Off-Site Construction Three-Echelon Supply Chain Management with Stochastic Constraints: A Modelling Approach
Abstract
:1. Introduction
2. Related Works
2.1. Off-Site Construction
2.2. Supply Chain Modelling
3. Problem Description
3.1. Assumptions
- Each supplier warehouse can store different types of components, and each type of component has a specified risk level, which is identical in all warehouses.
- The risk level depends on the component type.
- The amount of safety stock and reorder point depend on the component type.
- LT depends on the origin and the destination.
- Order quantity and LT in a supplier warehouse are estimated by weighted average.
- Fixed ordering cost and holding cost is identical in all supplier warehouse.
3.2. Notation and Index
The number of off-site factories. | |
The number of potential sites for supplier warehouse location. | |
The number of construction sites. | |
The number of components. | |
Set of indexes for off-site factories. | |
Set of indexes for supplier warehouses. | |
Set of indexes for construction sites. | |
Set of indexes for components. | |
Component capacity in off-site factory 𝓀 for component 𝒻. | |
Cost of sending one truck from off-site factory 𝓀 to supplier warehouse 𝒿. | |
Truck capacity, off-site factory-supplier warehouse transportation stage. | |
Fixed cost for opening and operating of supplier warehouse 𝒿. | |
Cost of visiting construction site/supplier warehouse 𝒿 right after construction site/supplier warehouse 𝒾 in the route stage. | |
Vehicles capacity on the route stage. | |
Travelling distance from construction site/supplier warehouse 𝒾 to construction site/supplier warehouse 𝒿. | |
Fixed ordering cost at supplier warehouse 𝒿. | |
Holding cost per time unit at supplier warehouse 𝒿. | |
Mean demand of construction site 𝒾 for component 𝒻 per day. | |
Standard deviation of the demand of construction site 𝒾 for component 𝒻 per day. | |
Capacity at supplier warehouse 𝒿 for component 𝒻. | |
Maximum order quantity at supplier warehouse 𝒿 for component 𝒻. | |
Inventory check period at supplier warehouse 𝒿 in days. | |
Average lead-time at supplier warehouse 𝒿 to construction site 𝒾 in days. | |
Average lead-time at off-site factory 𝓀 to supplier warehouse 𝒿 in days. | |
Value of service level at supplier warehouse 𝒿. | |
Value of risk level at each supplier warehouse for component 𝒻. | |
Maximum possible total traveling distance of a vehicle in the route stage. | |
Transportation time unit per distance unit. |
Amount of component 𝒻 sent from off-site factory 𝓀 to supplier warehouse 𝒿. | |
The number of trucks sent from off-site factory 𝓀 to supplier warehouse 𝒿. | |
Minimum order quantity of component f from supplier warehouse 𝒿 if . | |
Order quantity of component f sent from off-site factory 𝓀 to supplier warehouse 𝒿. It is greater than 0 if > 0 and 0 . | |
Total mean demand of component f at supplier warehouse 𝒿. It is greater than 0 if there exists at least one > 0 and 0 . | |
Total variance demand of component 𝒻 at supplier warehouse 𝒿. It is greater than 0 if > 0 and 0 . | |
Variable used to prevent exceeding the vehicles capacity and for sub-tour elimination. It represents the load of the vehicle after visiting construction site 𝒾. | |
Variable to prevent exceeding the maximum distance constraint. It represents the distance travelled by the vehicle after visiting the construction site 𝒾. | |
Delivery time for construction site 𝒾. | |
Length of the shortest route. | |
Length of the longest route. | |
If supplier warehouse is open | |
Otherwise | |
If construction site is assigned to supplier warehouse | |
Otherwise | |
If construction site is the first construction site in any route of supplier warehouse | |
Otherwise | |
