Applied Element Modelling of Warping Effects in Thin-Walled C-Shaped Steel Sections
Abstract
:1. Introduction
2. Description of the Numerical Models
3. Numerical Analyses
3.1. Vertical Displacement
3.2. Normal Stress Distribution and Bimoment
4. Discussion of the Results
5. Conclusions
- -
- The AEM framework predicts the warping effects with sufficient accuracy if a suitable discretisation level (at least 20 and 140 blocks for the section and longitudinal discretisation, respectively) is adopted. This result suggests that if the scope of the analysis is only to capture warping effects, the FEM approach with 7DOFs is still the best option in terms of the results and computational onus. On the other hand, in the case of impact loads, blast loads or collapse analyses, only FEM, with explicit solvers, and AEM can be adopted. In addition, the AEM framework was proven to be satisfactorily accurate when simulating warping effects. Further investigations are needed to compare impact loads, blast loads and collapse analyses, adopting FEM with an explicit solver and AEM in order to assess the advantages of the two frameworks in terms of accuracy and computational effort;
- -
- Considering the academic and research environment, the AEM framework is currently adequate to analyse full steel storage pallet rack models; moreover, it permits to analyse also model portions and to replicate experimental tests and structure-specific behavioural aspects, such as beam-to-column connections, base–plate connections, pallet–structure interactions, upright holes and perforations influence, forklift hits, etc.;
- -
- Future work might include the modelling of distortional mechanisms and local buckling of thin-walled sections. Currently, these phenomena can be accurately captured adopting plate/solid elements in the case of a finite element method, or by using the strip method. The advantage of simulating all the peculiarities affecting thin-walled elements in a unique tool is, nevertheless, very useful for researchers and engineering practitioners.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lourenço, P.B. Computations on historic masonry structures. Prog. Struct. Eng. Mater. 2002, 4, 301–319. [Google Scholar] [CrossRef]
- Malomo, D.; Pinho, R.J.S.M.; Penna, A. Using the applied element method for modelling calcium silicate brick masonry subjected to in-plane cyclic loading. Earthq. Eng. Struct. Dyn. 2018, 47, 1610–1630. [Google Scholar] [CrossRef]
- Meguro, K.; Tagel-Din, H.K. Applied element method for structural analysis: Theory and application for linear materials. J. Jpn. Soc. Civ. Eng. 2000, 2000, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Tagel-Din, H.; Meguro, K. Applied element method for dynamic large deformation analysis of structures. J. Jpn Soc. Civ. Eng. 2000, 2000, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Meguro, K.; Tagel-Din, H. Nonlinear simulation of RC structures using applied element method. J. Jpn Soc. Civ. Eng. 2001, 2000, 13–24. [Google Scholar] [CrossRef]
- Meguro, K.; Tagel-Din, H. Applied Element Simulation of RC Structures under Cyclic Loading. J. Struct. Eng. 2001, 127, 1295–1305. [Google Scholar] [CrossRef]
- Meguro, K.; Tagel-Din, H. Numerical Simulation of High-Rise Steel Buildings Using Improved Applied Element Method. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- EL-Kholy, S.A.; Gomaa, M.S.; Akl, A.Y. Improved Applied Element Simulation of RC and Composite Structures Under Extreme Loading Conditions. Arab. J. Sci. Eng. 2012, 37, 921–933. [Google Scholar] [CrossRef]
