An AI/ML-Based Strategy for Disaster Response and Evacuation of Victims in Aged Care Facilities in the Hawkesbury-Nepean Valley: A Perspective
Abstract
:1. Introduction
- What are the impacts of past flooding on the Hawkesbury-Nepean catchment area?
- What are the existing flood risk management and evacuation strategies used in the Hawkesbury-Nepean Region particularly for aged care facilities?
- How can the existing methods of disaster risk management and evacuation strategies be improved through the application of the latest technologies like AI?
2. Methodology
Study Area Location and Concept
- WMA water for the taskforce;
- Lismore Floodplain Risk Management Plan—Glossary and Appendices (Lismore City Council, 2014);
- Nyngan April 1990 Flood Investigation (NSW Department of Water Resources 1990).
3. Hawkesbury-Nepean Flooding
3.1. History of Flood Events
3.1.1. Pre-1900 Floods
3.1.2. Floods during the 1900s
3.1.3. Floods during the 2000s
3.2. The Bathtub Effects
4. Impacts of Flood Events and the Population at Risk
5. Aged Care Facilities in the Hawkesbury-Nepean Valley
6. Flood Risk Management and Evacuation Strategies Used in Hawkesbury Region
6.1. Flood Risk Management Plan
- The establishment of a coordinated flood risk management strategy for the current and future application to the Hawkesbury-Nepean Valley that would also include a new Hawkesbury-Nepean Valley Flood Risk Management Directorate with Infrastructure NSW to administer the implementation of the strategy.
- Reduction of the flood risks by raising a wall of the Warragamba Dam by approximately 14 m.
- The design of the Regional Land Use Planning Framework and road planning (i.e., Regional Evacuation Road Master Plan) for the management of flood risks at an adequate level.
- An overall improvement in the accessibility, mapping and availability of information for the management of flood risks in the valley.
- Creating an aware, prepared, responsive and resilient community with an adequate understanding of evacuation routes and risks associated with flood events in the valley.
- An overall improvement in the weather and flood prediction forecasting by the Bureau of Meteorology’s Hawkesbury-Nepean.
- Appropriate emergency response and recovery plan to be used by the NSW Office for Emergency Management.
- The creation of sufficient local roads for evacuation considering 40 high-priority local evacuation road upgrades.
- Regular monitoring, reporting and evaluation to improve the Flood Strategy framework.
6.2. General Perspective and Gaps on the Hawkesbury-Nepean Flood Risk Management Strategy
6.3. Flood Evacuation Strategy
- (1)
- receive a flood warning,
- (2)
- mobilize the State Emergency Service (SES) personnel of NSW,
- (3)
- start the evacuation,
- (4)
- accept and act on the warning and
- (5)
- drive the evacuation route leading to a safer area outside the flooding level.
- Selection of existing low points on the roads for raising in the context of the current 1 in 100 and 1 in 200 chance per year flood levels.
- The addition of lane capacity for evacuation in case of emergency through the adjustment of existing road usage.
- Accelerating the construction of Castlereagh Freeway to several road heights.
7. Flood Risk Management and Evacuation Strategies for the Aged Care Facilities
8. Conclusions
- Integrate new technologies along with conventional methods to address the barriers to building resilience.
- The aged care facilities have higher needs and more complex requirements for evacuating the residents to the nearest shelter. The proposed framework could be applied by the local authorities to enhance existing disaster response practices.