If construction site is the last construction site in any route of supplier warehouse | |
Otherwise | |
If construction site is visited just after construction site in any route of supplier warehouse | |
Otherwise |
3.3. Mathematical Formulation
(1) | ||
(2) | ||
(3) | ||
(4) | ||
(5) | ||
(6) | ||
(7) | ||
(8) | ||
(9) | ||
(10) | ||
(11) | ||
(12) | ||
(13) | ||
(14) | ||
(15) | ||
(16) | ||
(17) | ||
(18) | ||
(19) | ||
(20) | ||
(21) | ||
(22) | ||
(23) | ||
(24) | ||
(25) | ||
(26) | ||
(27) | ||
4. Solution Method
4.1. Multi-Objective Approach
4.2. Grasshopper Optimisation Algorithm (GOA)
Algorithm 1 Grasshopper Optimisation Algorithm |
1: Input: The position of grasshoppers (i = 1, 2…, H), the boundaries, , , 2: Output: the best solution (A) 3: While 4: Update the value of K by using the Equation (34). 5: For each position do 6: Normalised the distance between grasshoppers. 7: Update the current position of the individual by the Equation (33). 8: The current search agent will be brought back if it is outside the boundaries. 9: If a better solution becomes available, A is updated. 10: Endfor 11: 12: Endwhile 13: Return A |
5. Numerical Results
5.1. Small-Size Sample Problem
5.2. Large-Size Sample Problem
6. Sensitivity Analysis
7. Discussion and Managerial Insights
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Kabirifar, K.; Mojtahedi, M.; Wang, C.; Tam, V.W.Y. Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. J. Clean. Prod. 2020, 263, 121265. [Google Scholar] [CrossRef]
- Shahmansouri, A.A.; Yazdani, M.; Hosseini, M.; Akbarzadeh Bengar, H.; Farrokh Ghatte, H. The prediction analysis of compressive strength and electrical resistivity of environmentally friendly concrete incorporating natural zeolite using artificial neural network. Constr. Build. Mater. 2022, 317, 125876. [Google Scholar] [CrossRef]
- Ghafourian, K.; Kabirifar, K.; Mahdiyar, A.; Yazdani, M.; Ismail, S.; Tam, V.W.Y. A synthesis of express analytic hierarchy process (EAHP) and partial least squares-structural equations modeling (PLS-SEM) for sustainable construction and demolition waste management assessment: The case of Malaysia. Recycling 2021, 6, 73. [Google Scholar] [CrossRef]
- Yazdani, M.; Kabirifar, K.; Frimpong, B.E.; Shariati, M.; Mirmozaffari, M.; Boskabadi, A. Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia. J. Clean. Prod. 2021, 280, 124138. [Google Scholar] [CrossRef]
- Kabirifar, K.; Mojtahedi, M.; Wang, C.C. A systematic review of construction and demolition waste management in Australia: Current practices and challenges. Recycling 2021, 6, 34. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Yazdani, M.; Boskabadi, A.; Dolatsara, H.A.; Kabirifar, K.; Golilarz, N.A. A novel machine learning approach combined with optimization models for eco-efficiency evaluation. Appl. Sci. 2020, 10, 5210. [Google Scholar] [CrossRef]
- Shahmansouri, A.A.; Akbarzadeh Bengar, H.; AzariJafari, H. Life cycle assessment of eco-friendly concrete mixtures incorporating natural zeolite in sulfate-aggressive environment. Constr. Build. Mater. 2021, 268, 121136. [Google Scholar] [CrossRef]
- Shahmansouri, A.A.; Yazdani, M.; Ghanbari, S.; Akbarzadeh Bengar, H.; Jafari, A.; Farrokh Ghatte, H. Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J. Clean. Prod. 2021, 279, 123697. [Google Scholar] [CrossRef]
- Wei, W.; Mojtahedi, M.; Yazdani, M.; Kabirifar, K. The Alignment of Australia’s National Construction Code and the Sendai Framework for Disaster Risk Reduction in Achieving Resilient Buildings and Communities. Buildings 2021, 11, 429. [Google Scholar] [CrossRef]
- Shahmansouri, A.A.; Akbarzadeh Bengar, H.; Ghanbari, S. Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J. Build. Eng. 2020, 31, 101326. [Google Scholar] [CrossRef]
