Development of Sustainable and Eco-Friendly Materials from Termite Hill Soil Stabilized with Cement for Low-Cost Housing in Chad
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Characterization
2.3. Mechanical Properties Measurements
3. Results and Discussions
3.1. Effect of the TMS Partial Replacement on the Microstructural Properties
3.1.1. Morphological and Chemical Component Analysis
3.1.2. Crystalline Phases Analysis
3.1.3. FTIR Characterization
3.2. Effect of Cement Stabilization on the Macrostructure (Compressive and Flexural Strengths, Fracture Toughness)
3.2.1. Compressive Strength
3.2.2. Flexural Strength
3.2.3. Fracture Toughness
- If Δa = 0 the crack propagation stops.
- If 0 < Δa < Δac the crack propagation is stable.
- If Δa > Δac the crack propagation is unstable.
3.2.4. Statistical Analysis of the Mechanical Properties
4. Conclusions
- The stabilization of TMS with 5% Portland cement showed good interactions between the two phases (cement and TMS) from the microstructural level to the macrostructures (mechanical behavior). Initially, the unstabilized TMS displayed some pozzolanic properties, thus the partial replacement by cement demonstrated very good bonding in addition to the hydration process products. Thus, the stabilization enhanced the TMS strengths due to the development of a greater bond between the soil and cements’ particles for all the replacement levels.
- The highest compressive strength was obtained for 5 wt% stabilization. That compressive strength development is high due to the cement stabilization through the formation of a new strong network.
- The flexural strength development followed the compressive strength direction. However, the highest flexural strength observed was 10.25 MPa at 28 days for 5 wt% stabilization. This flexural strength is significantly greater than the results obtained from the calcined termite mound soil [31];
- The various stabilization levels (10, 15 and 20 wt%) did not display any toughness to fracture. Only the 5 wt% displayed some toughness despite its characteristics of crack propagation (stable and unstable). It exhibited the highest stress intensity factor 3.52 kPa·m½ at a/W = 0.65 at 28 days.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karim, M.R.; Hossain, M.; Khan, M.N.N.; Zain, M.F.M.; Jamil, M.; Lai, F.C. On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement. Materials 2014, 7, 7809–7827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Tae, S.; Chae, C.U.; Lee, K. Proposal for the Evaluation of Eco-Efficient Concrete. Sustainability 2016, 8, 705. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod. 2016, 112, 1519–1527. [Google Scholar] [CrossRef]
- Pode, R. Potential applications of rice husk ash waste from rice husk biomass power plant. Renew. Sustain. Energy Rev. 2016, 53, 1468–1485. [Google Scholar] [CrossRef]
- Bediako, M. Pozzolanic potentials and hydration behavior of ground waste clay brick obtained from clamp-firing technology. Case Stud. Constr. Mater. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Yap, S.P.; Lee, S.C. Green concrete partially comprised of farming waste residues: A review. J. Clean. Prod. 2016, 117, 122–138. [Google Scholar] [CrossRef]