- The optimization of the route and floor plan simulation can help in identifying the shortest safety route for evacuation response. The shortest path algorithm can be applied to design the best evacuation plan for residents of aged care facilities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
S. No. | Abbreviation | Meaning |
1 | AI | Artificial intelligence |
2 | AHD | Australian Hight Datum |
3 | AEP | Annual Exceedance Probability |
4 | FPL | Flood Planning Level |
5 | FRM | Flood Risk Management |
6 | GPUs | Graphical Processing Units |
7 | IoT | Internet of Things |
8 | LGA | Local Government Areas |
9 | ML | Machine Learning |
10 | NSW | New South Wales |
11 | NDRP | Natural Disaster Resilience Program |
12 | NPADRR | National Partnership Agreement on Disaster Risk Reduction |
13 | PMF | Probable Maximum Flood |
14 | SES | State Emergency Services |
15 | SVM | Support Vector Machine |
16 | TAFE | Technical and Further Education |
17 | UAV | Unmanned Aerial Vehicle |
References
- Abdelkader, M.; Shaqura, M.; Ghommem, M.; Collier, N.; Calo, V.; Claudel, C. Optimal multi-agent path planning for fast inverse modelling in UAV-based flood sensing applications. In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 64–71. [Google Scholar] [CrossRef]
- Ahmad, D.; Afzal, M. Household vulnerability and resilience in flood hazards from disaster-prone areas of Punjab, Pakistan. Nat. Hazards. 2019, 99, 337–354. [Google Scholar] [CrossRef]
- Akay, S.S.; Özcan, O.; Balık Şanlı, F. Quantification and visualization of flood-induced morphological changes in meander structures by UAV-based monitoring. Eng. Sci. Technol. Int. J. 2021. Available online: https://www.sciencedirect.com/science/article/pii/S2215098621001282 (accessed on 18 October 2021). [CrossRef]
- Albano, R.; Samela, C.; Crăciun, I.; Manfreda, S.; Adamowski, J.; Sole, A.; Sivertun, Å.; Ozunu, A. Large Scale Flood Risk Mapping in Data Scarce Environments: An Application for Romania. Water 2020, 12, 1834. [Google Scholar] [CrossRef]
- Anbarasan, M.; Muthu, B.; Sivaparthipan, C.B.; Sundarasekar, R.; Kadry, S.; Krishnamoorthy, S.; Dasel, A.A. Detection of flood disaster system based on IoT, big data and convolutional deep neural network. Comput. Commun. 2020, 150, 150–157. [Google Scholar] [CrossRef]
- Anusha, N.; Bharathi, B. Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. Egypt. J. Remote Sens. Space Sci. 2020, 23, 207–219. [Google Scholar] [CrossRef]
- Arrowsmith, J.; Miller, P. Phase II and Phase III attrition rates 2011–2012. Nat. Rev. Drug Discov. 2013, 12, 569. [Google Scholar] [CrossRef]
- Bahrawi, J.; Ewea, H.; Kamis, A.; Elhag, M. Potential flood risk due to urbanization expansion in arid environments, Saudi Arabia. Nat. Hazards 2020, 104, 795–809. [Google Scholar] [CrossRef]
- Bakuła, K.; Zelaya Wziątek, D.; Weintrit, B.; Jędryka, J.; Pilarska, M.; Ryfa, T.; Kurczyński, Z. Multi-sourced. remote sensing data in levees monitoring: Case study of Safedam project. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3/W4, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Molés-Cases, V.; Piũero, G.; Gonzalez, A.; de Diego, M. Providing Spatial Control in Personal Sound Zones Using Graph Signal. In Proceedings of the 27th European Signal Processing Conference (EUSIPCO), La Coruña, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Bell, H.; Tobin, G. Efficient and effective? The 100-year flood in the communication and perception of flood risk. Environ. Hazards 2007, 7, 302–311. [Google Scholar] [CrossRef]
- Bhadra, T.; Chouhan, A.; Chutia, D.; Bhowmick, A.; Raju, P.L.N. Flood Detection Using Multispectral Images and SAR Data. In Machine Learning, Image Processing, Network Security and Data Sciences, Proceedings of the Second International Conference on Machine Learning, Image Processing, Network Security (MIND 2020), Silchar, India, 30–31 July 2020; Bhattacharjee, A., Borgohain, S.K., Soni, B., Verma, G., Gao, X., Eds.; Springer: Singapore, 2020; pp. 294–303. [Google Scholar] [CrossRef]
- Cao, C.; Xu, M.; Kamsing, P.; Boonprong, S.; Yomwan, P.; Saokarn, A. Flooding Identification by Vegetation Index. In Environmental Remote Sensing in Flooding Areas; Springer: Singapore, 2021; pp. 29–44. [Google Scholar] [CrossRef]
