Dynamic Characteristic and Decoupling Relationship of Energy Consumption on China’s Construction Industry
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Building Energy Consumption
1.2.2. Energy Decoupling Analysis
1.3. Aim and Question
2. Materials and Methods
2.1. Research Area: China
2.2. Research Methods
2.2.1. Coefficient of Variation
2.2.2. Hot Spot Analysis
2.2.3. Decoupling Model
2.3. Research Steps and Data Source
3. Results
3.1. Temporal Characteristic of Energy Consumption
3.1.1. Temporal Trend of ECA
3.1.2. Temporal Trend of ECI
3.2. Spatial Characteristic of Energy Consumption
3.2.1. Spatial Heterogeneity Analysis
3.2.2. Spatial Cluster Analysis
3.2.3. Spatial Aggregation Analysis
3.3. Decoupling Relationship Analysis
3.3.1. Decoupling Types in Two Periods
3.3.2. Decoupling Change Types
4. Discussions
4.1. Theoretical Insights
4.1.1. Temporal Trends in Construction Energy Consumption
4.1.2. Spatial Effects of Construction Energy Consumption
4.1.3. Decoupling Characteristics of Construction Energy Consumption
4.2. Policy Enlightenment
4.2.1. Policy Suggestion in Leader Zoning
4.2.2. Policy Suggestion in Intermediate Zoning
4.2.3. Policy Suggestions in Laggard Zoning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
ID | Name | Growth Rate | Decoupling Index | |||||
---|---|---|---|---|---|---|---|---|
Energy Consumption | Gross Output Value | Added Value | Total Profit | Gross Output Value | Added Value | Total Profit | ||
1 | Beijing | −0.07 | 0.10 | 0.17 | 0.08 | −0.69 | −0.39 | −0.87 |
2 | Tianjin | 0.04 | 0.11 | 0.19 | 0.10 | 0.33 | 0.20 | 0.38 |
3 | Hebei | −0.09 | 0.12 | 0.09 | 0.08 | −0.77 | −0.98 | −1.12 |
4 | Shanxi | 0.01 | 0.08 | 0.14 | 0.07 | 0.18 | 0.10 | 0.18 |
5 | Inner Mongolia | 0.03 | 0.05 | −0.02 | 0.10 | 0.77 | −1.44 | 0.34 |
6 | Liaoning | 0.15 | 0.11 | 0.08 | 0.10 | 1.36 | 1.87 | 1.55 |
7 | Jilin | 0.11 | 0.13 | 0.19 | 0.09 | 0.83 | 0.58 | 1.22 |
8 | Heilongjiang | 0.13 | 0.04 | −0.02 | 0.07 | 3.29 | −6.32 | 1.81 |
9 | Shanghai | −0.03 | 0.05 | 0.05 | 0.04 | −0.53 | −0.58 | −0.66 |
10 | Jiangsu | 0.08 | 0.15 | 0.15 | 0.10 | 0.56 | 0.56 | 0.86 |
11 | Zhejiang | 0.04 | 0.14 | 0.11 | 0.09 | 0.31 | 0.40 | 0.49 |
12 | Anhui | 0.12 | 0.14 | 0.15 | 0.10 | 0.89 | 0.85 | 1.27 |
13 | Fujian | 0.09 | 0.18 | 0.22 | 0.13 | 0.52 | 0.43 | 0.70 |
14 | Jiangxi | 0.08 | 0.20 | 0.23 | 0.11 | 0.42 | 0.36 | 0.75 |
15 | Shandong | −0.10 | 0.11 | 0.10 | 0.08 | −0.89 | −1.01 | −1.20 |
16 | Henan | 0.11 | 0.12 | 0.15 | 0.10 | 0.86 | 0.72 | 1.04 |
17 | Hubei | 0.04 | 0.18 | 0.17 | 0.13 | 0.19 | 0.21 | 0.27 |
18 | Hunan | −0.01 | 0.14 | 0.15 | 0.11 | −0.06 | −0.05 | −0.07 |
19 | Guangdong | 0.03 | 0.12 | 0.13 | 0.09 | 0.23 | 0.22 | 0.33 |
20 | Guangxi | 0.04 | 0.16 | 0.14 | 0.14 | 0.26 | 0.29 | 0.29 |
21 | Hainan | 0.12 | 0.07 | 0.19 | 0.14 | 1.77 | 0.62 | 0.83 |
22 | Chongqing | 0.07 | 0.17 | 0.18 | 0.15 | 0.40 | 0.37 | 0.44 |
23 | Sichuan | 0.11 | 0.14 | 0.13 | 0.12 | 0.77 | 0.84 | 0.88 |
24 | Guizhou | 0.12 | 0.21 | 0.27 | 0.20 | 0.55 | 0.43 | 0.57 |
25 | Yunnan | 0.04 | 0.15 | 0.19 | 0.18 | 0.28 | 0.22 | 0.24 |
26 | Shaanxi | 0.06 | 0.08 | 0.17 | 0.13 | 0.73 | 0.35 | 0.46 |
27 | Gansu | 0.05 | 0.19 | 0.20 | 0.12 | 0.26 | 0.26 | 0.42 |
28 | Qinghai | 0.07 | 0.09 | 0.17 | 0.16 | 0.77 | 0.41 | 0.43 |
29 | Ningxia | 0.05 | 0.13 | 0.19 | 0.15 | 0.39 | 0.27 | 0.34 |
30 | Xinjiang | 0.16 | 0.19 | 0.20 | 0.15 | 0.82 | 0.80 | 1.04 |
ID | Name | Growth Rate | Decoupling Index | |||||
---|---|---|---|---|---|---|---|---|