- Memon, S.A.; Wahid, I.; Khan, M.K.; Tanoli, M.A.; Bimaganbetova, M. Environmentally Friendly Utilization of Wheat Straw Ash in Cement-Based Composites. Sustainability 2018, 10, 1322. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Lo, Y.T.; Ouyang, D.; Memon, S.A.; Xing, F.; Wang, W.; Yuan, X. Effect of rice husk ash fineness on porosity and hydration reaction of blended cement paste. Constr. Build. Mater. 2015, 89, 90–101. [Google Scholar] [CrossRef]
- Olotuah, A.O. Recourse to earth for low-cost housing in Nigeria. Build. Environ. 2002, 37, 123–129. [Google Scholar] [CrossRef]
- Obianyo, I.I.; Onwualu, A.P.; Soboyejo, A.B. Mechanical behaviour of lateritic soil stabilized with bone ash and hydrated lime for sustainable building applications. Case Stud. Constr. Mater. 2020, 12, e00331. [Google Scholar] [CrossRef]
- Memon, S.A.; Khan, M.K. Ash blended cement composites: Eco-friendly and sustainable option for utilization of corncob ash. J. Clean. Prod. 2018, 175, 442–455. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Olorunnisola, A.O. Development of Sustainable Building Materials from Agro- Industrial Wastes in Nigeria. In Sustainable Construction and Building Materials; IntechOpen: London, UK, 2019. [Google Scholar]
- Ojo, E.B.; Bello, K.O.; Ngasoh, O.F.; Stanislas, T.T.; Mustapha, K.; Savastano, H.; Soboyejo, W. Mechanical performance of fiber-reinforced alkali activated un-calcined earth-based composites. Constr. Build. Mater. 2020, 247, 118588. [Google Scholar] [CrossRef]
- Ojo, E.B.; Mustapha, K.; Teixeira, R.S.; Savastano, H. Development of unfired earthen building materials using muscovite rich soils and alkali activators. Case Stud. Constr. Mater. 2019, 11, e00262. [Google Scholar] [CrossRef]
- Park, J.; Tae, S.; Kim, T. Life cycle CO2 assessment of concrete by compressive strength on construction site in Korea. Renew. Sustain. Energy Rev. 2012, 16, 2940–2946. [Google Scholar] [CrossRef]
- Bahurudeen, A.; Santhanam, M. Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cem. Concr. Compos. 2015, 56, 32–45. [Google Scholar] [CrossRef]
- Daniel, K. Make cities and human settlements inclusive, safe, resilient and sustainable. UN Chron. 2015, 51, 26–27. [Google Scholar] [CrossRef]
- Onyelowe, K.; Van, D.B.; Igboayaka, C.; Orji, F.; Ugwuanyi, H. Rheology of mechanical properties of soft soil and stabilization protocols in the developing countries-Nigeria. Mater. Sci. Energy Technol. 2019, 2, 8–14. [Google Scholar] [CrossRef]
- H. Foundation. Chad Economy. Available online: https://www.heritage.org/index/country/chad. (accessed on 15 December 2020).
- Idris, M.K.; Boukar, M.M.; Adeshina, S.A. Analysis of Bad Roads Using Smart phone. In Proceedings of the 15th International Conference on Electronics, Computer and Computation (ICECCO), Abuja, Nigeria, 12 December 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Indicateurs Économiques et Sociodémographiques. Available online: https://fr.countryeconomy.com/pays/tchadHighlight. (accessed on 22 October 2020).
- World Bank in Chad—Overview. Available online: https://www.worldbank.org/en/country/chad/overview (accessed on 12 October 2020).
- Ministère des Infrastructures et des Transports. Available online: http://www.mit-tchad.org/index.php/fr/. (accessed on 15 October 2020).
- Awotera, P.O.; Akinwumi, I.I. Compressive Strength Development for Cement, Lime and Termite-hill Stabilised Lateritic Bricks. Int. J. Eng. Sci. 2014, 3, 37–43. [Google Scholar]
- Mustapha, K.; Annan, E.; Azeko, S.T.; Kana, M.G.Z.; Soboyejo, W. Strength and fracture toughness of earth-based natural fiber-reinforced composites. J. Compos. Mater. 2015, 50, 1145–1160. [Google Scholar] [CrossRef]
