Mining the Built Environment: Telling the Story of Urban Mining
Abstract
:1. Introduction
2. Research Methodology
3. Industrial Ecology and Urban Metabolism
The Role of Material Stock in Industrial Ecology Research
4. Urban Mining
4.1. Materials under Study
4.2. Urban Mining Benefits
4.3. The Methodological Framework for Urban Mining
4.3.1. The Top-Down MFA
4.3.2. The Bottom-Up MFA
4.4. The Evolution of Urban Mining Research
4.5. Overcoming Methodological Limitations
4.5.1. Bottom-Up MFA and Material Intensity Coefficients (MICs)
4.5.2. Material Compartments’ Physical Parameters in Bottom-Up Methods
4.6. Future Research and New Technologies
Author Contributions
Funding
Conflicts of Interest
References
- Merli, R.; Preziosi, M.; Acampora, A. How do scholars approach the circular economy? A systematic literature review. J. Clean. Prod. 2018, 178, 703–722. [Google Scholar] [CrossRef]
- Sauvé, S.; Bernard, S.; Sloan, P. Environmental sciences, sustainable development and circular economy: Alternative concepts for trans-disciplinary research. Environ. Dev. 2016, 17, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Doberstein, B. Developing the circular economy in China: Challenges and opportunities for achieving “leapfrog development”. Int. J. Sustain. Dev. World Ecol. 2008, 15, 231–239. [Google Scholar] [CrossRef] [Green Version]
- McDonough, W.; Braungart, M. Remaking the way we make things: Creating a new definition of quality with cradle-to-cradle design. In The International Handbook on Environmental Technology Management; North Point Press: New York, NY, USA, 2002; pp. 33–48. [Google Scholar]
- Graedel, T. The prospects for urban mining. Bridge 2011, 41, 43–50. [Google Scholar]
- Bocken, N.M.P.; de Pauw, I.; Bakker, C.; van der Grinten, B. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 2016, 33, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.R.; Gutowski, T.G. The Environmental Impacts of Reuse: A Review. J. Ind. Ecol. 2017, 21, 38–56. [Google Scholar] [CrossRef]
- Arora, M.; Raspall, F.; Cheah, L.; Silva, A. Buildings and the circular economy: Estimating urban mining, recovery and reuse potential of building components. Resour. Conserv. Recycl. 2020, 154, 104581. [Google Scholar] [CrossRef]
- Baccini, P.; Brunner, P.H. Metabolism of the Anthroposphere. 2012. Available online: https://mitpress.mit.edu/books/metabolism-anthroposphere-second-edition (accessed on 10 February 2021).
- Qi, J.; Zhao, J.; Li, W.; Peng, X.; Wu, B.; Wang, H. Urban Mining. In Development of Circular Economy in China; Springer: Singapore, 2016; pp. 247–274. [Google Scholar] [CrossRef]
- Johansson, N.; Krook, J.; Eklund, M.; Berglund, B. An integrated review of concepts and initiatives for mining the technosphere: Towards a new taxonomy. J. Clean. Prod. 2013, 55, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Krook, J.; Baas, L. Getting serious about mining the technosphere: A review of recent landfill mining and urban mining research. J. Clean. Prod. 2013, 55, 1–9. [Google Scholar] [CrossRef]
- Cossu, R.; Williams, I.D. Urban mining: Concepts, terminology, challenges. Waste Manag. 2015, 45, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Kapur, A. The future of the red metal-A developing country perspective from India. Resour. Conserv. Recycl. 2006, 47, 160–182. [Google Scholar] [CrossRef]
- Nakamura, T.; Halada, K. Potential of urban mine. In SpringerBriefs in Applied Sciences and Technology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 7–29. Available online: https://www.researchgate.net/publication/300363889_Potential_of_Urban_Mine (accessed on 20 October 2020).
- Müller, D.B.; Wang, T.; Duval, B.; Graedel, T.E. Exploring the engine of anthropogenic iron cycles. Proc. Natl. Acad. Sci. USA 2006, 103, 16111–16116. [Google Scholar] [CrossRef] [Green Version]
- UNEP Assessing Global Metal Flows-Metal Stocks in Society and Recycling Rates Economic Development and Metal Use. 2010. Available online: https://wedocs.unep.org/20.500.11822/31433 (accessed on 12 April 2021).
- Krausmann, F.; Wiedenhofer, D.; Lauk, C.; Haas, W.; Tanikawa, H.; Fishman, T.; Miatto, A.; Schandl, H.; Haberl, H. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl. Acad. Sci. USA 2017, 114, 1880–1885. [Google Scholar] [CrossRef] [Green Version]
- Schaffartzik, A.; Duro, J.A.; Krausmann, F. Global appropriation of resources causes high international material inequality—Growth is not the solution. Ecol. Econ. 2019, 163, 9–19. [Google Scholar] [CrossRef]
- Cheng, K.L.; Hsu, S.C.; Li, W.M.; Ma, H.W. Quantifying potential anthropogenic resources of buildings through hot spot analysis. Resour. Conserv. Recycl. 2018, 133, 10–20. [Google Scholar] [CrossRef]
- Krook, J.; Carlsson, A.; Eklund, M.; Frändegård, P.; Svensson, N. Urban mining: Hibernating copper stocks in local power grids. J. Clean. Prod. 2011, 19, 1052–1056. [Google Scholar] [CrossRef] [Green Version]
- Grubler, A.; Fisk, D. Energizing Sustainable Cities: Assessing Urban Energy. Available online: https://www.semanticscholar.org/paper/Energizing-sustainable-cities-%3A-assessing-urban-Grubler-Fisk/e44368c79b9b4d88f72588f3e87010d223f5536e (accessed on 25 March 2021).
- UNEP Bridging the Emissions Gap: A UNEP Synthesis Report. Available online: https://wedocs.unep.org/handle/20.500.11822/7996 (accessed on 12 April 2021).