Energy Consumption | Gross Output Value | Added Value | Total Profit | Gross Output Value | Added Value | Total Profit | ||
1 | Beijing | 0.01 | 0.07 | 0.11 | 0.09 | 0.07 | 0.05 | 0.05 |
2 | Tianjin | −0.01 | −0.02 | −0.09 | −0.01 | 0.76 | 0.15 | 1.07 |
3 | Hebei | −0.02 | 0.02 | −0.02 | 0.04 | −0.82 | 1.14 | −0.49 |
4 | Shanxi | 0.00 | 0.10 | 0.01 | 0.01 | 0.02 | 0.12 | 0.15 |
5 | Inner Mongolia | 0.07 | −0.01 | −0.07 | 0.01 | −11.07 | −1.05 | 11.55 |
6 | Liaoning | −0.05 | −0.08 | −0.13 | −0.05 | 0.63 | 0.38 | 1.09 |
7 | Jilin | −0.01 | −0.03 | −0.04 | −0.03 | 0.23 | 0.22 | 0.30 |
8 | Heilongjiang | 0.01 | −0.07 | −0.01 | −0.13 | −0.11 | −0.56 | −0.06 |
9 | Shanghai | 0.02 | 0.07 | 0.04 | −0.03 | 0.32 | 0.48 | −0.61 |
10 | Jiangsu | 0.01 | 0.06 | 0.05 | 0.10 | 0.14 | 0.18 | 0.08 |
11 | Zhejiang | 0.01 | −0.03 | −0.03 | 0.08 | −0.36 | −0.33 | 0.14 |
12 | Anhui | 0.04 | 0.08 | 0.04 | 0.18 | 0.52 | 0.98 | 0.24 |
13 | Fujian | 0.04 | 0.12 | 0.08 | 0.15 | 0.36 | 0.51 | 0.28 |
14 | Jiangxi | 0.07 | 0.12 | 0.07 | 0.06 | 0.59 | 0.93 | 1.17 |
15 | Shandong | 0.01 | 0.09 | 0.00 | 0.08 | 0.06 | 1.97 | 0.06 |
16 | Henan | 0.12 | 0.10 | 0.12 | 0.20 | 1.27 | 1.03 | 0.62 |
17 | Hubei | −0.01 | 0.10 | 0.07 | 0.09 | −0.12 | −0.17 | −0.14 |
18 | Hunan | 0.02 | 0.10 | 0.08 | 0.12 | 0.24 | 0.29 | 0.20 |
19 | Guangdong | −0.02 | 0.13 | 0.08 | 0.12 | −0.12 | −0.19 | −0.13 |
20 | Guangxi | 0.19 | 0.13 | 0.14 | 0.06 | 1.50 | 1.42 | 3.23 |
21 | Hainan | 0.01 | 0.06 | 0.07 | 0.06 | 0.20 | 0.16 | 0.19 |
22 | Chongqing | 0.03 | 0.06 | 0.00 | 0.13 | 0.47 | −10.44 | 0.20 |
23 | Sichuan | 0.08 | 0.11 | 0.13 | 0.12 | 0.77 | 0.67 | 0.69 |
24 | Guizhou | 0.07 | 0.14 | 0.18 | 0.13 | 0.52 | 0.39 | 0.56 |
25 | Yunnan | 0.05 | 0.13 | 0.16 | 0.11 | 0.40 | 0.34 | 0.48 |
26 | Shaanxi | 0.00 | 0.11 | 0.08 | 0.07 | −0.05 | −0.06 | −0.07 |
27 | Gansu | 0.01 | 0.01 | 0.03 | −0.05 | 2.04 | 0.54 | −0.27 |
28 | Qinghai | 0.06 | 0.02 | −0.13 | 0.02 | 2.71 | −0.50 | 3.68 |
29 | Ningxia | 0.01 | 0.03 | −0.03 | −0.05 | 0.41 | −0.36 | −0.25 |
30 | Xinjiang | 0.08 | 0.00 | −0.01 | 0.02 | 38.57 | −6.51 | 4.83 |
References
- United Nations Environment Programme (UNEP). 2021 Global Status Report for Buildings and Construction: Towards a Zero-Emissions, Efficient and Resilient Buildings and Construction Sector; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- Huo, T.; Ren, H.; Zhang, X.; Cai, W.; Feng, W.; Zhou, N.; Wang, X. China’s energy consumption in the building sector: A statistical yearbook-energy balance sheet based splitting method. J. Clean. Prod. 2018, 185, 665–679. [Google Scholar] [CrossRef]
- Li, Z.; Song, Y. Energy consumption linkages of the Chinese construction sector. Energies 2022, 15, 1761. [Google Scholar] [CrossRef]
- BP P.L.C. BP Statistical Review of World Energy 2021; BP: London, UK, 2021. [Google Scholar]
- United Nations Environment Programme (UNEP). 2020 Global Status Report for Buildings and Construction: Towards a Zero-Emissions, Efficient and Resilient Buildings and Construction Sector; UNEP: Nairobi, Kenya, 2020. [Google Scholar]
- International Energy Agency (IEA). Building Energy Use in China: Transforming Construction and Influencing Consumption to 2050; IEA: Paris, France, 2015. [Google Scholar]
- China Association of Building Energy Efficiency (CABEE). China Building Energy Consumption Research Report (2021); CABEE: Beijing, China, 2021. [Google Scholar]
- Global Construction Perspectives (GCP); Oxford Economics (OE). Global Construction 2030: A Global Forecast for the Construction Industry to 2030; GCP; OE: London, UK, 2015. [Google Scholar]