- Yazdani, M.; Kabirifar, K.; Fathollahi-Fard, A.M.; Mojtahedi, M. Production scheduling of off-site prefabricated construction components considering sequence dependent due dates. Environ. Sci. Pollut. Res. 2021, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.; Zayed, T. Critical factors for successful implementation of just-in-time concept in modular integrated construction: A systematic review and meta-analysis. J. Clean. Prod. 2021, 284, 124716. [Google Scholar] [CrossRef] [PubMed]
- Tsz Wai, C.; Wai Yi, P.; Ibrahim Olanrewaju, O.; Abdelmageed, S.; Hussein, M.; Tariq, S.; Zayed, T. A critical analysis of benefits and challenges of implementing modular integrated construction. Int. J. Constr. Manag. 2021, 1–24. [Google Scholar] [CrossRef]
- Shahpari, M.; Saradj, F.M.; Pishvaee, M.S.; Piri, S. Assessing the productivity of prefabricated and in-situ construction systems using hybrid multi-criteria decision making method. J. Build. Eng. 2020, 27, 100979. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Fung, I.W.H.; Sing, M.C.P.; Ogunlana, S.O. Best practice of prefabrication implementation in the Hong Kong public and private sectors. J. Clean. Prod. 2015, 109, 216–231. [Google Scholar] [CrossRef]
- Monahan, J.; Powell, J.C. An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework. Energy Build. 2011, 43, 179–188. [Google Scholar] [CrossRef]
- Hussein, M.; Eltoukhy, A.E.E.; Darko, A.; Eltawil, A. Simulation-Optimization for the Planning of Off-Site Construction Projects: A Comparative Study of Recent Swarm Intelligence Metaheuristics. Sustainability 2021, 13, 13551. [Google Scholar] [CrossRef]
- Hussein, M.; Eltoukhy, A.E.E.; Karam, A.; Shaban, I.A.; Zayed, T. Modelling in off-site construction supply chain management: A review and future directions for sustainable modular integrated construction. J. Clean. Prod. 2021, 310, 127503. [Google Scholar] [CrossRef]
- Hsu, P.-Y.; Angeloudis, P.; Aurisicchio, M. Optimal logistics planning for modular construction using two-stage stochastic programming. Autom. Constr. 2018, 94, 47–61. [Google Scholar] [CrossRef]
- Li, J.-Q.; Han, Y.-Q.; Duan, P.-Y.; Han, Y.-Y.; Niu, B.; Li, C.-D.; Zheng, Z.-X.; Liu, Y.-P. Meta-heuristic algorithm for solving vehicle routing problems with time windows and synchronized visit constraints in prefabricated systems. J. Clean. Prod. 2020, 250, 119464. [Google Scholar] [CrossRef]
- Jeong, J.; Hong, T.; Ji, C.; Kim, J.; Lee, M.; Jeong, K.; Lee, S. An integrated evaluation of productivity, cost and CO2 emission between prefabricated and conventional columns. J. Clean. Prod. 2017, 142, 2393–2406. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhong, R.Y.; Li, Z.; Huang, G. Production lead-time hedging and coordination in prefabricated construction supply chain management. Int. J. Prod. Res. 2017, 55, 3984–4002. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhong, R.Y.; Huang, G.Q. Buffer space hedging and coordination in prefabricated construction supply chain management. Int. J. Prod. Econ. 2018, 200, 192–206. [Google Scholar] [CrossRef]
- Kong, L.; Li, H.; Luo, H.; Ding, L.; Zhang, X. Sustainable performance of just-in-time (JIT) management in time-dependent batch delivery scheduling of precast construction. J. Clean. Prod. 2018, 193, 684–701. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H.; Gong, J. Framework for modeling operational uncertainty to optimize offsite production scheduling of precast components. Autom. Constr. 2018, 86, 69–80. [Google Scholar] [CrossRef]
- Lee, J.; Hyun, H. Multiple Modular Building Construction Project Scheduling Using Genetic Algorithms. J. Constr. Eng. Manag. 2019, 145, 04018116. [Google Scholar] [CrossRef]