- Baccini, P.; Brunner, P.H. Metabolism of the Anthroposphere. 1991. Available online: https://books.google.jo/books?id=s2kYAQAAMAAJ&q=isbn:9783540537786&dq=isbn:9783540537786&hl=en&sa=X&redir_esc=y (accessed on 30 January 2021).
- Jalali, S.; Wohlin, C. Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the International Symposium on Empirical Software Engineering and Measurement, Lund, Sweden, 21–22 September 2012; pp. 29–38. [Google Scholar]
- Fischer-Kowalski, M. Society’s Metabolism: The Intellectual History of Materials Flow Analysis, Part I, 1860-1970. J. Ind. Ecol. 1998, 2, 61–78. [Google Scholar] [CrossRef]
- Wolman, A. the Metabolism of Cities. Sci. Am. 1965, 213, 179–190. [Google Scholar] [CrossRef]
- Kennedy, C.; Cuddihy, J.; Engel-Yan, J. The changing metabolism of cities. J. Ind. Ecol. 2007, 11, 43–59. [Google Scholar] [CrossRef]
- Pauliuk, S.; Hertwich, E.G. Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies. Ecol. Econ. 2015, 119, 83–93. [Google Scholar] [CrossRef]
- Pauliuk, S.; Müller, D.B. The role of in-use stocks in the social metabolism and in climate change mitigation. Glob. Environ. Chang. 2014, 24, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Newell, J.P.; Cousins, J.J. The boundaries of urban metabolism: Towards a political–industrial ecology. Prog. Hum. Geogr. 2015, 39, 702–728. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Huang, L. The state of the art of material flow analysis research based on construction and demolition waste recycling and disposal. Buildings 2019, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Glöser, S.; Soulier, M.; Tercero Espinoza, L.A. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation. Environ. Sci. Technol. 2013, 47, 6564–6572. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, M.; Glöser-Chahoud, S.; Chrubasik, L.; Walz, R. Resource efficiency in the German copper cycle: Analysis of stock and flow dynamics resulting from different efficiency measures. Resour. Conserv. Recycl. 2018, 139, 205–218. [Google Scholar] [CrossRef]
- Hao, M.; Wang, P.; Song, L.; Dai, M.; Ren, Y.; Chen, W.Q. Spatial distribution of copper in-use stocks and flows in China: 1978–2016. J. Clean. Prod. 2020, 261. [Google Scholar] [CrossRef]
- Meylan, G.; Reck, B.K. The anthropogenic cycle of zinc: Status quo and perspectives. Resour. Conserv. Recycl. 2017, 123, 1–10. [Google Scholar] [CrossRef]
- Ciacci, L.; Passarini, F.; Vassura, I. The European PVC cycle: In-use stock and flows. Resour. Conserv. Recycl. 2017, 123, 108–116. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, T.; Jiang, M.; Xu, M.; Yu, Y.; Guo, B.; Chen, D.; Hu, S.; Jiang, J.; Zhang, Y.; et al. Assessment of Plastic Stocks and Flows in China: 1978-2017. Resour. Conserv. Recycl. 2020, 161, 104969. [Google Scholar] [CrossRef]
- Müller, D.B. Stock dynamics for forecasting material flows-Case study for housing in The Netherlands. Ecol. Econ. 2006, 59, 142–156. [Google Scholar] [CrossRef]
- Hashimoto, S.; Tanikawa, H.; Moriguchi, Y. Where will large amounts of materials accumulated within the economy go?—A material flow analysis of construction minerals for Japan. Waste Manag. 2007, 27, 1725–1738. [Google Scholar] [CrossRef]
- Noll, D.; Wiedenhofer, D.; Miatto, A.; Singh, S.J. The expansion of the built environment, waste generation and EU recycling targets on Samothraki, Greece: An island’s dilemma. Resour. Conserv. Recycl. 2019, 150, 104405. [Google Scholar] [CrossRef]
- Wittmer, D.; Lichtensteiger, T. Exploration of urban deposits: Long-term prospects for resource and waste management. Waste Manag. Res. 2007, 25, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Augiseau, V.; Barles, S. Studying construction materials flows and stock: A review. Resour. Conserv. Recycl. 2017, 123, 153–164. [Google Scholar] [CrossRef]
- Yang, W.; Kohler, N. Simulation of the evolution of the Chinese building and infrastructure stock. Build. Res. Inf. 2008, 36, 1–19. [Google Scholar] [CrossRef]
- Hashimoto, S.; Tanikawa, H.; Moriguchi, Y. Framework for estimating potential wastes and secondary resources accumulated within an economy—A case study of construction minerals in Japan. Waste Manag. 2009, 29, 2859–2866. [Google Scholar] [CrossRef]
- Hu, M.; Pauliuk, S.; Wang, T.; Huppes, G.; van der Voet, E.; Müller, D.B. Iron and steel in Chinese residential buildings: A dynamic analysis. Resour. Conserv. Recycl. 2010, 54, 591–600. [Google Scholar] [CrossRef]
- Fishman, T.; Schandl, H.; Tanikawa, H.; Walker, P.; Krausmann, F. Accounting for the Material Stock of Nations. J. Ind. Ecol. 2014, 18, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Wiedenhofer, D.; Steinberger, J.K.; Eisenmenger, N.; Haas, W. Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25. J. Ind. Ecol. 2015, 19, 538–551. [Google Scholar] [CrossRef] [Green Version]