- Huo, T.; Cao, R.; Xia, N.; Hu, X.; Cai, W.; Liu, B. Spatial correlation network structure of China’s building carbon emissions and its driving factors: A social network analysis method. J. Environ. Manag. 2022, 320, 115808. [Google Scholar] [CrossRef] [PubMed]
- Huo, T.; Ma, Y.; Yu, T.; Cai, W.; Liu, B.; Ren, H. Decoupling and decomposition analysis of residential building carbon emissions from residential income: Evidence from the provincial level in China. Environ. Impact Assess. Rev. 2021, 86, 106487. [Google Scholar] [CrossRef]
- Chen, J.; Ma, H. Green Building and Green Construction; Wuhan University of Technology Press: Wuhan, China, 2020. [Google Scholar]
- Zhang, Y.; He, C.; Tang, B.; Wei, Y. China’s energy consumption in the building sector: A life cycle approach. Energy Build. 2015, 94, 240–251. [Google Scholar] [CrossRef]
- Xu, G.; Wang, W. China’s energy consumption in construction and building sectors: An outlook to 2100. Energy 2020, 195, 117045. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, J.; Ni, T.; Chen, L. Measurement of China’s building energy consumption from the perspective of a comprehensive modified life cycle assessment statistics method. Sustainability 2022, 14, 4587. [Google Scholar] [CrossRef]
- Berardi, U. A cross-country comparison of the building energy consumptions and their trends. Resour. Conserv. Recycl. 2017, 123, 230–241. [Google Scholar] [CrossRef]
- Luo, Z.; Lu, Y.; Cang, Y.; Yang, L. Study on dual-objective optimization method of life cycle energy consumption and economy of office building based on HypE genetic algorithm. Energy Build. 2022, 256, 111749. [Google Scholar] [CrossRef]
- Li, G.; Kou, C.; Wang, H. Estimating city-level energy consumption of residential buildings: A life-cycle dynamic simulation model. J. Environ. Manag. 2019, 240, 451–462. [Google Scholar] [CrossRef]
- Zhan, J.; Liu, W.; Wu, F.; Li, Z.; Wang, C. Life cycle energy consumption and greenhouse gas emissions of urban residential buildings in Guangzhou city. J. Clean. Prod. 2018, 194, 318–326. [Google Scholar] [CrossRef]
- Ma, J.; Du, G.; Zhang, Z.; Wang, P.; Xie, B. Life cycle analysis of energy consumption and CO2 emissions from a typical large office building in Tianjin, China. Build. Environ. 2017, 117, 36–48. [Google Scholar] [CrossRef]
- Guo, Y. Revisiting the building energy consumption in China: Insights from a large-scale national survey. Energy Sustain. Dev. 2022, 68, 76–93. [Google Scholar] [CrossRef]
- Wei, W.; He, L. China building energy consumption: Definitions and measures from an operational perspective. Energies 2017, 10, 582. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Zhen, M.; Guan, H.; Luo, W.; Liu, X. A prediction model for building energy consumption in a shopping mall based on Chaos theory. Energy Rep. 2022, 8, 5305–5312. [Google Scholar] [CrossRef]
- Shi, G.; Liu, D.; Wei, Q. Energy consumption prediction of office buildings based on echo state networks. Neurocomputing 2016, 216, 478–488. [Google Scholar] [CrossRef]
- Ji, R.; Qu, S. Investigation and evaluation of energy consumption performance for hospital buildings in China. Sustainability 2019, 11, 1724. [Google Scholar] [CrossRef] [Green Version]
- Felimban, A.; Prieto, A.; Knaack, U.; Klein, T.; Qaffas, Y. Assessment of current energy consumption in residential buildings in Jeddah, Saudi Arabia. Buildings 2019, 9, 163. [Google Scholar] [CrossRef] [Green Version]