- Azeko, S.T.; Mustapha, K.; Annan, E.; Odusanya, O.S.; Soboyejo, W. Recycling of Polyethylene into Strong and Tough Earth-Based Composite Building Materials. J. Mater. Civ. Eng. 2016, 28, 04015104. [Google Scholar] [CrossRef]
- Fapohunda, C.A.; Daramola, D.D. Experimental study of some structural properties of concrete with fine aggregates replaced partially by pulverized termite mound (PTM). J. King Saud Univ. Eng. Sci. 2020, 32, 484–490. [Google Scholar] [CrossRef]
- Gandia, R.M.; Corrêa, A.A.R.; Gomes, F.C.; Marin, D.B.; Santana, L.S. PHYSICAL, MECHANICAL AND THERMAL BEHAVIOR OF ADOBE STABILIZED WITH “SYNTHETIC TERMITE SALIVA”. Engenharia Agrícola 2019, 39, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Mujinya, B.; Mees, F.; Erens, H.; Dumon, M.; Baert, G.; Boeckx, P.; Ngongo, M.; Van Ranst, E. Clay composition and properties in termite mounds of the Lubumbashi area, D.R. Congo. Geoderma 2013, 192, 304–315. [Google Scholar] [CrossRef]
- Elinwa, A. Experimental characterization of Portland cement-calcined soldier-ant mound clay cement mortar and concrete. Constr. Build. Mater. 2006, 20, 754–760. [Google Scholar] [CrossRef]
- Omofunmi, O.E.; Oladipo, O.L. Assessment of termite mound additive on soil physical characteristics. Agric. Eng. Int. CIGR J. 2018, 20, 40–46. [Google Scholar]
- Sarcinelli, T.S.; Schaefer, C.E.G.; Lynch, L.D.S.; Arato, H.D.; Viana, J.H.M.; Filho, M.R.D.A.; Gonçalves, T.T. Chemical, physical and micromorphological properties of termite mounds and adjacent soils along a toposequence in Zona da Mata, Minas Gerais State, Brazil. Catena 2009, 76, 107–113. [Google Scholar] [CrossRef]
- Corrêa, A.A.; Bufalino, L.; Protásio, T.D.P.; Ribeiro, M.X.; Wisky, D.; Mendes, L.M. Evaluation of Mechanical Properties of Adobe Chemically Stabilized with “Synthetic Termite Saliva”. Key Eng. Mater. 2014, 600, 150–155. [Google Scholar] [CrossRef]
- Kandasami, R.K.; Borges, R.M.; Murthy, T.G. Effect of biocementation on the strength and stability of termite mounds. Environ. Geotech. 2016, 3, 99–113. [Google Scholar] [CrossRef]
- Legget, R.F. American Society for Testing and Materials. Nat. Cell Biol. 1964, 203, 565–568. [Google Scholar] [CrossRef]
- Jean-Pierre, B.; Moise, A.A.A.; Mauricette, S.-W.O.-N.; Sylvain, T.C.; Philippe, K.K.; Yao, T.; Ahouda, Y. Spatial distribution and density of termite mounds in a protected habitat in the south of cote d’ivoire: Case of national floristic center (cnf) of ufhb of Abidjan. Eur. Sci. J. 2015, 11, 241–259. [Google Scholar]
- Firoozi, A.A.; Olgun, C.G.; Baghini, M.S. Fundamentals of soil stabilization. Int. J. Geo Eng. 2017, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- British Standard Methods of Testing for Soil for Civil Engineering Processes; British Standards Institution: London, UK, 1990; BS 1337: Part 2.
- ASTM. ASTM D854 Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer; ASTM Int.: Washington, DC, USA, 2002; Volume 4, pp. 1–9. [Google Scholar]
- ASTM. ASTM C 150 Standard Specification for Portland Cement; ASTM Int.: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Ayobami, A.B.; Bamidele, A.; Oluwanifemi, A. Influence of water repellent chemical additive and different curing regimes on dimensional stability and strength of earth bricks from termite mound-clay. Heliyon 2019, 5, 01182. [Google Scholar] [CrossRef] [Green Version]