- Bamana, F.; Lehoux, N.; Cloutier, C. Simulation of a Construction Project: Assessing Impact of Just-in-Time and Lean Principles. J. Constr. Eng. Manag. 2019, 145, 05019005. [Google Scholar] [CrossRef]
- Hsu, P.-Y.; Aurisicchio, M.; Angeloudis, P. Risk-averse supply chain for modular construction projects. Autom. Constr. 2019, 106, 102898. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, Y.; Yu, Y.; Chen, K.; Arashpour, M. Collaborative Scheduling of On-Site and Off-Site Operations in Prefabrication. Sustainability 2020, 12, 9266. [Google Scholar] [CrossRef]
- Yi, W.; Wang, S.; Zhang, A. Optimal transportation planning for prefabricated products in construction. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 342–353. [Google Scholar] [CrossRef]
- Lyu, Z.; Lin, P.; Guo, D.; Huang, G.Q. Towards Zero-Warehousing Smart Manufacturing from Zero-Inventory Just-In-Time production. Robot. Comput.-Integr. Manuf. 2020, 64, 101932. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, J.; Shen, L. A Conceptual Development Framework for Prefabricated Construction Supply Chain Management: An Integrated Overview. Sustainability 2020, 12, 1878. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.; Han, S.; Al-Hussein, M. Improvement of transportation cost estimation for prefabricated construction using geo-fence-based large-scale GPS data feature extraction and support vector regression. Adv. Eng. Inform. 2020, 43, 101012. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.I.; Flager, F.; Fischer, M. Generation of stacking plans for prefabricated exterior wall panels shipped vertically with A-frames. Autom. Constr. 2021, 122, 103507. [Google Scholar] [CrossRef]
- MacAskill, S.; Mostafa, S.; Stewart, R.A.; Sahin, O.; Suprun, E. Offsite construction supply chain strategies for matching affordable rental housing demand: A system dynamics approach. Sustain. Cities Soc. 2021, 73, 103093. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, M.; Pan, W.; Zhang, Z. Sources of Uncertainties in Offsite Logistics of Modular Construction for High-Rise Building Projects. J. Manag. Eng. 2021, 37, 04021011. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.; Wang, Q.; Hua, T.; Xue, H. A Review and Scientometric Analysis of Global Research on Prefabricated Buildings. Adv. Civ. Eng. 2021, 2021, 8869315. [Google Scholar] [CrossRef]
- Nguyen, B.N.; London, K.; Zhang, P. Stakeholder relationships in off-site construction: A systematic literature review. Smart Sustain. Built Environ. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Masood, R.; Lim, J.B.P.; González, V.A.; Roy, K.; Khan, K.I. A Systematic Review on Supply Chain Management in Prefabricated House-Building Research. Buildings 2022, 12, 40. [Google Scholar] [CrossRef]
- Guimarães, T.; Coelho, L.; Schenekemberg, C.; Scarpin, C. The two-echelon multi-depot inventory-routing problem. Comput. Oper. Res. 2019, 101, 220–233. [Google Scholar] [CrossRef]
- Yao, Z.; Lee, L.H.; Jaruphongsa, W.; Tan, V.; Hui, C.F. Multi-source facility location–allocation and inventory problem. Eur. J. Oper. Res. 2010, 207, 750–762. [Google Scholar] [CrossRef]
- Cabrera, G.; Miranda, P.A.; Cabrera, E.; Soto, R.; Crawford, B.; Rubio, J.M.; Paredes, F. Solving a novel inventory location model with stochastic constraints and inventory control policy. Math. Probl. Eng. 2013, 2013, 670528. [Google Scholar] [CrossRef] [Green Version]
- Amiri-Aref, M.; Klibi, W.; Babai, M.Z. The multi-sourcing location inventory problem with stochastic demand. Eur. J. Oper. Res. 2018, 266, 72–87. [Google Scholar] [CrossRef]
- Masoumi, M.; Aghsami, A.; Alipour-Vaezi, M.; Jolai, F.; Esmailifar, B. An M/M/C/K queueing system in an inventory routing problem considering congestion and response time for post-disaster humanitarian relief: A case study. J. Humanit. Logist. Supply Chain Manag. 2021. [Google Scholar] [CrossRef]