- Olu-Ajayi, R.; Alaka, H.; Sulaimon, I.; Sunmola, F.; Ajayi, S. Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques. J. Build. Eng. 2022, 45, 103406. [Google Scholar] [CrossRef]
- Alam, M.; Devjani, M.R. Analyzing energy consumption patterns of an educational building through data mining. J. Build. Eng. 2021, 44, 103385. [Google Scholar] [CrossRef]
- Sekki, T.; Airaksinen, M.; Saari, A. Measured energy consumption of educational buildings in a Finnish city. Energy Build. 2015, 87, 105–115. [Google Scholar] [CrossRef]
- Deng, Y.; Gou, Z.; Gui, X.; Cheng, B. Energy consumption characteristics and influential use behaviors in university dormitory buildings in China’s hot summer-cold winter climate region. J. Build. Eng. 2021, 33, 101870. [Google Scholar] [CrossRef]
- Mathews, R.A.; Prasanna, V.R.; Shanmugapriya, T. Simulation and analysis of a factory building’s energy consumption using eQuest software. Chem. Eng. Technol. 2021, 44, 928–933. [Google Scholar] [CrossRef]
- Gu, X.; Xie, J.; Luo, Z.; Liu, J. Analysis to energy consumption characteristics and influencing factors of terminal building based on airport operating data. Sustain. Energy Technol. Assess. 2021, 44, 101034. [Google Scholar] [CrossRef]
- Lin, L.; Liu, X.; Zhang, T.; Liu, X. Energy consumption index and evaluation method of public traffic buildings in China. Sustain. Cities Soc. 2020, 57, 102132. [Google Scholar] [CrossRef]
- Webb, M. Biomimetic building facades demonstrate potential to reduce energy consumption for different building typologies in different climate zones. Clean Technol. Environ. Policy 2021, 24, 493–518. [Google Scholar] [CrossRef]
- Heydari, A.; Sadati, S.E.; Gharib, M.R. Effects of different window configurations on energy consumption in building: Optimization and economic analysis. J. Build. Eng. 2021, 35, 102099. [Google Scholar] [CrossRef]
- Alajmi, A.F.; Aba-Alkhail, F.; Alanzi, A. Determining the optimum fixed solar-shading device for minimizing the energy consumption of a side-lit office building in a hot climate. J. Eng. Res. 2021, 9, 320–335. [Google Scholar] [CrossRef]
- Anwar, M.W.; Ali, Z.; Javed, A.; Din, E.U.; Sajid, M. Analysis of the effect of passive measures on the energy consumption and zero-energy prospects of residential buildings in Pakistan. Build. Simul. 2021, 14, 1325–1342. [Google Scholar] [CrossRef]
- Maiolo, M.; Pirouz, B.; Bruno, R.; Palermo, S.A.; Arcuri, N.; Piro, P. The role of the extensive green roofs on decreasing building energy consumption in the mediterranean climate. Sustainability 2020, 12, 359. [Google Scholar] [CrossRef]
- Troup, L.; Phillips, R.; Eckelman, M.J.; Fannon, D. Effect of window-to-wall ratio on measured energy consumption in US office buildings. Energy Build. 2019, 203, 109434. [Google Scholar] [CrossRef]
- Amirkhani, S.; Bahadori-Jahromi, A.; Mylona, A.; Godfrey, P.; Cook, D. Impact of Low-E window films on energy consumption and CO2 emissions of an existing UK botel building. Sustainability 2019, 11, 4265. [Google Scholar] [CrossRef] [Green Version]
- Chi, F.; Zhang, J.; Li, G.; Zhu, Z.; Bart, D. An investigation of the impact of building azimuth on energy consumption in sizhai traditional dwellings. Energy 2019, 180, 594–614. [Google Scholar] [CrossRef]
- Mohammadi, A.; Saghafi, M.R.; Tahbaz, M.; Nasrollahi, F. Effects of vernacular climatic strategies (VCS) on energy consumption in common residential buildings in southern Iran: The case study of bushehr city. Sustainability 2017, 9, 1950. [Google Scholar] [CrossRef] [Green Version]