- Christy, D.L.; Pillai, T.M.M.; Nagarajan, P. Thin plate element for applied element method. Structures 2019, 22, 1–12. [Google Scholar] [CrossRef]
- Christy, D.L.; Pillai, T.M.M.; Nagarajan, P. Analysis of Thin Plates Using Applied Element Method. Lect. Notes Civ. Eng. 2021, 83, 507–516. [Google Scholar] [CrossRef]
- Abdelaziz, M.M.; El-Ghazaly, H.A.; Gomaa, M.S. Improved Applied Element Model for Bonded Prestressed Concrete Structures. J. Struct. Eng. 2021, 147, 04020298. [Google Scholar] [CrossRef]
- Abdul-Latif, M.; Feng, Y.T. Modelling Damage Progressive Collapse of Frames Using A Gaussian Springs Based Applied Element Method. In Proceedings of the 6th European Conference on Computational Mechanic, Glasgow, UK, 11–15 June 2018. [Google Scholar]
- Malomo, D.; Pinho, R.; Penna, A. Numerical modelling of the out-of-plane response of full-scale brick masonry prototypes subjected to incremental dynamic shake-table tests. Eng. Struct. 2020, 209, 110298. [Google Scholar] [CrossRef]
- Malomo, D.; Pinho, R.; Penna, A. Simulating the shake table response of unreinforced masonry cavity wall structures tested to collapse or near-collapse conditions. Earthq. Spectra 2020, 36, 554–578. [Google Scholar] [CrossRef]
- Malomo, D.; Pinho, R.; Penna, A. Applied Element Modelling of the Dynamic Response of a Full-Scale Clay Brick Masonry Building Specimen with Flexible Diaphragms. Int. J. Archit. Herit. 2020. [Google Scholar] [CrossRef]
- Malomo, D.; Morandini, C.; Crowley, H.; Pinho, R.; Penna, A. Impact of ground floor openings percentage on the dynamic response of typical Dutch URM cavity wall structures. Bull. Earthq. Eng. 2021, 19, 409–429. [Google Scholar] [CrossRef]
- Karbassi, M.; Nollet, J. Performance-based seismic vulnerability evaluation of masonry buildings using applied element method in a nonlinear dynamic-based analytical procedure. Earthq. Spectra 2013, 29, 399–426. [Google Scholar] [CrossRef]
- Michel, C.; Karbassi, A.; Lestuzzi, P. Evaluation of the seismic retrofitting of an unreinforced masonry building using numerical modeling ambient vibration measurements. Eng. Struct. 2018, 158, 124–135. [Google Scholar] [CrossRef]
- Keys, R.A.; Clubley, S.K. Establishing a predictive method for blast induced masonry debris distribution using experimental numerical methods. Eng. Fail. Anal. 2017, 82, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Kernicky, T.P.; Whelan, M.J.; Weggel, D.C.; Rice, C.D. Structural Identification and Damage Characterization of a Masonry Infill Wall in a Full-Scale Building Subjected to Internal Blast Load. J. Struct. Eng. 2015, 141, D4014013. [Google Scholar] [CrossRef]
- Alanani, M.; Ehab, M.; Salem, H. Progressive collapse assessment of precast prestressed reinforced concrete beams using applied element method. Case Stud. Constr. Mater. 2020, 13, e00457. [Google Scholar] [CrossRef]
- El-desoqi, M.; Ehab, M.; Salem, H. Progressive collapse assessment of precast reinforced concrete beams using applied element method. Case Stud. Constr. Mater. 2020, 13, e00456. [Google Scholar] [CrossRef]
- Marginean, I.; Dinu, F.; Dubina, D. Simulation of the dynamic response of steel moment frames following sudden column loss. Experimental calibration of the numerical model and application. Steel Constr. 2018, 11, 57–64. [Google Scholar] [CrossRef]
- Coffield, A.; Adeli, H. Irregular steel building structures subjected to blast loading. J. Civ. Eng. Manag. 2016, 22, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Cismasiu, C.; Ramos, A.P.; Moldovan, I.D.; Ferreira, D.F. Applied element method simulation of experimental failure modes in RC shear walls. Comput. Concr. 2017, 19, 365–374. [Google Scholar] [CrossRef]