- Deetman, S.; Marinova, S.; van der Voet, E.; van Vuuren, D.P.D.P.; Edelenbosch, O.; Heijungs, R. Modelling global material stocks and flows for residential and service sector buildings towards 2050. J. Clean. Prod. 2020, 245, 118658. [Google Scholar] [CrossRef]
- Mastrucci, A.; Marvuglia, A.; Popovici, E.; Leopold, U.; Benetto, E. Geospatial characterization of building material stocks for the life cycle assessment of end-of-life scenarios at the urban scale. Resour. Conserv. Recycl. 2017, 123, 54–66. [Google Scholar] [CrossRef]
- Schandl, H.; Miatto, A. Data on the domestic processed output, balancing items, and solid waste potential for five major world economies. Data Br. 2019, 22, 662–675. [Google Scholar] [CrossRef]
- Gassner, A.; Lederer, J.; Fellner, J. Material stock development of the transport sector in the city of Vienna. J. Ind. Ecol. 2020, 24, 1364–1378. [Google Scholar] [CrossRef]
- Han, J.; Chen, W.Q.; Zhang, L.; Liu, G. Uncovering the Spatiotemporal Dynamics of Urban Infrastructure Development: A High Spatial Resolution Material Stock and Flow Analysis. Environ. Sci. Technol. 2018, 52, 12122–12132. [Google Scholar] [CrossRef]
- Huang, C.; Han, J.; Chen, W.Q. Changing patterns and determinants of infrastructures’ material stocks in Chinese cities. Resour. Conserv. Recycl. 2017, 123, 47–53. [Google Scholar] [CrossRef]
- Wang, T.; Müller, D.B.; Hashimoto, S. The ferrous find counting iron and steel stocks in China’s economy. J. Ind. Ecol. 2015, 19, 877–889. [Google Scholar] [CrossRef]
- Song, L.; Wang, P.; Hao, M.; Dai, M.; Xiang, K.; Li, N.; Chen, W.Q. Mapping provincial steel stocks and flows in China: 1978–2050. J. Clean. Prod. 2020, 262, 121393. [Google Scholar] [CrossRef]
- Pauliuk, S.; Wang, T.; Müller, D.B. Steel all over the world: Estimating in-use stocks of iron for 200 countries. Resour. Conserv. Recycl. 2013, 71, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Schiller, G.; Müller, F.; Ortlepp, R. Mapping the anthropogenic stock in Germany: Metabolic evidence for a circular economy. Resour. Conserv. Recycl. 2017, 123, 93–107. [Google Scholar] [CrossRef]
- Song, L.; Zhang, C.; Han, J.; Chen, W.Q. In-use product and steel stocks sustaining the urbanization of Xiamen, China. Ecosyst. Heal. Sustain. 2019, 5, 110–123. [Google Scholar] [CrossRef] [Green Version]
- Marinova, S.; Deetman, S.; van der Voet, E.; Daioglou, V. Global construction materials database and stock analysis of residential buildings between 1970-2050. J. Clean. Prod. 2020, 247, 119146. [Google Scholar] [CrossRef]
- Müller, D.B.; Wang, T.; Duval, B. Patterns of iron use in societal evolution. Environ. Sci. Technol. 2011, 45, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, L.; Lv, X. The change in the material stock of urban infrastructures in China. Struct. Chang. Econ. Dyn. 2019, 51, 24–34. [Google Scholar] [CrossRef]
- Song, L.; Wang, P.; Xiang, K.; Chen, W.Q. Regional disparities in decoupling economic growth and steel stocks: Forty years of provincial evidence in China. J. Environ. Manag. 2020, 271, 111035. [Google Scholar] [CrossRef]
- Bleischwitz, R.; Nechifor, V.; Winning, M.; Huang, B.; Geng, Y. Extrapolation or saturation—Revisiting growth patterns, development stages and decoupling. Glob. Environ. Chang. 2018, 48, 86–96. [Google Scholar] [CrossRef]
- Deilmann, C.; Effenberger, K.H.; Banse, J. Housing stock shrinkage: Vacancy and demolition trends in Germany. Build. Res. Inf. 2009, 37, 660–668. [Google Scholar] [CrossRef]
- Olaya, Y.; Vásquez, F.; Müller, D.B. Dwelling stock dynamics for addressing housing deficit. Resour. Conserv. Recycl. 2017, 123, 187–199. [Google Scholar] [CrossRef]
- Cheng, J.; Shi, F.; Yi, J.; Fu, H. Analysis of the factors that affect the production of municipal solid waste in China. J. Clean. Prod. 2020, 259, 120808. [Google Scholar] [CrossRef]
- Fu, C.; Zhang, Y.; Yu, X. How has Beijing’s urban weight and composition changed with socioeconomic development? Sci. Total Environ. 2019, 675, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Miatto, A.; Schandl, H.; Wiedenhofer, D.; Krausmann, F.; Tanikawa, H. Modeling material flows and stocks of the road network in the United States 1905–2015. Resour. Conserv. Recycl. 2017, 127, 168–178. [Google Scholar] [CrossRef]
- Dombi, M.; Karcagi-Kováts, A.; Tóth-Szita, K.; Kuti, I. The structure of socio-economic metabolism and its drivers on household level in Hungary. J. Clean. Prod. 2018, 172, 758–767. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, J.; Yue, Y.; Yang, J.; Hashimoto, S. Weight under Steel Wheels: Material Stock and Flow Analysis of High-Speed Rail in China. J. Ind. Ecol. 2016, 20, 1349–1359. [Google Scholar] [CrossRef]
- Streeck, J.; Wiedenhofer, D.; Krausmann, F.; Haberl, H. Stock-flow relations in the socio-economic metabolism of the United Kingdom 1800–2017. Resour. Conserv. Recycl. 2020, 161, 104960. [Google Scholar] [CrossRef]