- Casado, M.R.; Leinster, P. Towards more effective strategies to reduce property level flood risk: Standardising the use of Unmanned Aerial Vehicles. J. Water Supply Res. Technol.-Aqua 2020, 69, 807–818. [Google Scholar] [CrossRef]
- Chang, D.-L.; Yang, S.-H.; Hsieh, S.-L.; Wang, H.-J.; Yeh, K.-C. Artificial Intelligence Methodologies Applied to Prompt Pluvial Flood Estimation and Prediction. Water 2020, 12, 3552. [Google Scholar] [CrossRef]
- Chang, F.-J.; Guo, S. Advances in Hydrologic Forecasts and Water Resources Management. Water 2020, 12, 1819. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, M.; Wan, J.; Weise, T.; Wu, Z. Effectiveness evaluation of the coupled LIDs from the watershed scale based on remote sensing image processing and SWMM simulation. Eur. J. Remote Sens. 2021, 54, 77–91. [Google Scholar] [CrossRef]
- Robins, L. More than 30 years of ‘Landcare’ in Australia: Five phases of development from ‘childhood’ to ‘mid-life’ (crisis or renewal?). Australas. J. Environ. Manag. 2018, 25, 385–397. [Google Scholar] [CrossRef]
- Kagohashi, K.; Fujimoto, T. Landcare, water resource management and sustainable development: Implications from a case study of a community-based approach to micro-hydropower development and social issues in Gokase township, Japan. Energy Procedia 2019, 156, 154–158. [Google Scholar] [CrossRef]
- Pan, Z.; David Cheok, A.; Mueller, W.; Zhang, M. Transactions on Edutainment XI; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Dawson, D.A.; Vercruysse, K.; Wright, N. A spatial framework to explore needs and opportunities for interoperable urban flood management. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhara, S.; Dang, T.; Parial, K.; Lu, X.X. Accounting for Uncertainty and Reconstruction of Flooding Patterns Based on Multi-Satellite Imagery and Support Vector Machine Technique: A Case Study of Can Tho City, Vietnam. Water 2020, 12, 1543. [Google Scholar] [CrossRef]
- Donratanapat, N.; Samadi, S.; Vidal, J.M.; Sadeghi Tabas, S. A national scale big data analytics pipeline to assess the potential impacts of flooding on critical infrastructures and communities. Environ. Model. Softw. 2020, 133, 104828. [Google Scholar] [CrossRef]
- Dos Reis, A.A.; Franklin, S.E.; de Mello, J.M.; Acerbi, F.W. Volume estimation in a Eucalyptus plantation using multi-source remote sensing and digital terrain data: A case study in Minas Gerais State, Brazil. Int. J. Remote Sens. 2019, 40, 2683–2702. [Google Scholar] [CrossRef]
- Elhag, M.; Abdurahman, S.G. Advanced remote sensing techniques in flash flood delineation in Tabuk City, Saudi Arabia. Nat. Hazards 2020, 103, 3401–3413. [Google Scholar] [CrossRef]
- Erdelj, M.; Król, M.; Natalizio, E. Wireless Sensor Networks and Multi-UAV systems for natural disaster management. Comput. Netw. 2017, 124, 72–86. [Google Scholar] [CrossRef]
- Esteban, J.; McRoberts, R.E.; Fernández-Landa, A.; Tomé, J.L.; Nӕsset, E. Estimating Forest Volume and Biomass and Their Changes Using Random Forests and Remotely Sensed Data. Remote Sens. 2019, 11, 1944. [Google Scholar] [CrossRef] [Green Version]
- Ezequiel, C.A.F.; Cua, M.; Libatique, N.C.; Tangonan, G.L.; Alampay, R.; Labuguen, R.T.; Favila, C.M.; Honrado, J.L.E.; Canos, V.; Devaney, C.; et al. UAV aerial imaging applications for post-disaster assessment, environmental management and infrastructure development. In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 274–283. [Google Scholar] [CrossRef]
- Fu, G.; Meng, F.; Rivas Casado, M.; Kalawsky, R.S. Towards Integrated Flood Risk and Resilience Management. Water 2020, 12, 1789. [Google Scholar] [CrossRef]
- Gan, J.L.; Zailah, W. Water Level Classification for Flood Monitoring System Using Convolutional Neural Network. In Proceedings of the 11th National Technical Seminar on Unmanned System Technology 2019 (NUSYS’19), Pahang, Malaysia, 2–3 December 2019; Zain, Z.M., Ahmad, H., Pebrianti, D., Mustafa, M., Abdullah, N.R.H., Samad, R., Noh, M.M., Eds.; Springer: Singapore, 2019; pp. 299–318. [Google Scholar] [CrossRef]
- Gautam, A.; Sit, M.; Demir, I. Realistic River Image Synthesis Using Deep Generative Adversarial Networks. arXiv 2020, arXiv:2003.00826. Available online: https://arxiv.org/abs/2003.00826 (accessed on 18 October 2021).