- Calvi, G.M.; Moratti, M.; O’Reilly, G.J.; Scattarreggia, N.; Monteiro, R.; Malomo, D.; Calvi, P.M.; Pinho, R. Once upon a Time in Italy: The Tale of the Morandi Bridge. Struct. Eng. Int. 2019, 29, 198–217. [Google Scholar] [CrossRef]
- Malomo, D.; Scattarreggia, N.; Orgnoni, A.; Pinho, R.; Moratti, M.; Calvi, G.M. Numerical Study on the Collapse of the Morandi Bridge. J. Perform. Constr. Facil. 2020, 34, 04020044. [Google Scholar] [CrossRef]
- Salem, H.; Mohssen, S.; Nishikiori, Y.; Hosoda, A. Numerical Collapse Analysis of Tsuyagawa Bridge Damaged by Tohoku Tsunami. J. Perform. Constr. Facil. 2016, 30, 04016065. [Google Scholar] [CrossRef]
- Dubina, D.; Marginean, I.; Dinu, F. Impact modelling for progressive collapse assessment of selective rack systems. Thin-Walled Struct. 2019, 143, 106201. [Google Scholar] [CrossRef]
- Bernuzzi, C.; Gabbianelli, G.; Gobetti, A.; Rosti, A. Beam design for steel storage racks. J. Constr. Steel Res. 2016, 116, 156–172. [Google Scholar] [CrossRef]
- Bernuzzi, C.; Gobetti, A.; Gabbianelli, G.; Simoncelli, M. Simplified approaches to design medium-rise unbraced steel storage pallet racks. I: Elastic buckling analysis. J. Struct. Eng. 2015, 141. [Google Scholar] [CrossRef]
- Bernuzzi, C.; Gobetti, A.; Gabbianelli, G.; Simoncelli, M. Simplified approaches to design medium-rise unbraced steel storage pallet racks. II: Fundamental period estimates. J. Struct. Eng. 2015, 141. [Google Scholar] [CrossRef]
- Montuori, R.; Gabbianelli, G.; Nastri, E.; Simoncelli, M. Rigid plastic analysis for the seismic performance evaluation of steel storage racks. Steel Compos. Struct. 2019, 32. [Google Scholar] [CrossRef]
- Simoncelli, M.; Tagliafierro, B.; Montuori, R. Recent development on the seismic devices for steel storage structures. Thin Walled Struct. 2020, 155, 106827. [Google Scholar] [CrossRef]
- Vlasov, V.Z. Thin-Walled Elastic Beams, 2nd ed.; National Technical Information Service: Springfield, VA, USA, 1984.
- Hartmann, D.; Breidt, M.; Stangenberg, F.; Höhler, S.; Schweizerhof, K.; Mattern, S.; Blankenhorn, G.; Möller, B.; Liebscher, M. Structural collapse simulation under consideration of uncertainty-Fundamental concept and results. Comput. Struct. 2008, 86, 21–22. [Google Scholar] [CrossRef]
- Khandelwal, K.; El-Tawil, S.; Sadek, F. Progressive collapse analysis of seismically designed steel braced frames. J. Constr. Steel Res. 2009, 65, 699–708. [Google Scholar] [CrossRef]
- Yanchao, Y.S.; Li, Z.X.; Hao, H. A new method for progressive collapse analysis of RC frames under blast loading. Eng. Struct. 2010, 32, 1691–1703. [Google Scholar] [CrossRef]
- Brunesi, E.; Nascimbene, R.; Pagani, M.; Beilic, D. Seismic Performance of Storage Steel Tanks during the May 2012 Emilia, Italy, Earthquakes. J. Perform. Constr. Facil. 2015, 29, 04014137. [Google Scholar] [CrossRef]
- Brunesi, E.; Nascimbene, R. Extreme response of reinforced concrete buildings through fiber force-based finite element analysis. Eng. Struct. 2014, 69, 206–215. [Google Scholar] [CrossRef]
- Ozsarac, V.; Brunesi, E.; Nascimbene, R. Earthquake-induced nonlinear sloshing response of above-ground steel tanks with damped or undamped floating roof. Soil Dyn. Earthq. Eng. 2021, 144, 106673. [Google Scholar] [CrossRef]
- Seismosoft. SeismoStruct 2021–A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. Pavia, 2021. Available online: https://seismosoft.com (accessed on 3 April 2021).