- Lanau, M.; Herbert, L.; Liu, G. Extending urban stocks and flows analysis to urban greenhouse gas emission accounting: A case of Odense, Denmark. J. Ind. Ecol. 2021, 25, 961–978. [Google Scholar] [CrossRef]
- Müller, D.B.; Liu, G.; Løvik, A.N.; Modaresi, R.; Pauliuk, S.; Steinhoff, F.S.; Brattebø, H. Carbon emissions of infrastructure development. Environ. Sci. Technol. 2013, 47, 11739–11746. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Du, T.; Zhang, C.; Qian, X. Correlation analysis of CO2 emissions, material stocks and economic growth nexus: Evidence from Chinese provinces. J. Clean. Prod. 2018, 180, 395–406. [Google Scholar] [CrossRef]
- Han, J.; Meng, X.; Liu, J.; Zhang, Y. The impact of infrastructure stock density on CO2 emissions: Evidence from China provinces. Sustainability 2017, 9, 2312. [Google Scholar] [CrossRef] [Green Version]
- Hardadi, G.; Buchholz, A.; Pauliuk, S. Implications of the distribution of German household environmental footprints across income groups for integrating environmental and social policy design. J. Ind. Ecol. 2021, 25, 95–113. [Google Scholar] [CrossRef]
- Dombi, M. The service-stock trap: Analysis of the environmental impacts and productivity of the service sector in Hungary. Environ. Res. Lett. 2019, 14, 065011. [Google Scholar] [CrossRef]
- Aryapratama, R.; Pauliuk, S. Estimating in-use wood-based materials carbon stocks in Indonesia: Towards a contribution to the national climate mitigation effort. Resour. Conserv. Recycl. 2019, 149, 301–311. [Google Scholar] [CrossRef]
- Kalt, G. Carbon dynamics and GHG implications of increasing wood construction: Long-term scenarios for residential buildings in Austria. Carbon Manag. 2018, 9, 265–275. [Google Scholar] [CrossRef]
- Müller, D.B.; Bader, H.P.; Baccini, P. Long-term coordination of timber production and consumption using a dynamic material and energy flow analysis. J. Ind. Ecol. 2004, 8, 65–88. [Google Scholar] [CrossRef]
- Carmona, L.G.; Whiting, K.; Wiedenhofer, D.; Krausmann, F.; Sousa, T. Resource use and economic development: An exergy perspective on energy and material flows and stocks from 1900 to 2010. Resour. Conserv. Recycl. 2021, 165. [Google Scholar] [CrossRef]
- Haberl, H.; Wiedenhofer, D.; Erb, K.H.; Görg, C.; Krausmann, F. The material stock-flow-service nexus: A new approach for tackling the decoupling conundrum. Sustainability 2017, 9, 1049. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, N.H.; Bergsdal, H.; Brattebø, H. Historical energy analysis of the Norwegian dwelling stock. Build. Res. Inf. 2011, 39, 1–15. [Google Scholar] [CrossRef]
- Sandberg, N.H.; Sartori, I.; Vestrum, M.I.; Brattebø, H. Using a segmented dynamic dwelling stock model for scenario analysis of future energy demand: The dwelling stock of Norway 2016–2050. Energy Build. 2017, 146, 220–232. [Google Scholar] [CrossRef]
- Van Ruijven, B.J.; Van Vuuren, D.P.; Boskaljon, W.; Neelis, M.L.; Saygin, D.; Patel, M.K. Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resour. Conserv. Recycl. 2016, 112, 15–36. [Google Scholar] [CrossRef] [Green Version]
- Albelwi, N.; Kwan, A.; Rezgui, Y. Using Material and Energy Flow Analysis to Estimate Future Energy Demand at the City Level. In Proceedings of the Energy Procedia, Barcelona, Spain, 1–3 February 2017; pp. 440–450. [Google Scholar]
- Surahman, U.; Higashi, O.; Kubota, T. Evaluation of current material stock and future demolition waste for urban residential buildings in Jakarta and Bandung, Indonesia: Embodied energy and CO2 emission analysis. J. Mater. Cycles Waste Manag. 2017, 19, 657–675. [Google Scholar] [CrossRef]
- Coffey, B.; Borgeson, S.; Selkowitz, S.; Apte, J.; Mathew, P.; Haves, P. Towards a very low-energy building stock: Modelling the US commercial building sector to support policy and innovation planning. Build. Res. Inf. 2009, 37, 610–624. [Google Scholar] [CrossRef]
- Hong, L.; Zhou, N.; Feng, W.; Khanna, N.; Fridley, D.; Zhao, Y.; Sandholt, K. Building stock dynamics and its impacts on materials and energy demand in China. Energy Policy 2016, 94, 47–55. [Google Scholar] [CrossRef]
- Kakkos, E.; Heisel, F.; Hebel, D.E.D.E.; Hischier, R. Towards urban mining-estimating the potential environmental benefits by applying an alternative construction practice. A case study from Switzerland. Sustainability 2020, 12, 5041. [Google Scholar] [CrossRef]
- Wuyts, W.; Miatto, A.; Sedlitzky, R.; Tanikawa, H. Extending or ending the life of residential buildings in Japan: A social circular economy approach to the problem of short-lived constructions. J. Clean. Prod. 2019, 231, 660–670. [Google Scholar] [CrossRef]
- Cai, W.; Wan, L.; Jiang, Y.; Wang, C.; Lin, L. Short-Lived Buildings in China: Impacts on Water, Energy, and Carbon Emissions. Environ. Sci. Technol. 2015, 49, 13921–13928. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, F.; Løvik, A.N.; Sandberg, N.H.; Müller, D.B. Dynamic type-cohort-time approach for the analysis of energy reductions strategies in the building stock. Energy Build. 2016, 111, 37–55. [Google Scholar] [CrossRef]