- Gimenez-Maranges, M.; Breuste, J.; Hof, A. Sustainable Drainage Systems for transitioning to sustainable urban flood management in the European Union: A review. J. Clean. Prod. 2020, 255, 120191. [Google Scholar] [CrossRef]
- Guikema, S. Artificial intelligence for natural hazards risk analysis: Potential, challenges, and research needs. Risk Anal. 2020, 40, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Masud, S.; Merson, J.; Robinson, D.F. Adapting a holistic approach to flood management in the Hawkesbury-Nepean region: Complexities and perceptions of the agencies involved. J. Environ. Plan. Manag. 2016, 59, 1126–1147. [Google Scholar] [CrossRef]
- Gupta, K. Challenges in developing urban flood resilience in India. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190211. [Google Scholar] [CrossRef] [Green Version]
- Hakdaoui, S.; Emran, A. Extraction of Water Information Based on SAR Radar and Optical Image Processing: Case of Flood Disaster in Southern Morocco. In Geospatial Technology; Oulidi, H.J., Fadil, A., Semane, N.E., Eds.; Springer: Cham, Switzerland, 2020; pp. 15–29. [Google Scholar] [CrossRef]
- Handayani, W.; Chigbu, U.E.; Rudiarto, I.; Putri, I.H.S. Urbanization and Increasing Flood Risk in the Northern Coast of Central Java—Indonesia: An Assessment towards Better Land Use Policy and Flood Management. Land 2020, 9, 343. [Google Scholar] [CrossRef]
- Hildmann, H.; Kovacs, E. Review: Using Unmanned Aerial Vehicles (UAVs) as Mobile Sensing Platforms (MSPs) for Disaster Response, Civil Security and Public Safety. Drones 2019, 3, 59. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Panahi, M.; Shirzadi, A.; Ma, T.; Liu, J.; Zhu, A.-X.; Chen, W.; Kougias, I.; Kazakis, N. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci. Total Environ. 2019, 621, 1124–1141. [Google Scholar] [CrossRef]
- Hong, H.; Tsangaratos, P.; Ilia, I.; Liu, J.; Zhu, A.-X.; Chen, W. Application of fuzzy weight of evidence and data mining techniques in the construction of flood susceptibility map of Poyang County, China. Sci. Total Environ. 2018, 625, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Hussein, K.; Alkaabi, K.; Ghebreyesus, D.; Liaqat, M.U.; Sharif, H.O. Land use/land cover change along the Eastern Coast of the UAE and its impact on flooding risk. Geomat. Nat. Hazards Risk 2020, 11, 112–130. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, U.; Perez, P.; Li, W.; Barthelemy, J. How computer vision can facilitate flood management: A systematic review. Int. J. Disaster Risk Reduct. 2021, 53, 102030. [Google Scholar] [CrossRef]
- Ishak, E.H.; Rahman, A.; Westra, S.; Sharma, A.; Kuczera, G. Evaluating the non-stationarity of Australian annual maximum flood. J. Hydrol. 2013, 494, 134–145. [Google Scholar] [CrossRef]
- Jacinth Jennifer, J.; Saravanan, S.; Abijith, D. Integration of SAR and multi-spectral imagery in flood inundation mapping—A case study on Kerala floods. ISH J. Hydraul. Eng. 2018. Available online: https://www.tandfonline.com/doi/abs/10.1080/09715010.2020.1791265 (accessed on 18 November 2021).
- Jahangir, M.H.; Mousavi Reineh, S.M.; Abolghasemi, M. Spatial predication of flood zonation mapping in Kan River Basin, Iran, using artificial neural network algorithm. Weather Clim. Extremes 2019, 25, 100215. [Google Scholar] [CrossRef]
- Sharples, J.J.; Cary, G.J.; Fox-Hughes, P.; Mooney, S.; Evans, J.P.; Fletcher, M.S.; Baker, P. Natural hazards in Australia: Extreme bushfire. Clim. Change 2016, 139, 85–99. [Google Scholar] [CrossRef]
- Juan, A.; Gori, A.; Sebastian, A. Comparing floodplain evolution in channelized and unchannelized urban watersheds in Houston, Texas. J. Flood Risk Manag. 2020, 13, e12604. [Google Scholar] [CrossRef]
- Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A.; Kamruzzaman, M. Determining disaster severity through social media analysis: Testing the methodology with South East Queensland Flood tweets. Int. J. Disaster Risk Reduct. 2020, 42, 101360. [Google Scholar] [CrossRef]
- Karamuz, E.; Romanowicz, R.J.; Doroszkiewicz, J. The use of unmanned aerial vehicles in flood hazard assessment. J. Flood Risk Manag. 2020, 13, e12622. [Google Scholar] [CrossRef]
- Karunarathne, A.Y.; Lee, G. The geographies of the dynamic evolution of social networks for the flood disaster response and recovery. Appl. Geogr. 2020, 125, 102274. [Google Scholar] [CrossRef]
- Kellens, W.; Zaalberg, R.; Neutens, T.; Vanneuville, W.; De Maeyer, P. An Analysis of the Public Perception of Flood Risk on the Belgian Coast. Risk Anal. 2011, 31, 1055–1068. [Google Scholar] [CrossRef] [Green Version]
- Khalilpourazari, S.; Pasandideh, S.H.R. Designing emergency flood evacuation plans using robust optimization and artificial intelligence. J. Comb. Optim. 2021, 41, 640–677. [Google Scholar] [CrossRef]
- Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.B.; Gróf, G.; Ho, H.L.; et al. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 2019, 573, 311–323. [Google Scholar] [CrossRef]
- Chen, W.; Hong, H.; Li, S.; Shahabi, H.; Wang, Y.; Wang, X.; Bin Ahmad, B. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J. Hydrol. 2019, 575, 864–873. [Google Scholar] [CrossRef]
- Langhammer, J.; Janský, B.; Kocum, J.; Minařík, R. 3-D reconstruction of an abandoned montane reservoir using UAV photogrammetry, aerial LiDAR and field survey. Appl. Geogr. 2018, 98, 9–21. [Google Scholar] [CrossRef]
- Lioi, B.; Gioia, A.; Totaro, V.; Balacco, G.; Iacobellis, V.; Chiaia, G. Coupled Use of Hydrologic-Hydraulic Model and Geomorphological Descriptors for Flood-Prone Areas Evaluation: A Case Study of Lama Lamasinata. In Computational Science and Its Applications—ICCSA 2020, Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 1–4 July 2020; Gervasi, O., Murgante, B., Morterra, C., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., et al., Eds.; Springer: Cham, Switzerland, 2020; pp. 607–619. [Google Scholar] [CrossRef]
- Lütjens, B.; Leshchinskiy, B.; Requena-Mesa, C.; Chishtie, F.; Díaz-Rodriguez, N.; Boulais, O.; Piña, A.; Newman, D.; Lavin, A.; Gal, Y.; et al. Physics-informed GANs for Coastal Flood Visualization. arXiv 2020, arXiv:2010.08103. Available online: https://arxiv.org/abs/2010.08103 (accessed on 18 October 2021).
- Makker, M.; Ramanathan, R.; Dinesh, S.B. Post Disaster Management Using Satellite Imagery and Social Media Data. In Proceedings of the 2019 4th International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), IEEE, Bengaluru, India, 20–21 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Matgen, P.; Schumann, G.; Henry, J.-B.; Hoffmann, L.; Pfister, L. Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 247–263. [Google Scholar] [CrossRef]
- Mel, R.A.; Viero, D.P.; Carniello, L.; D’Alpaos, L. Optimal floodgate operation for river flood management: The case study of Padova (Italy). J. Hydrol. Reg. Stud. 2020, 30, 100702. [Google Scholar] [CrossRef]
- Miřijovský, J.; Langhammer, J. Multitemporal Monitoring of the Morphodynamics of a Mid-Mountain Stream Using UAS Photogrammetry. Remote Sens. 2015, 7, 8586–8609. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Arya, D.S. Development of Decision Support System (DSS) for Urban Flood Management: A Review of Methodologies and Results. In Proceedings of the World Environmental and Water Resources Congress 2020: Water, Wastewater, and Stormwater and Water Desalination and Reuse, Henderson, Nevada, USA, 17–21 May 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 60–72. [Google Scholar] [CrossRef]
- Mohan, P.; Mittal, H. Review of ICT usage in disaster management. Int. J. Inf. Technol. 2020, 12, 955–962. [Google Scholar] [CrossRef]
- Mohanty, M.P.; Nithya, S.; Nair, A.S.; Indu, J.; Ghosh, S.; Bhatt, C.M.; Rao, G.S.; Karmakar, S. Sensitivity of various topographic data in flood management: Implications on inundation mapping over large data-scarce regions. J. Hydrol. 2020, 590, 125523. [Google Scholar] [CrossRef]
- Montasari, R.; Carroll, F.; Macdonald, S.; Jahankhani, H.; Hosseinian-Far, A.; Daneshkhah, A. Application of Artificial Intelligence. In Digital Forensic Investigation of Internet of Things (IoT) Devices; Montasari, R., Jahankhani, H., Hill, R., Parkinson, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 47–64. [Google Scholar] [CrossRef]
- Santato, S.; Bender, S.; Schaller, M. The European floods directive and opportunities offered by land use planning; Technical Report for Climate Service Center: Hamburg, Germany, 2013. [Google Scholar]
- Houston, N.; Chok, H.; Luck, L. Stomal therapy service evaluation: How well are we supporting our patients? J. Stomal Ther. Aust. 2021, 41, 10–16. [Google Scholar] [CrossRef]
- Ofli, F.; Imran, M.; Alam, F. Using Artificial Intelligence and Social Media for Disaster Response and Management: An Overview. In AI and Robotics in Disaster Studies; Kumar, T.V.V., Sud, K., Eds.; Palgrave Macmillan: Singapore, 2020; pp. 63–81. [Google Scholar] [CrossRef]
- Oktari, R.S.; Munadi, K.; Idroes, R.; Sofyan, H. Knowledge management practices in disaster management: Systematic review. Int. J. Disaster Risk Reduct. 2020, 51, 101881. [Google Scholar] [CrossRef]
- Ortiz, B.; Kahn, L.; Bosch, M.; Bogden, P.; Pavon-Harr, V.; Savas, O.; McCulloh, I. Improving Community Resiliency and Emergency Response with Artificial Intelligence. arXiv 2020, arXiv:2005.14212. Available online: https://arxiv.org/abs/2005.14212 (accessed on 18 October 2021).