- EN 1993-1-1. Eurocode 3: Design of Steel Structures—Part 1-1: General Rules and Rules for Buildings; European Committee for Standardisation: Brussels, Belgium, 2014. [Google Scholar]
- Liu, S.W.; Gao, W.L.; Ziemian, R.D. Improved line-element formulations for the stability analysis of arbitrarily-shaped open-section beam-columns. Thin Walled Struct. 2019, 144, 106290. [Google Scholar] [CrossRef]
- Rinchen, G.J.; Hancock, K.; Rasmussen, J.R. Geometric and material nonlinear analysis of thin-walled members with arbitrary open cross-section. Thin Walled Struct. 2020, 153, 106783. [Google Scholar] [CrossRef]
- Gao, W.L.; Abdelrahman, A.H.A.; Liu, S.W.; Ziemian, R.D. Second-order dynamic time-history analysis of beam-columns with nonsymmetrical thin-walled steel sections. Thin Walled Struct. 2021, 160, 107367. [Google Scholar] [CrossRef]
- Bernuzzi, C.; di Gioia, A.; Gabbianelli, G.; Simoncelli, M. Pushover Analyses of Hand-Loaded Steel Storage Shelving Racks. J. Earthq. Eng. 2017, 21, 1256–1282. [Google Scholar] [CrossRef] [Green Version]
- Gabbianelli, G.; Kanyilmaz, A.; Bernuzzi, C.; Castiglioni, C.A. A combined experimental-numerical study on unbraced pallet rack under pushover loads. Ing. Sismica 2017, 34, 18–39. [Google Scholar]
- Liu, S.W.; Pekoz, T.; Gao, W.L.; Ziemian, R.D.; Crews, J. Frame analysis and design of industrial rack structures with perforated cold-formed steel columns. Thin-Walled Struct. 2021, 163, 107755. [Google Scholar] [CrossRef]
Section #1 | Section #2 | Section #3 | |
---|---|---|---|
Height (mm) | 100 | 100 | 100 |
Width (mm) | 80 | 80 | 80 |
Thickness (mm) | 2 | 4 | 8 |
Area (mm2) | 520 | 1040 | 2080 |
Moment of Inertia, y (mm4) | 9,666,666.67 | 1,933,333.33 | 3,866,666.67 |
Moment of Inertia, z (mm4) | 367,589.74 | 735,179.49 | 1,470,358.97 |
Torsional inertia (mm4) | 693.33 | 5546.67 | 44,373.33 |
Warping constant (mm6) | 647,356,321.84 | 1,294,712,643.68 | 2,589,425,287.36 |
Shear centre, y (mm) | −57.72 | −57.72 | −57.72 |
Section | Long. Discretisation | Section Discretisation | AEM | 6DOFs | 7DOFs |
---|---|---|---|---|---|
#1 | 20 | 10 | −17.60 | −16.42 | −86.57 |
60 | −34.34 | ||||
100 | −45.07 | ||||
140 | −50.89 | ||||
180 | −54.14 | ||||
20 | 20 | −17.76 | |||
60 | −36.98 | ||||
100 | −52.03 | ||||
140 | −61.58 | ||||
180 | −67.51 | ||||
20 | 30 | −17.81 | |||
60 | −37.58 | ||||
100 | −53.74 | ||||
140 | −64.41 | ||||
180 | −71.25 | ||||
#2 | 20 | 10 | −8.46 | −8.21 | −32.90 |
60 | −15.95 | ||||
100 | −20.44 | ||||
140 | −22.74 | ||||
180 | −23.98 | ||||
20 | 20 | −8.54 | |||
60 | −17.05 | ||||
100 | −23.15 | ||||
140 | −26.70 | ||||
180 | −28.76 | ||||
20 | 30 | −8.52 | |||
60 | −17.20 | ||||
100 | −23.69 | ||||
140 | −27.58 | ||||
180 | −29.88 | ||||
#3 | 20 | 10 | −3.92 | −4.11 | −9.82 |
60 | −6.74 | ||||
100 | −8.08 | ||||
140 | −8.69 | ||||
180 | −8.99 | ||||
20 | 20 | −3.92 | |||
60 | −7.02 | ||||
100 | −8.69 | ||||
140 | −9.49 | ||||
180 | −9.91 | ||||
20 | 30 | −3.91 | |||
60 | −7.04 | ||||
100 | −8.79 | ||||
140 | −9.64 | ||||
180 | −10.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabbianelli, G. Applied Element Modelling of Warping Effects in Thin-Walled C-Shaped Steel Sections. Buildings 2021, 11, 328. https://doi.org/10.3390/buildings11080328
Gabbianelli G. Applied Element Modelling of Warping Effects in Thin-Walled C-Shaped Steel Sections. Buildings. 2021; 11(8):328. https://doi.org/10.3390/buildings11080328
Chicago/Turabian StyleGabbianelli, Giammaria. 2021. "Applied Element Modelling of Warping Effects in Thin-Walled C-Shaped Steel Sections" Buildings 11, no. 8: 328. https://doi.org/10.3390/buildings11080328
APA StyleGabbianelli, G. (2021). Applied Element Modelling of Warping Effects in Thin-Walled C-Shaped Steel Sections. Buildings, 11(8), 328. https://doi.org/10.3390/buildings11080328