- Krausmann, F.; Wiedenhofer, D.; Haberl, H. Growing stocks of buildings, infrastructures and machinery as key challenge for compliance with climate targets. Glob. Environ. Chang. 2020, 61, 102034. [Google Scholar] [CrossRef]
- Elshkaki, A.; Graedel, T.E. Dynamic analysis of the global metals flows and stocks in electricity generation technologies. J. Clean. Prod. 2013, 59, 260–273. [Google Scholar] [CrossRef]
- Li, F.; Ye, Z.; Xiao, X.; Xu, J.; Liu, G. Material stocks and flows of power infrastructure development in China. Resour. Conserv. Recycl. 2020, 160, 104906. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, L.; Chang, Y.; Hao, Y.; Liu, G.; Yan, Q.; Zhao, Y. Understanding the material efficiency of the wind power sector in China: A spatial-temporal assessment. Resour. Conserv. Recycl. 2020, 155, 104668. [Google Scholar] [CrossRef]
- Cao, Z.; O’Sullivan, C.; Tan, J.; Kalvig, P.; Ciacci, L.; Chen, W.; Kim, J.; Liu, G. Resourcing the Fairytale Country with Wind Power: A Dynamic Material Flow Analysis. Environ. Sci. Technol. 2019, 53, 11313–11322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanikawa, H.; Managi, S.; Lwin, C.M. Estimates of Lost Material Stock of Buildings and Roads Due to the Great East Japan Earthquake and Tsunami. J. Ind. Ecol. 2014, 18, 421–431. [Google Scholar] [CrossRef]
- Gallardo, C.; Sandberg, N.H.; Brattebø, H. Dynamic-MFA examination of Chilean housing stock: Long-term changes and earthquake damage. Build. Res. Inf. 2014, 42, 343–358. [Google Scholar] [CrossRef]
- Tabata, T.; Morita, H.; Onishi, A. What is the quantity of consumer goods stocked in a Japanese household? Estimating potential disaster waste generation during floods. Resour. Conserv. Recycl. 2018, 133, 86–98. [Google Scholar] [CrossRef]
- Tabata, T. Consumer goods in Japanese elderly-only household units: Micro-material stock and earthquake resistance. Int. J. Disaster Risk Reduct. 2020, 51, 101922. [Google Scholar] [CrossRef]
- Merschroth, S.; Miatto, A.; Weyand, S.; Tanikawa, H.; Schebek, L. Lost material stock in buildings due to sea level rise from globalwarming: The case of Fiji Islands. Sustainability 2020, 12, 834. [Google Scholar] [CrossRef] [Green Version]
- Symmes, R.; Fishman, T.; Telesford, J.N.; Singh, S.J.; Tan, S.Y.; De Kroon, K. The weight of islands: Leveraging Grenada’s material stocks to adapt to climate change. J. Ind. Ecol. 2020, 24, 369–382. [Google Scholar] [CrossRef]
- Klinglmair, M.; Fellner, J. Historical iron and steel recovery in times of raw material shortage: The case of Austria during World War I. Ecol. Econ. 2011, 72, 179–187. [Google Scholar] [CrossRef]
- Aksözen, M.; Hassler, U.; Kohler, N. Reconstitution of the dynamics of an urban building stock. Build. Res. Inf. 2017, 45, 239–258. [Google Scholar] [CrossRef]
- Bristow, D.N.; Mohareb, E.A. From the urban metabolism to the urban immune system. J. Ind. Ecol. 2020, 24, 300–312. [Google Scholar] [CrossRef]
- Tanikawa, H.; Hashimoto, S. Urban stock over time: Spatial material stock analysis using 4d-GIS. Build. Res. Inf. 2009, 37, 483–502. [Google Scholar] [CrossRef]
- Miatto, A.; Schandl, H.; Forlin, L.; Ronzani, F.; Borin, P.; Giordano, A.; Tanikawa, H. A spatial analysis of material stock accumulation and demolition waste potential of buildings: A case study of Padua. Resour. Conserv. Recycl. 2019, 142, 245–256. [Google Scholar] [CrossRef]
- Condeixa, K.; Haddad, A.; Boer, D. Material flow analysis of the residential building stock at the city of Rio de Janeiro. J. Clean. Prod. 2017, 149, 1249–1267. [Google Scholar] [CrossRef]
- Arora, M.; Raspall, F.; Cheah, L.; Silva, A. Residential building material stocks and component-level circularity: The case of Singapore. J. Clean. Prod. 2019, 216, 239–248. [Google Scholar] [CrossRef]
- Pacione, M. The Economy of Cities; Vintage: New York, NY, USA, 2010; ISBN 0224618261. [Google Scholar]
- Lederer, J.; Kleemann, F.; Ossberger, M.; Rechberger, H.; Fellner, J. Prospecting and Exploring Anthropogenic Resource Deposits: The Case Study of Vienna’s Subway Network. J. Ind. Ecol. 2016, 20, 1320–1333. [Google Scholar] [CrossRef]
- Lederer, J.; Michal, Š.; Franz-Georg, S.; Margarida, Q.; Jiri, H.; Florian, H.; Valerio, F.; Johann, F.; Roberto, B.; Elza, B. What waste management can learn from the traditional mining sector: Towards an integrated assessment and reporting of anthropogenic resources. Waste Manag. 2020, 113, 154–156. [Google Scholar]
- Lederer, J.; Laner, D.; Fellner, J. A framework for the evaluation of anthropogenic resources: The case study of phosphorus stocks in Austria. J. Clean. Prod. 2014, 84, 368–381. [Google Scholar] [CrossRef]
- Brunner, P.H. Materials Flow Analysis Reshaping Urban Metabolism. Available online: http://www.pik-potsdam.de/~luedeke/xws0809/Brunner07.pdf (accessed on 25 October 2020).