- Shiripour, S.; Mahdavi-Amiri, N.; Mahdavi, I. A nonlinear model for a capacitated random transportation network. J. Ind. Prod. Eng. 2015, 32, 500–515. [Google Scholar] [CrossRef]
- Daskin, M.S.; Coullard, C.R.; Shen, Z.-J.M. An inventory-location model: Formulation, solution algorithm and computational results. Ann. Oper. Res. 2002, 110, 83–106. [Google Scholar] [CrossRef]
- Shen, Z.-J.M.; Coullard, C.; Daskin, M.S. A Joint Location-Inventory Model. Transp. Sci. 2003, 37, 40–55. [Google Scholar] [CrossRef] [Green Version]
- Karimi, H.; Seifi, A. Acceleration of lagrangian method for the Vehicle Routing Problem with time windows. Int. J. Ind. Eng. Prod. Res. 2012, 23, 309–315. [Google Scholar]
- Momeni, B.; Salari, S.A.; Aghsami, A.; Jolai, F. Multi-objective Model to Distribute Relief Items after the Disaster by Considering Location Priority, Airborne Vehicles, Ground Vehicles, and Emergency Roadway Repair. In Proceedings of the International Conference on Logistics and Supply Chain Management, Tehran, Iran, 23–24 December 2020; pp. 341–361. [Google Scholar]
- Zhao, Q.h.; Chen, S.; Leung, S.C.H.; Lai, K.K. Integration of inventory and transportation decisions in a logistics system. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 913–925. [Google Scholar] [CrossRef]
- Martínez-Salazar, I.A.; Molina, J.; Ángel-Bello, F.; Gómez, T.; Caballero, R. Solving a bi-objective Transportation Location Routing Problem by metaheuristic algorithms. Eur. J. Oper. Res. 2014, 234, 25–36. [Google Scholar] [CrossRef]
- De, A.; Mogale, D.; Zhang, M.; Pratap, S.; Kumar, S.K.; Huang, G.Q. Multi-period multi-echelon inventory transportation problem considering stakeholders behavioural tendencies. Int. J. Prod. Econ. 2020, 225, 107566. [Google Scholar] [CrossRef]
- Lee, Y.C.E.; Chan, C.K.; Langevin, A.; Lee, H.W.J. Integrated inventory-transportation model by synchronizing delivery and production cycles. Transp. Res. Part E Logist. Transp. Rev. 2016, 91, 68–89. [Google Scholar] [CrossRef]
- Rahimi, M.; Baboli, A.; Rekik, Y. Multi-objective inventory routing problem: A stochastic model to consider profit, service level and green criteria. Transp. Res. Part E Logist. Transp. Rev. 2017, 101, 59–83. [Google Scholar] [CrossRef]
- Lagos, F.; Boland, N.; Savelsbergh, M. The continuous-time inventory-routing problem. Transp. Sci. 2020, 54, 375–399. [Google Scholar] [CrossRef]
- Fokkema, J.E.; Land, M.J.; Coelho, L.C.; Wortmann, H.; Huitema, G.B. A continuous-time supply-driven inventory-constrained routing problem. Omega 2020, 92, 102151. [Google Scholar] [CrossRef]
- Manavizadeh, N.; Shaabani, M.; Aghamohamadi, S. Designing a green location routing inventory problem considering transportation risks and time window: A case study. J. Ind. Syst. Eng. 2019, 12, 27–56. [Google Scholar]
- Max Shen, Z.-J.; Qi, L. Incorporating inventory and routing costs in strategic location models. Eur. J. Oper. Res. 2007, 179, 372–389. [Google Scholar] [CrossRef]
- Javid, A.A.; Azad, N. Incorporating location, routing and inventory decisions in supply chain network design. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 582–597. [Google Scholar] [CrossRef]
- Saragih, N.I.; Bahagia, N.; Syabri, I. A heuristic method for location-inventory-routing problem in a three-echelon supply chain system. Comput. Ind. Eng. 2019, 127, 875–886. [Google Scholar] [CrossRef]
- Ghomi, S.F.; Asgarian, B. Development of metaheuristics to solve a transportation inventory location routing problem considering lost sale for perishable goods. J. Model. Manag. 2019, 14, 175–198. [Google Scholar] [CrossRef]
- Sazvar, Z.; Zokaee, M.; Tavakkoli-Moghaddam, R.; Salari, S.A.; Nayeri, S. Designing a sustainable closed-loop pharmaceutical supply chain in a competitive market considering demand uncertainty, manufacturer’s brand and waste management. Ann. Oper. Res. 2021, 1–32. [Google Scholar] [CrossRef]