- Faria, O.B.; Battistelle, R.A.G.; Neves, C. Influence of the addition of “synthetic termite saliva” in the compressive strength and water absorption of compacted soil-cement. Ambiente Construído 2016, 16, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Soboyejo, W. Mechanical Properties of Engineered Materials; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
Physical Properties | |
---|---|
Particle size distribution | 85% smaller than 800 μm |
Moisture content | 3.85% |
Specific gravity | 2.60 |
Dry density | 0.458 g/cm3 |
Optimum moisture content | 15% |
Liquid limit | 35.17% |
Plastic limit | 20.80% |
Plasticity index | 14.37% |
Chemical Composition (main elements only) wt.% | |
SiO2 | 19.376 |
Al2O3 | 9.154 |
Fe3O4 | 7.534 |
K2O | 1.865 |
TMS (cm−1) | TMS5C95 & TMS 10C90 (cm−1) | TMS15C85 & TMS 20C80 (cm−1) | Functional Group |
---|---|---|---|
3854, 3695, 3650, 3620 | 3695, 3645, 3619 | 3851, 3695, 3647, 3618 | O–H stretching |
1654 | 1652 | 1652 | C=C stretching |
- | 1418 | 1418 | CH2 & CH3 bending |
1101, 1032, 1008 | 1032 | 1101 | C–C–C bending |
- | 1070 | 1032, 1007 | Si–O–Si stretching |
913 | 912 | 913 | C–H bending |
795, 694 | 753, 694 | 795, 694 | O–H bending |
538, 469 | 530, 469 | 538, 470 | O–Si–O bending |
Series | Samples | 7 Days | 14 Days | 28 Days | ||||||
---|---|---|---|---|---|---|---|---|---|---|
K (MPa·m½) | a/W | P max Load (KN) | K (MPa·m½) | a/W | P max Load (KN) | K (MPa·m½) | a/W | P max Load (KN) | ||
Stabilized TMS | S1 | 0.0003 | 0.4 | 0.0001 | 0.0013 | 0.4 | 0.0005 | 0.00117 | 0.4 | 0.000451 |
S2 | 0.0007 | 0.5 | 0.00025 | 0.0021 | 0.5 | 0.00069 | 0.00148 | 0.5 | 0.000506 | |
S3 | 0.0009 | 0.6 | 0.00027 | 0.0026 | 0.55 | 0.00075 | 0.00254 | 0.55 | 0.000796 | |
S4 | 0.0012 | 0.7 | 0.00032 | 0.0037 | 0.6 | 0.000975 | 0.00321 | 0.6 | 0.00094 | |
S5 | - | - | - | 0.0040 | 0.65 | 0.000998 | 0.00352 | 0.65 | 0.000956 | |
Unstabilized TMS | U2 | 0 | 0.4 | 0 | 0 | 0.4 | 0 | 0 | 0.4 | 0 |
U3 | 0 | 0.5 | 0 | 0 | 0.65 | 0 | 0 | 0.55 | 0 | |
U4 | 0 | 0.6 | 0 | 0 | 0.7 | 0 | 0 | 0.6 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahamat, A.A.; Linda Bih, N.; Ayeni, O.; Azikiwe Onwualu, P.; Savastano, H., Jr.; Oluwole Soboyejo, W. Development of Sustainable and Eco-Friendly Materials from Termite Hill Soil Stabilized with Cement for Low-Cost Housing in Chad. Buildings 2021, 11, 86. https://doi.org/10.3390/buildings11030086
Mahamat AA, Linda Bih N, Ayeni O, Azikiwe Onwualu P, Savastano H Jr., Oluwole Soboyejo W. Development of Sustainable and Eco-Friendly Materials from Termite Hill Soil Stabilized with Cement for Low-Cost Housing in Chad. Buildings. 2021; 11(3):86. https://doi.org/10.3390/buildings11030086
Chicago/Turabian StyleMahamat, Assia Aboubakar, Numfor Linda Bih, Olugbenga Ayeni, Peter Azikiwe Onwualu, Holmer Savastano, Jr., and Winston Oluwole Soboyejo. 2021. "Development of Sustainable and Eco-Friendly Materials from Termite Hill Soil Stabilized with Cement for Low-Cost Housing in Chad" Buildings 11, no. 3: 86. https://doi.org/10.3390/buildings11030086
APA StyleMahamat, A. A., Linda Bih, N., Ayeni, O., Azikiwe Onwualu, P., Savastano, H., Jr., & Oluwole Soboyejo, W. (2021). Development of Sustainable and Eco-Friendly Materials from Termite Hill Soil Stabilized with Cement for Low-Cost Housing in Chad. Buildings, 11(3), 86. https://doi.org/10.3390/buildings11030086