T.K. Perovskite solar cells for bipv application: A review. Buildings 2020, 10, 129. [Google Scholar] [CrossRef]
- Franco, A.; Schito, E. Comfort and Energy Use in Indoor Spaces Using CO2. Buildings 2020, 10, 135. [Google Scholar] [CrossRef]
- Ćorić, D.; Žmak, I. Influence of ausforming treatment on super elasticity of cu-zn-al shape memory alloy for seismic energy dissipaters. Buildings 2021, 11, 22. [Google Scholar] [CrossRef]
- Ciampi, G.; Spanodimitriou, Y.; Scorpio, M.; Rosato, A.; Sibilio, S. Energy performances assessment of extruded and 3d printed polymers integrated into building envelopes for a south Italian case study. Buildings 2021, 11, 141. [Google Scholar] [CrossRef]
- Zsembinszki, G.; David, V.; Cabeza, L.F. Deep Learning Optimal Control for a Complex Hybrid Energy Storage System. Buildings 2021, 11, 194. [Google Scholar] [CrossRef]
- Morano, P.; Tajani, F.; Di Liddo, F.; Darò, M. Economic evaluation of the indoor environmental quality of buildings: The noise pollution effects on housing prices in the city of Bari (Italy). Buildings 2021, 11, 213. [Google Scholar] [CrossRef]
- Hwang, R.-L.; Chen, B.-L.; Chen, W.-A. Analysis of Incorporating a Phase Change Material in a Roof for the Thermal Management of School Buildings in Hot-Humid Climates. Buildings 2021, 11, 248. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannavale, A.; Martellotta, F.; Fiorito, F. Novel Technologies to Enhance Energy Performance and Indoor Environmental Quality of Buildings. Buildings 2021, 11, 303. https://doi.org/10.3390/buildings11070303
Cannavale A, Martellotta F, Fiorito F. Novel Technologies to Enhance Energy Performance and Indoor Environmental Quality of Buildings. Buildings. 2021; 11(7):303. https://doi.org/10.3390/buildings11070303
Chicago/Turabian StyleCannavale, Alessandro, Francesco Martellotta, and Francesco Fiorito. 2021. "Novel Technologies to Enhance Energy Performance and Indoor Environmental Quality of Buildings" Buildings 11, no. 7: 303. https://doi.org/10.3390/buildings11070303
APA StyleCannavale, A., Martellotta, F., & Fiorito, F. (2021). Novel Technologies to Enhance Energy Performance and Indoor Environmental Quality of Buildings. Buildings, 11(7), 303. https://doi.org/10.3390/buildings11070303