- Safaeian, M.; Fathollahi-Fard, A.M.; Kabirifar, K.; Yazdani, M.; Shapouri, M. Selecting Appropriate Risk Response Strategies Considering Utility Function and Budget Constraints: A Case Study of a Construction Company in Iran. Buildings 2022, 12, 98. [Google Scholar] [CrossRef]
- Miller, C.E.; Tucker, A.W.; Zemlin, R.A. Integer Programming Formulation of Traveling Salesman Problems. J. ACM 1960, 7, 326–329. [Google Scholar] [CrossRef]
- Morasaei, A.; Ghabussi, A.; Aghlmand, S.; Yazdani, M.; Baharom, S.; Assilzadeh, H. Simulation of steel–concrete composite floor system behavior at elevated temperatures via multi-hybrid metaheuristic framework. Eng. Comput. 2021, 1–16. [Google Scholar] [CrossRef]
- Yazdani, M.; Jolai, F. Lion optimization algorithm (LOA): A nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 2016, 3, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, M.; Jolai, F.; Taleghani, M.; Yazdani, R. A modified imperialist competitive algorithm for a two-agent single-machine scheduling under periodic maintenance consideration. Int. J. Oper. Res. 2018, 32, 127–155. [Google Scholar] [CrossRef]
- Sohani, A.; Naderi, S.; Torabi, F.; Sayyaadi, H.; Golizadeh Akhlaghi, Y.; Zhao, X.; Talukdar, K.; Said, Z. Application based multi-objective performance optimization of a proton exchange membrane fuel cell. J. Clean. Prod. 2020, 252, 119567. [Google Scholar] [CrossRef]
- Yazdani, M.; Ghodsi, R. Invasive weed optimization algorithm for minimizing total weighted earliness and tardiness penalties on a single machine under aging effect. Int. Robot. Autom. J. 2017, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Fathollahi-Fard, A.M.; Dulebenets, M.A.; Hajiaghaei–Keshteli, M.; Tavakkoli-Moghaddam, R.; Safaeian, M.; Mirzahosseinian, H. Two hybrid meta-heuristic algorithms for a dual-channel closed-loop supply chain network design problem in the tire industry under uncertainty. Adv. Eng. Inform. 2021, 50, 101418. [Google Scholar] [CrossRef]
- Yazdani, M.; Aleti, A.; Khalili, S.M.; Jolai, F. Optimizing the sum of maximum earliness and tardiness of the job shop scheduling problem. Comput. Ind. Eng. 2017, 107, 12–24. [Google Scholar] [CrossRef]
- Yazdani, M.; Khalili, S.M.; Babagolzadeh, M.; Jolai, F. A single-machine scheduling problem with multiple unavailability constraints: A mathematical model and an enhanced variable neighborhood search approach. J. Comput. Des. Eng. 2017, 4, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Fathollahi-Fard, A.M.; Li, J.; Tian, G.; Zhang, T. Disassembly Sequence Planning for Intelligent Manufacturing Using Social Engineering Optimizer. Symmetry 2021, 13, 663. [Google Scholar] [CrossRef]
- Sohani, A.; Naderi, S.; Torabi, F. Comprehensive comparative evaluation of different possible optimization scenarios for a polymer electrolyte membrane fuel cell. Energy Convers. Manag. 2019, 191, 247–260. [Google Scholar] [CrossRef]
- Azadeh, A.; Seif, J.; Sheikhalishahi, M.; Yazdani, M. An integrated support vector regression–imperialist competitive algorithm for reliability estimation of a shearing machine. Int. J. Comput. Integr. Manuf. 2016, 29, 16–24. [Google Scholar] [CrossRef]
- Gharaei, A.; Pasandideh, S.H.R.; Akhavan Niaki, S.T. An optimal integrated lot sizing policy of inventory in a bi-objective multi-level supply chain with stochastic constraints and imperfect products. J. Ind. Prod. Eng. 2018, 35, 6–20. [Google Scholar] [CrossRef]