- Cossu, R. The Urban Mining concept. Waste Manag. 2013, 33, 497–498. [Google Scholar]
- Pauliuk, S.; Wang, T.; Müller, D.B. Moving toward the circular economy: The role of stocks in the Chinese steel cycle. Environ. Sci. Technol. 2012, 46, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Simoni, M.; Kuhn, E.P.; Morf, L.S.; Kuendig, R.; Adam, F. Urban mining as a contribution to the resource strategy of the Canton of Zurich. Waste Manag. 2015, 45, 10–21. [Google Scholar] [CrossRef]
- Brunner, P.H.P.H. Urban mining a contribution to reindustrializing the city. Ind. Ecol. 2011, 15, 339–341. [Google Scholar] [CrossRef]
- Savage, G.M.; Golueke, C.G.; von Stein, E.L. Landfill mining. Past and present. Biocycle 1993, 34, 58–61. [Google Scholar]
- Cossu, R.; Hogland, W.; Salerni, E. Landfill mining in Europe and USA; ISWA: Rotterdam, The Netherlands, 1996; pp. 107–114. [Google Scholar]
- Park, J.K.; Clark, T.; Krueger, N.; Mahoney, J. A Review of Urban Mining in the Past, Present and Future. Adv. Recycl. Waste Manag. 2017, 2, 127. [Google Scholar] [CrossRef] [Green Version]
- Bergbäck, B.; Lohm, U. Metals in Society. In The Global Environment: Science, Technology and Management; Wiley: Hoboken, NJ, USA, 2008; pp. 276–289. ISBN 9783527619658. [Google Scholar] [CrossRef]
- Wallsten, B.; Carlsson, A.; Frändegård, P.; Krook, J.; Svanström, S. To prospect an urban mine—Assessing the metal recovery potential of infrastructure cold spots in Norrköping, Sweden. J. Clean. Prod. 2013, 55, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Kapur, A.; Graedel, T.E. Copper mines above and below the ground. Environ. Sci. Technol. 2006, 40, 3135–3141. [Google Scholar] [CrossRef] [Green Version]
- Oezdemir, O.; Krause, K.; Hafner, A. Creating a resource cadaster-A case study of a district in the Rhine-Ruhr metropolitan area. Buildings 2017, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Van Beers, D.; Graedel, T.E. Spatial characterisation of multi-level in-use copper and zinc stocks in Australia. J. Clean. Prod. 2007, 15, 849–861. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0959652606002319?via%3Dihub (accessed on 5 January 2021). [CrossRef]
- Gerst, M.D. Linking material flow analysis and resource policy via future scenarios of in-use stock: An example for copper. Environ. Sci. Technol. 2009, 43, 6320–6325. [Google Scholar] [CrossRef]
- Ding, N.; Gao, F.; Wang, Z.H.; Gong, X.Z. Comparative analysis of primary aluminum and recycled aluminum on energy consumption and greenhouse gas emission. Zhongguo Youse Jinshu Xuebao/Chin. J. Nonferrous Met. 2012, 22, 2908–2915. [Google Scholar]
- Li, S.; Zhang, T.; Niu, L.; Yue, Q. Analysis of the development scenarios and greenhouse gas (GHG) emissions in China’s aluminum industry till 2030. J. Clean. Prod. 2021, 290, 125859. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, C.; Ji, X.; Xue, Y. Urban Mining’s Potential to Relieve China’s Coming Resource Crisis. J. Ind. Ecol. 2015, 19, 1091–1102. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Practical Handbook of Material Flow Analysis; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, X. Above-Ground Resource Analysis with Spatial Resolution to Support Better Decision Making. J. Sustain. Metall. 2016, 2, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Tanikawa, H.; Fishman, T.; Okuoka, K.; Sugimoto, K. The weight of society over time and space: A comprehensive account of the construction material stock of Japan, 1945-2010. J. Ind. Ecol. 2015, 19, 778–791. [Google Scholar] [CrossRef]
- Haas, W.; Krausmann, F.; Wiedenhofer, D.; Heinz, M. How circular is the global economy?: An assessment of material flows, waste production, and recycling in the European union and the world in 2005. J. Ind. Ecol. 2015, 19, 765–777. [Google Scholar] [CrossRef]
- Guidelines for Data Modeling and Data Integration for Material Flow Analysis and Socio-Metabolic Research; Board of the Topical Section for Research on Socio-Economic Metabolism (SEM) of the International Society for Industrial Ecology (ISIE): Freiburg, Germany, 2021. [CrossRef]
- Lanau, M.; Liu, G.; Kral, U.; Wiedenhofer, D.; Keijzer, E.; Yu, C.; Ehlert, C. Taking Stock of Built Environment Stock Studies: Progress and Prospects. Environ. Sci. Technol. 2019, 53, 8499–8515. [Google Scholar] [CrossRef] [PubMed]
- Miatto, A.; Schandl, H.; Tanikawa, H. How important are realistic building lifespan assumptions for material stock and demolition waste accounts? Resour. Conserv. Recycl. 2017, 122, 143–154. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0921344917300265?via%3Dihub (accessed on 23 February 2021). [CrossRef]
- Gontia, P.; Nägeli, C.; Rosado, L.; Kalmykova, Y.; Österbring, M. Material-intensity database of residential buildings: A case-study of Sweden in the international context. Resour. Conserv. Recycl. 2018, 130, 228–239. [Google Scholar] [CrossRef]
- Ortlepp, R.; Gruhler, K.; Schiller, G. Material stocks in Germany’s non-domestic buildings: A new quantification method. Build. Res. Inf. 2016, 44, 840–862. [Google Scholar] [CrossRef]
- Müller, E.; Hilty, L.M.; Widmer, R.; Schluep, M.; Faulstich, M. Modeling metal stocks and flows: A review of dynamic material flow analysis methods. Environ. Sci. Technol. 2014, 48, 2102–2113. [Google Scholar] [CrossRef] [PubMed]
- Fishman, T.; Schandl, H.; Tanikawa, H. Stochastic Analysis and Forecasts of the Patterns of Speed, Acceleration, and Levels of Material Stock Accumulation in Society. Environ. Sci. Technol. 2016, 50, 3729–3737. [Google Scholar] [CrossRef]
- Lichtensteiger, T.; Baccini, P. Exploration of Urban Stocks. J. Environ. Eng. Manag. 2008, 18, 41–48. Available online: https://www.dora.lib4ri.ch/eawag/islandora/object/eawag%3A5782 (accessed on 5 February 2021).