- Pham, B.T.; Luu, C.; Van Phong, T.; Nguyen, H.D.; Van Le, H.; Tran, T.Q.; Ta, H.T.; Prakash, I. Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam. J. Hydrol. 2021, 592, 125815. [Google Scholar] [CrossRef]
- Pouyanfar, S.; Tao, Y.; Sadiq, S.; Tian, H.; Tu, Y.; Wang, T.; Chen, S.-C.; Shyu, M.-L. Unconstrained Flood Event Detection Using Adversarial Data Augmentation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), IEEE, Taipei, Taiwan, 22–25 September 2019; pp. 155–159. [Google Scholar] [CrossRef]
- Pradeep, R.M.M.; Wijesekera, N.T.S. Incorporating stakeholder concerns in Land Information Systems for urban flood management. Array 2020, 8, 100037. [Google Scholar] [CrossRef]
- Puno, G.R.; Puno, R.C.C.; Maghuyop, I.V. Two-dimensional food model for risk exposure analysis of land use/land cover in a watershed. Glob. J. Environ. Sci. Manag. 2021, 7, 225–238. [Google Scholar] [CrossRef]
- Razali, N.; Ismail, S.; Mustapha, A. Machine learning approach for flood risks prediction. IAES Int. J. Artif. Intell. 2020, 9, 73. [Google Scholar] [CrossRef]
- Riza, H.; Santoso, E.W.; Tejakusuma, I.G.; Prawiradisastra, F.; Prihartanto, P. Utilization of Artificial Intelligence to Improve Flood Disaster Mitigation. J. Sains Teknol. Mitigasi Bencana 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Said, A.; Shaat, O.; Su, P.-H.; Bogden, P.; Kraig, R.; Bosch, M. Understanding Flooding Detection Using Overhead Imagery—Lessons Learned. In Advances in Visual Computing, Proceedings of the 15th International Symposium on Visual Computing, San Diego, CA, USA, 5–7 October 2020; Bebis, G., Yin, Z., Kim, E., Bender, J., Subr, K., Kwon, B.C., Zhao, J., Kalkofen, D., Baciu, G., Morterra, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 696–706. [Google Scholar] [CrossRef]
- Saravi, S.; Kalawsky, R.; Joannou, D.; Rivas Casado, M.; Fu, G.; Meng, F. Use of Artificial Intelligence to Improve Resilience and Preparedness against Adverse Flood Events. Water 2019, 11, 973. [Google Scholar] [CrossRef] [Green Version]
- Schumann, G.; Matgen, P.; Cutler, M.E.J.; Black, A.; Hoffmann, L.; Pfister, L. Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS J. Photogramm. Remote Sens. 2008, 63, 283–296. [Google Scholar] [CrossRef]
- Sermet, Y.; Demir, I. Towards an information centric flood ontology for information management and communication. Earth Sci. Inform. 2019, 12, 541–551. [Google Scholar] [CrossRef]
- Shah, S.A.; Seker, D.Z.; Hameed, S.; Draheim, D. The Rising Role of Big Data Analytics and IoT in Disaster Management: Recent Advances, Taxonomy and Prospects. IEEE Access 2019, 7, 54595–54614. [Google Scholar] [CrossRef]
- Mohammadi, A.; Kamran, K.V.; Karimzadeh, S.; Shahabi, H.; Al-Ansari, N. Flood Detection and Susceptibility Mapping Using Sentinel-1 Time Series, Alternating Decision Trees, and Bag-ADTree Models. Complexity 2020, 2020, 1–21. [Google Scholar] [CrossRef]
- Shahabi, H.; Shirzadi, A.; Ghaderi, K.; Omidvar, E.; Al-Ansari, N.; Clague, J.J.; Geertsema, M.; Khosravi, K.; Amini, A.; Bahrami, S.; et al. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sens. 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Simmons, B.; Pinto, U.; Scott, J.; Maheshwari, B. Development of Future Management Options for the Hawkesbury River. In Balanced Urban Development: Options and Strategies for Liveable Cities; Springer: Cham, Switzerland, 2016; pp. 539–553. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Pandey, A. Mapping Punjab Flood Using Multi-Temporal Open-Access Synthetic Aperture Radar Data in Google Earth Engine. In Hydrological Extremes; Pandey, A., Mishra, S., Kansal, M., Singh, R., Singh, V.P., Eds.; Springer: Cham, Switzerland, 2021; pp. 75–85. [Google Scholar] [CrossRef]