- Rabbani, M.; Aghsami, A.; Farahmand, S.; Keyhanian, S. Risk and revenue of a lessor’s dynamic joint pricing and inventory planning with adjustment costs under differential inflation. Int. J. Procure Manag. 2018, 11, 1–35. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, A.; Shahedi, T.; Aghsami, A.; Jolai, F.; Feili, H. Optimizing a bi-objective location-allocation-inventory problem in a dual-channel supply chain network with stochastic demands. RAIRO-Oper. Res. 2021, 55, 3245–3279. [Google Scholar] [CrossRef]
- Dinh, P.-H. A novel approach based on Grasshopper optimization algorithm for medical image fusion. Expert Syst. Appl. 2021, 171, 114576. [Google Scholar] [CrossRef]
- Lv, Z.; Peng, R. A novel periodic learning ontology matching model based on interactive grasshopper optimization algorithm. Knowl.-Based Syst. 2021, 228, 107239. [Google Scholar] [CrossRef]
- Motlagh, S.; Akbari Foroud, A. Power quality disturbances recognition using adaptive chirp mode pursuit and grasshopper optimized support vector machines. Measurement 2021, 168, 108461. [Google Scholar] [CrossRef]
- Heydari, J.; Bakhshi, A. Contracts between an e-retailer and a third party logistics provider to expand home delivery capacity. Comput. Ind. Eng. 2021, 163, 107763. [Google Scholar] [CrossRef]
- Dehghan-Bonari, M.; Bakhshi, A.; Aghsami, A.; Jolai, F. Green supply chain management through call option contract and revenue-sharing contract to cope with demand uncertainty. Clean. Logist. Supply Chain 2021, 2, 100010. [Google Scholar] [CrossRef]
- Bakhshi, A.; Heydari, J. An optimal put option contract for a reverse supply chain: Case of remanufacturing capacity uncertainty. Ann. Oper. Res. 2021, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Miranda, P.A.; Garrido, R.A. Valid inequalities for Lagrangian relaxation in an inventory location problem with stochastic capacity. Transp. Res. Part E Logist. Transp. Rev. 2008, 44, 47–65. [Google Scholar] [CrossRef]
,, | |
, | |
,, | |
,, | |
,, | |
,, |
Variable Amount | Gams | GOA | ||||
---|---|---|---|---|---|---|
Optimal value of the first objective function. | 2.9308 × 104 | 2.9658 × 104 | 2.9703 × 104 | 2.97569 × 104 | 2.94267 × 104 | 2.9553 × 104 |
Optimal value of the second objective function. | 0 | 2 | 2 | 2 | 2 | 3 |
Average weighted delivery time of supplier warehouse 1 for component f. | ||||||
Average weighted delivery time of supplier warehouse 2 for component f. | ||||||
Average weighted delivery time of supplier warehouse 3 for component f. | ||||||
Minimum order quantity of component f from supplier warehouse 1. | ||||||
Minimum order quantity of component f from supplier warehouse 2. | ||||||
Minimum order quantity of component f from supplier warehouse 3. | ||||||
Amount of component f sent from off-site factory 1 to supplier warehouse 1. | ||||||
Amount of component f sent from off-site factory 1 to supplier warehouse 2. | ||||||
Amount of component f sent from off-site factory 1 to supplier warehouse 3. | ||||||
Amount of component f sent from off-site factory 2 to supplier warehouse 1. | ||||||
Amount of component f sent from off-site factory 2 to supplier warehouse 2. | ||||||
Amount of component f sent from off-site factory 2 to supplier warehouse 3. | ||||||
Number of trucks sent from off-site factory 1 to supplier warehouse 1. | 1 | 1 | 1 | 1 | 1 | 1 |
Number of trucks sent from off-site factory 1 to supplier warehouse 2. | 0 | 1 | 1 | 1 | 1 | 1 |
Number of trucks sent from off-site factory 1 to supplier warehouse 3. | 1 | 1 | 1 | 1 | 1 | 1 |
Number of trucks sent from off-site factory 2 to supplier warehouse 1. | 0 | 1 | 1 | 1 | 1 | 1 |
Number of trucks sent from off-site factory 2 to supplier warehouse 2. | 1 | 1 | 1 | 1 | 1 | 1 |
Number of trucks sent from off-site factory 2 to supplier warehouse 3. | 0 | 1 | 1 | 1 | 1 | 1 |
Order quantity of component f sent from off-site factory 1 to supplier warehouse 1. | ||||||
Order quantity of component f sent from off-site factory 1 to supplier warehouse 2. | ||||||