- Kleemann, F.; Lederer, J.; Aschenbrenner, P.; Rechberger, H.; Fellner, J. A method for determining buildings material composition prior to demolition. Build. Res. Inf. 2016, 44, 51–62. [Google Scholar] [CrossRef]
- Schebek, L.; Schnitzer, B.; Blesinger, D.; Köhn, A.; Miekley, B.; Linke, H.J.H.J.; Lohmann, A.; Motzko, C.; Seemann, A. Material stocks of the non-residential building sector: The case of the Rhine-Main area. Resour. Conserv. Recycl. 2017, 123, 24–36. [Google Scholar] [CrossRef]
- Yang, D.; Guo, J.; Sun, L.; Shi, F.; Liu, J.; Tanikawa, H. Urban buildings material intensity in China from 1949 to 2015. Resour. Conserv. Recycl. 2020, 159, 104824. [Google Scholar] [CrossRef]
- Mesta, C.; Kahhat, R.; Santa-Cruz, S. Geospatial Characterization of Material Stock in the Residential Sector of a Latin-American City. J. Ind. Ecol. 2019, 23, 280–291. [Google Scholar] [CrossRef] [Green Version]
- Lanau, M.; Liu, G. Developing an Urban Resource Cadaster for Circular Economy: A Case of Odense, Denmark. Environ. Sci. Technol. 2020, 54, 4675–4685. [Google Scholar] [CrossRef]
- Marcellus-Zamora, K.A.; Gallagher, P.M.; Spatari, S.; Tanikawa, H. Estimating Materials Stocked by Land-Use Type in Historic Urban Buildings Using Spatio-Temporal Analytical Tools. J. Ind. Ecol. 2016, 20, 1025–1037. [Google Scholar] [CrossRef]
- Heeren, N.; Fishman, T. A database seed for a community-driven material intensity research platform. Sci. Data 2019, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Romero Perez de Tudela, A.; Rose, C.M.; Stegemann, J.A. Quantification of material stocks in existing buildings using secondary data—A case study for timber in a London Borough. Resour. Conserv. Recycl. X 2020, 5, 100027. [Google Scholar] [CrossRef]
- Ergun, D.; Gorgolewski, M. Inventorying Toronto’s single detached housing stocks to examine the availability of clay brick for urban mining. Waste Manag. 2015, 45, 180–185. [Google Scholar] [CrossRef]
- Ajayebi, A.; Hopkinson, P.; Zhou, K.; Lam, D.; Chen, H.M.; Wang, Y. Spatiotemporal model to quantify stocks of building structural products for a prospective circular economy. Resour. Conserv. Recycl. 2020, 162, 105026. [Google Scholar] [CrossRef]
- Akanbi, L.A.; Oyedele, A.O.; Oyedele, L.O.; Salami, R.O. Deep learning model for Demolition Waste Prediction in a circular economy. J. Clean. Prod. 2020, 274, 122843. [Google Scholar] [CrossRef]
- Heisel, F.; Rau-Oberhuber, S. Calculation and evaluation of circularity indicators for the built environment using the case studies of UMAR and Madaster. J. Clean. Prod. 2020, 243, 118482. [Google Scholar] [CrossRef]
- Schiller, G.; Miatto, A.; Gruhler, K.; Ortlepp, R.; Deilmann, C.; Tanikawa, H. Transferability of Material Composition Indicators for Residential Buildings: A Conceptual Approach Based on a German-Japanese Comparison. J. Ind. Ecol. 2019, 23, 796–807. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- ISO Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 1: Concepts and Principles; ISO 19650-1:2018; International Organization for Standardization: Geneva, Switzerland, 2018.
- BAMB Buildings As Material Banks (BAMB2020)—BAMB 2015. Available online: https://www.bamb2020.eu/ (accessed on 18 December 2020).
- Luscuere, L.M. Materials Passports: Optimising value recovery from materials. Waste Resour. Manag. 2017, 170, 25–28. [Google Scholar] [CrossRef]
- Madaster Madaster—The Digital Library of Materials. Available online: https://madaster.com/ (accessed on 1 June 2021).
- Cheng, J.C.P.; Ma, L.Y.H. A BIM-based system for demolition and renovation waste estimation and planning. Waste Manag. 2013, 33, 1539–1551. [Google Scholar] [CrossRef]
- Rose, C.M.; Stegemann, J.A. Characterising existing buildings as material banks (E-BAMB) to enable component reuse. Proc. Inst. Civ. Eng. Eng. Sustain. 2018, 172, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Meinel, G.; Hecht, R.; Herold, H. Analyzing building stock using topographic maps and GIS. Build. Res. Inf. 2009, 37, 468–482. [Google Scholar] [CrossRef]
- Chen, C.; Shi, F.; Okuoka, K.; Tanikawa, H. The Metabolism Analysis of Urban Building by 4d-GIS—A Useful Method for New-type Urbanization Planning in China. Univers. J. Mater. Sci. 2016, 4, 40–46. [Google Scholar] [CrossRef]
- Wang, H.; Chen, D.; Duan, H.; Yin, F.; Niu, Y. Characterizing urban building metabolism with a 4D-GIS model: A case study in China. J. Clean. Prod. 2019, 228, 1446–1454. [Google Scholar] [CrossRef]
- Guo, J.; Fishman, T.; Wang, Y.; Miatto, A.; Wuyts, W.; Zheng, L.; Wang, H.; Tanikawa, H. Urban development and sustainability challenges chronicled by a century of construction material flows and stocks in Tiexi, China. J. Ind. Ecol. 2021, 25, 162–175. [Google Scholar] [CrossRef]
- Heeren, N.; Hellweg, S. Tracking Construction Material over Space and Time: Prospective and Geo-referenced Modeling of Building Stocks and Construction Material Flows. J. Ind. Ecol. 2019, 23, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Wallsten, B.; Magnusson, D.; Andersson, S.; Krook, J. The economic conditions for urban infrastructure mining: Using GIS to prospect hibernating copper stocks. Resour. Conserv. Recycl. 2015, 103, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Köhler, T.; Schnitzer, B. Urban Mining Cadastre—A Geospatial Data Challenge; In Proceedings of XXV International International Federation of Surveyors (FIG) Congress; Kuala Lumpur, Malaysia, 16–21 June 2014.