- Maya Sintha, E.O.; Suryadi, B.; Syafari, M.R. Performance Assessment of Local Government Organizations on Flood Disaster Prevention and Preparedness in Gunung Mas Regency. Sch. Int. J. Law Crime Justice 2020, 3, 458–462. [Google Scholar] [CrossRef]
- Smith, K.; Berry, R.; Clarke, L.E. Exploring the potential of Google Earth as a communication and engagement tool in collaborative Natural Flood Management planning. Geogr. J. 2020, 186, 171–185. [Google Scholar] [CrossRef]
- Steinführer, A.; Kuhlicke, C.; De Marchi, B.; Scolobig, A.; Tapsell, S.; Tunstall, S. Towards flood risk. In Flood Risk Management: Research and Practice; CRC Press: Boca Raton, FL, USA, 2008; pp. 945–955. [Google Scholar] [CrossRef]
- Stylianidis, E.; Akca, D.; Poli, D.; Hofer, M.; Gruen, A.; Sánchez Martín, V.; Smagas, K.; Walli, A.; Altan, O.; Jimeno, E.; et al. FORSAT: A 3D forest monitoring system for cover mapping and volumetric 3D change detection. Int. J. Dig. Earth 2020, 13, 854–885. [Google Scholar] [CrossRef]
- Sun, W.; Bocchini, P.; Davison, B.D. Applications of artificial intelligence for disaster management. Nat. Hazards 2020, 103, 2631–2689. [Google Scholar] [CrossRef]
- Syifa, M.; Park, S.J.; Achmad, A.R.; Lee, C.-W.; Eom, J. Flood Mapping Using Remote Sensing Imagery and Artificial Intelligence Techniques: A Case Study in Brumadinho, Brazil. J. Coast. Res. 2019, 90, 197. [Google Scholar] [CrossRef]
- Tamminga, A.D.; Eaton, B.C.; Hugenholtz, C.H. UAS-based remote sensing of fluvial change following an extreme flood event. Earth Surf. Process. Landf. 2015, 40, 1464–1476. [Google Scholar] [CrossRef]
- Elsafi, S.H. Artificial Neural Networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alex. Eng. J. 2014, 53, 655–662. [Google Scholar] [CrossRef]
- Ruslan, F.A.; Nur, K.Z.; Adnan, R. Flood modelling using Artificial Neural Network. In Proceedings of the 2013 IEEE 4th Control and System Graduate Research Colloquium, Shah Alam, Malaysia, 19–20 August 2013; pp. 116–120. [Google Scholar]
- Shi, Y.; Taalab, K.; Cheng, T. Flood Prediction Using Support Vector Machines (SVM). In Proceedings of the 24th GIS Research UK (GISRUK) Conference (GISRUK2016), London, UK, 30 March–1 April 2017. [Google Scholar]
- Panagoulia, D.; Tsekouras, G.; Kousiouris, G.J.G.N.J. A multi-stage methodology for selecting input variables in ANN forecasting of river flows. Glob. NEST J. 2017, 19, 49–57. [Google Scholar]
- Trim Peter, R.J. An integrative approach to disaster management and planning. Disaster Prev. Manag. Int. J. 2004, 13, 218–225. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Heravi, A.; Thaheem, M.J.; Maqsoom, A. Inspecting Buildings Using Drones and Computer Vision: A Machine Learning Approach to Detect Cracks and Damages. Drones 2022, 6, 5. [Google Scholar] [CrossRef]
- Li, X.; Yu, L.; Xu, Y.; Yang, J.; Gong, P. Ten years after Hurricane Katrina: Monitoring recovery in New Orleans and the surrounding areas using remote sensing. Sci. Bull. 2016, 61, 1460–1470. [Google Scholar] [CrossRef] [Green Version]
- Ofli, F.; Meier, P.; Imran, M.; Castillo, C.; Tuia, D.; Rey, N.; Briant, J.; Millet, P.; Reinhard, F.; Parkan, M.; et al. Combining human computing and machine learning to make sense of big (aerial) data for disaster response. Big Data 2016, 4, 47–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twumasi, Y.A.; Merem, E.C.; Namwamba, J.B.; Okwemba, R.; Ayala-Silva, T.; Abdollahi, K.; Lukongo, O.E.B.; Tate, J.; La Cour-Conant, K.; Akinrinwoye, C.O. Use of GIS and Remote Sensing Technology as a Decision Support Tool in Flood Disaster Management: The Case of Southeast Louisiana, USA. J. Geogr. Inf. Syst. 2020, 12, 141–157. [Google Scholar] [CrossRef]