Order quantity of component f sent from off-site factory 1 to supplier warehouse 3. | ||||||
Order quantity of component f sent from off-site factory 2 to supplier warehouse 1. | ||||||
Order quantity of component f sent from off-site factory 2 to supplier warehouse 2. | ||||||
Order quantity of component f sent from off-site factory 2 to supplier warehouse 3. |
Solution | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
W1 | 0.1 | 0.3 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
W2 | 0.9 | 0.7 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 |
Solution | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
3.5490 × 104 | 3.3990 × 104 | 3.2814 × 104 | 3.2003 × 104 | 3.1400 × 104 | 3.0772 × 104 | 2.9908 × 104 | |
0 | 1 | 3 | 4 | 5 | 6 | 7 |
Supplier Warehouse | Component 1 | Component 2 | Component 3 | Component 4 |
---|---|---|---|---|
1 | 0.13 | 0.13 | 0.13 | 0.13 |
2 | 0.14 | 0.14 | 0.14 | 0.13 |
3 | 0 | 0 | 0 | 0 |
4 | 0.15 | 0.15 | 0.14 | 0.14 |
5 | 0.19 | 0.2 | 0.19 | 0.19 |
Component | Off-Site Factory | Supplier Warehouse 1 | Supplier Warehouse 2 | Supplier Warehouse 3 | Supplier Warehouse 4 | Supplier Warehouse 5 |
---|---|---|---|---|---|---|
Component 1 | 1 | 2 | 40 | 0 | 12 | 32 |
2 | 3 | 58 | 0 | 1 | 32 | |
3 | 2 | 4 | 0 | 7 | 5 | |
4 | 4 | 53 | 0 | 3 | 44 | |
Component 2 | 1 | 11 | 38 | 0 | 13 | 30 |
2 | 11 | 42 | 0 | 8 | 9 | |
3 | 5 | 24 | 0 | 21 | 77 | |
4 | 4 | 41 | 0 | 9 | 17 | |
Component 3 | 1 | 4 | 32 | 0 | 7 | 49 |
2 | 5 | 3 | 0 | 8 | 25 | |
3 | 4 | 66 | 0 | 13 | 33 | |
4 | 4 | 54 | 0 | 16 | 47 | |
Component 4 | 1 | 5 | 0 | 0 | 9 | 27 |
2 | 16 | 56 | 0 | 11 | 26 | |
3 | 24 | 56 | 0 | 11 | 56 | |
4 | 4 | 55 | 0 | 9 | 62 |
Component | Off-Site Factory | Supplier Warehouse 1 | Supplier Warehouse 2 | Supplier Warehouse 3 | Supplier Warehouse 4 | Supplier Warehouse 5 |
---|---|---|---|---|---|---|
Component 1 | 1 | 10 | 40 | 0 | 25 | 32 |
2 | 11 | 58 | 0 | 1 | 32 | |
3 | 8 | 4 | 0 | 13 | 5 | |
4 | 19 | 52 | 0 | 6 | 44 | |
Component 2 | 1 | 42 | 38 | 0 | 25 | 30 |
2 | 43 | 42 | 0 | 15 | 9 | |
3 | 18 | 24 | 0 | 41 | 77 | |
4 | 16 | 41 | 0 | 17 | 17 | |
Component 3 | 1 | 16 | 33 | 0 | 15 | 49 |
2 | 20 | 3 | 0 | 16 | 25 | |
3 | 15 | 66 | 0 | 26 | 33 | |
4 | 15 | 53 | 0 | 32 | 47 | |
Component 4 | 1 | 21 | 0 | 0 | 18 | 27 |
2 | 64 | 56 | 0 | 22 | 26 | |
3 | 99 | 56 | 0 | 22 | 56 | |
4 | 15 | 55 | 0 | 17 | 62 |
Supplier Warehouse | Component 1 | Component 2 | Component 3 | Component 4 |
---|---|---|---|---|
1 | 24 | 60 | 34 | 99 |
2 | 77 | 72 | 77 | 83 |
3 | 0 | 0 | 0 | 0 |
4 | 23 | 50 | 45 | 40 |
5 | 56 | 67 | 77 | 86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salari, S.A.-S.; Mahmoudi, H.; Aghsami, A.; Jolai, F.; Jolai, S.; Yazdani, M. Off-Site Construction Three-Echelon Supply Chain Management with Stochastic Constraints: A Modelling Approach. Buildings 2022, 12, 119. https://doi.org/10.3390/buildings12020119
Salari SA-S, Mahmoudi H, Aghsami A, Jolai F, Jolai S, Yazdani M. Off-Site Construction Three-Echelon Supply Chain Management with Stochastic Constraints: A Modelling Approach. Buildings. 2022; 12(2):119. https://doi.org/10.3390/buildings12020119
Chicago/Turabian StyleSalari, Samira Al-Sadat, Hediye Mahmoudi, Amir Aghsami, Fariborz Jolai, Soroush Jolai, and Maziar Yazdani. 2022. "Off-Site Construction Three-Echelon Supply Chain Management with Stochastic Constraints: A Modelling Approach" Buildings 12, no. 2: 119. https://doi.org/10.3390/buildings12020119
APA StyleSalari, S. A. -S., Mahmoudi, H., Aghsami, A., Jolai, F., Jolai, S., & Yazdani, M. (2022). Off-Site Construction Three-Echelon Supply Chain Management with Stochastic Constraints: A Modelling Approach. Buildings, 12(2), 119. https://doi.org/10.3390/buildings12020119