- Kleemann, F.; Lederer, J.; Rechberger, H.; Fellner, J. GIS-based Analysis of Vienna’s Material Stock in Buildings. J. Ind. Ecol. 2017, 21, 368–380. [Google Scholar] [CrossRef]
- Guo, J.; Miatto, A.; Shi, F.; Tanikawa, H. Spatially explicit material stock analysis of buildings in Eastern China metropoles. Resour. Conserv. Recycl. 2019, 146, 45–54. [Google Scholar] [CrossRef]
- Gontia, P.; Thuvander, L.; Wallbaum, H. Spatiotemporal characteristics of residential material stocks and flows in urban, commuter, and rural settlements. J. Clean. Prod. 2020, 251, 119435. [Google Scholar] [CrossRef]
- Rauch, J.N. Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground resources. Proc. Natl. Acad. Sci. USA 2009, 106, 18920–18925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.I.; Terakado, R.; Nakamura, J.; Adachi, Y.; Elvidge, C.D.; Matsuno, Y. In-use stock analysis using satellite nighttime light observation data. Resour. Conserv. Recycl. 2010, 55, 196–200. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Dong, L.; Tanikawa, H.; Zhang, N.; Gao, Z.; Luo, X. Feasibility of a new-generation nighttime light data for estimating in-use steel stock of buildings and civil engineering infrastructures. Resour. Conserv. Recycl. 2017, 123, 11–23. [Google Scholar] [CrossRef]
- Yu, B.; Deng, S.; Liu, G.; Yang, C.; Chen, Z.; Hill, C.J.; Wu, J. Nighttime Light Images Reveal Spatial-Temporal Dynamics of Global Anthropogenic Resources Accumulation above Ground. Environ. Sci. Technol. 2018, 52, 11520–11527. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Lane, R.; Werner, T.T. Modelling in-use stocks and spatial distributions of household electronic devices and their contained metals based on household survey data. Resour. Conserv. Recycl. 2017, 120, 27–37. [Google Scholar] [CrossRef]
- Vilaysouk, X.; Islam, K.; Miatto, A.; Schandl, H.; Murakami, S.; Hashimoto, S. Estimating the total in-use stock of Laos using dynamic material flow analysis and nighttime light. Resour. Conserv. Recycl. 2021, 170, 105608. [Google Scholar] [CrossRef]
- Peled, Y.; Fishman, T. Title: Estimation and mapping of the material stocks of buildings of Europe: A novel nighttime lights-based approach. Resour. Conserv. Recycl. 2021, 169, 105509. [Google Scholar] [CrossRef]
- Schandl, H.; Marcos-Martinez, R.; Baynes, T.; Yu, Z.; Miatto, A.; Tanikawa, H. A spatiotemporal urban metabolism model for the Canberra suburb of Braddon in Australia. J. Clean. Prod. 2020, 265, 121770. [Google Scholar] [CrossRef]
- Hecht, R.; Kunze, C.; Hahmann, S. Measuring completeness of building footprints in openstreetmap over space and time. ISPRS Int. J. Geo-Inf. 2013, 2, 1066–1091. [Google Scholar] [CrossRef]
- Lu, R.S. Research on the mapping of large-scale topographic maps based on low-altitude drone aerial photography system. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W10, 2020 International Conference on Geomatics in the Big Data Era (ICGBD), Guilin, China, 15–17 November 2019; pp. 623–628. [Google Scholar] [CrossRef] [Green Version]
- Risbøl, O.; Gustavsen, L. LiDAR from drones employed for mapping archaeology-Potential, benefits and challenges. Archaeol. Prospect. 2018, 25, 329–338. [Google Scholar] [CrossRef]
- Buffat, R.; Froemelt, A.; Heeren, N.; Raubal, M.; Hellweg, S. Big data GIS analysis for novel approaches in building stock modelling. Appl. Energy 2017, 208, 277–290. [Google Scholar] [CrossRef]
- SpaceNet spacenet.ai—Accelerating Geospatial Machine Learning. Available online: https://spacenet.ai/ (accessed on 2 June 2021).
- Hudson, P. Urban Characterisation; Expanding Applications for, and New Approaches to Building Attribute Data Capture. Hist. Environ. Policy Pract. 2018, 9, 306–327. [Google Scholar] [CrossRef]
Category | Purpose | Geographical Scope and Materials | Methodological Approach | Forecasting Model | Examples |
---|---|---|---|---|---|
Waste Management | Forecasting and comparing future input and output flows. Recycling and recovery rates and policy and management systems are reoccurring themes. | Geographical scale: national and global. Materials: metals, construction aggregates, and plastic. | Top-down retrospective dynamic flow analysis is commonly used, unlike a bottom-up analysis. | Yes | [7,38,39,40] |
Production and Consumption | Studies the evolution of stocks and flows over time. Forecasting and comparing future input and output flows, e.g., demand for metals. | Geographical scale: national and global. Materials: metals, construction aggregates. | Top-down retrospective dynamic flow analysis. | Yes | [20,41,49,67] |
Environmental Impacts | Examines the correlation between GHG emissions, energy demand, and material stocks. Global climate change and natural disasters are also reoccurring topics | Geographical scale: regional, national, and global. Materials: metals, construction aggregates, and wood. | Top-down retrospective stock analysis. | Yes, especially energy demand and scenario-based forecasting. | [56,77,79,91] |
Urban Mining and Secondary Resources | Estimating material stock for future exploitation | Geographical scale: urban and regional. Materials: metals, construction aggregates, and wood. | Bottom-up static stock analysis and occasionally a retrospective dynamic analysis are performed. | No, instead, some studies estimate the demolition curve. | [111,112,113,114] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldebei, F.; Dombi, M. Mining the Built Environment: Telling the Story of Urban Mining. Buildings 2021, 11, 388. https://doi.org/10.3390/buildings11090388
Aldebei F, Dombi M. Mining the Built Environment: Telling the Story of Urban Mining. Buildings. 2021; 11(9):388. https://doi.org/10.3390/buildings11090388
Chicago/Turabian StyleAldebei, Faisal, and Mihály Dombi. 2021. "Mining the Built Environment: Telling the Story of Urban Mining" Buildings 11, no. 9: 388. https://doi.org/10.3390/buildings11090388
APA StyleAldebei, F., & Dombi, M. (2021). Mining the Built Environment: Telling the Story of Urban Mining. Buildings, 11(9), 388. https://doi.org/10.3390/buildings11090388