- Ullah, K.; Zhang, J. GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan. PLoS ONE 2020, 15, e0229153. [Google Scholar] [CrossRef] [Green Version]
- Venturini, F.; Mason, F.; Pase, F.; Chiariotti, F.; Testolin, A.; Zanella, A.; Zorzi, M. Distributed Reinforcement Learning for Flexible and Efficient UAV Swarm Control. IEEE Trans. Cognit. Commun. Netw. 2021, 7, 955–969. [Google Scholar] [CrossRef]
- Vidal, S.; Richaud, B.; Hansen, F.; Courtigne, J. Flood Forecast Tool to Help Dam Management from France to Thailand. In Advances in Hydroinformatics; Gourbesville, P., Caignaert, G., Eds.; Springer: Singapore, 2020; pp. 427–435. [Google Scholar] [CrossRef]
- Wagenaar, D.; Curran, A.; Balbi, M.; Bhardwaj, A.; Soden, R.; Hartato, E.; Mestav Sarica, G.; Ruangpan, L.; Molinario, G.; Lallemant, D. Invited perspectives: How machine learning will change flood risk and impact assessment. Nat. Hazards Earth Syst. Sci. 2020, 20, 1149–1161. [Google Scholar] [CrossRef]
People Who Live in the Floodplain | = | People Who Live in the Floodplain | + | Employee Who Works in the Floodplain but Live Outside the Floodplain | ||
---|---|---|---|---|---|---|
Properties | People | |||||
Flood Size (1 in x Chance per Year) | Residential Properties Affected by Flooding (Note 1) (Note 2) | Residential Properties Affected by Flooding More than 2.1 m Deep at Location of Dwelling (Note 2) | Number of Commercial and Industrial Buildings Affected by Flooding (Note 3) | Residents | Employees | TOTAL People Who Live or Work in the Flooded Areas |
Residential Population in Flooded Areas | Employees Who Work in the Floodplain but Live Outside the Floodplain | |||||
1 in 5 | 730 | 40 | 30 | 1600 | 270 | 1900 |
1 in 10 | 1600 | 420 | 110 | 3800 | 1600 | 5400 |
1 in 20 | 2500 | 1200 | 200 | 6100 | 2900 | 9000 |
1 in 50 | 4800 | 2700 | 530 | 12,400 | 5900 | 18,200 |
1 in 100 | 7600 | 4100 | 940 | 19,800 | 9600 | 29,400 |
1 in 200 | 9900 | 5500 | 1200 | 25,700 | 12,300 | 38,100 |
1 in 500 | 15,500 | 7400 | 1800 | 39,000 | 23,700 | 62,600 |
1 in 1000 | 19,600 | 9900 | 2300 | 49,100 | 30,300 | 79,400 |
1 in 2000 | 23,600 | 14,400 | 2700 | 58,500 | 36,500 | 95,000 |
1 in 5000 | 26,200 | 19,700 | 3100 | 65,100 | 39,900 | 105,000 |
PMF | 36,700 | 31,800 | 3800 | 91,000 | 48,100 | 139,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munawar, H.S.; Mojtahedi, M.; Hammad, A.W.A.; Ostwald, M.J.; Waller, S.T. An AI/ML-Based Strategy for Disaster Response and Evacuation of Victims in Aged Care Facilities in the Hawkesbury-Nepean Valley: A Perspective. Buildings 2022, 12, 80. https://doi.org/10.3390/buildings12010080
Munawar HS, Mojtahedi M, Hammad AWA, Ostwald MJ, Waller ST. An AI/ML-Based Strategy for Disaster Response and Evacuation of Victims in Aged Care Facilities in the Hawkesbury-Nepean Valley: A Perspective. Buildings. 2022; 12(1):80. https://doi.org/10.3390/buildings12010080
Chicago/Turabian StyleMunawar, Hafiz Suliman, Mohammad Mojtahedi, Ahmed W. A. Hammad, Michael J. Ostwald, and S. Travis Waller. 2022. "An AI/ML-Based Strategy for Disaster Response and Evacuation of Victims in Aged Care Facilities in the Hawkesbury-Nepean Valley: A Perspective" Buildings 12, no. 1: 80. https://doi.org/10.3390/buildings12010080
APA StyleMunawar, H. S., Mojtahedi, M., Hammad, A. W. A., Ostwald, M. J., & Waller, S. T. (2022). An AI/ML-Based Strategy for Disaster Response and Evacuation of Victims in Aged Care Facilities in the Hawkesbury-Nepean Valley: A Perspective. Buildings, 12(1), 80. https://doi.org/10.3390/buildings12010080