- Sheng, W.; Kan, X.; Wen, B.; Zhang, L. Design matters: New insights on optimizing energy consumption for residential buildings. Energy Build. 2021, 242, 110976. [Google Scholar] [CrossRef]
- Charles, A.; Maref, W.; Ouellet-Plamondon, C.M. Case study of the upgrade of an existing office building for low energy consumption and low carbon emissions. Energy Build. 2019, 183, 151–160. [Google Scholar] [CrossRef]
- Siamak, H.; Mohammad Hadi, Z.; Atoosa, S.; Ali, J.C. Analysis of energy consumption improvements of a zero-energy building in a humid mountainous area. J. Renew. Sustain. Energy 2019, 11, 015103. [Google Scholar] [CrossRef]
- Shehadi, M. Energy consumption optimization measures for buildings in the midwest regions of USA. Buildings 2018, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, D.; Cuniberti, B.; Bertoldi, P. Energy consumption and efficiency technology measures in European non-residential buildings. Energy Build. 2017, 153, 72–86. [Google Scholar] [CrossRef]
- Jingke, H.; Chenyu, W.; Chang-Richards, A.; Jingxiao, Z.; Qiping, S.; Bei, Q. A spatiotemporal analysis of energy use pathways in the construction industry: A study of China. Energy 2022, 239, 122084. [Google Scholar] [CrossRef]
- Huang, J.; Gurney, K.R. The variation of climate change impact on building energy consumption to building type and spatiotemporal scale. Energy 2016, 111, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, J.A.; Schlueter, A. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Appl. Energy 2015, 142, 247–265. [Google Scholar] [CrossRef]
- Song, S.; Leng, H.; Xu, H.; Guo, R.; Zhao, Y. Impact of urban morphology and climate on heating energy consumption of buildings in severe cold regions. Int. J. Environ. Res. Public Health 2020, 17, 8354. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.; Parshall, L.; Thompson, J.; Hammer, S.; Dickinson, J.; Modi, V. Spatial distribution of urban building energy consumption by end use. Energy Build. 2012, 45, 141–151. [Google Scholar] [CrossRef]
- Gavali, H.R.; Ralegaonkar, R.V. Evaluation of developed alkali-activated bricks for energy-efficient building construction. Proc. Inst. Civ. Eng. Energy 2020, 173, 177–183. [Google Scholar] [CrossRef]
- Yin, X.; Dong, Q.; Zhou, S.; Yu, J.; Huang, L.; Sun, C. Energy-saving potential of applying prefabricated straw bale construction (PSBC) in domestic buildings in northern China. Sustainability 2020, 12, 3464. [Google Scholar] [CrossRef] [Green Version]
- Pooya, L.; Polat, H. A comparative study of traditional and contemporary building envelope construction techniques in terms of thermal comfort and energy efficiency in hot and humid climates. Sustainability 2019, 11, 3582. [Google Scholar] [CrossRef] [Green Version]
- Reider, R.; Meir, I.A. Comparing the energy implications of FRP and concrete residential construction in a hot arid climate. Energy Build. 2019, 186, 98–107. [Google Scholar] [CrossRef]
- Bogdanovic, V.; Ranđelović, D.; Vasov, M.; Ignjatovic, M.; Stevanovic, J. Improving thermal stability and reduction of energy consumption by implementing Trombe Wall construction in the process of building design: The Serbia region. Therm. Sci. 2018, 2018, 167. [Google Scholar] [CrossRef] [Green Version]
- Ivanović-Šekularac, J.; Čikić-Tovarović, J.; Šekularac, N. Application of wood as an element of façade cladding in construction and reconstruction of architectural objects to improve their energy efficiency. Energy Build. 2016, 115, 85–93. [Google Scholar] [CrossRef]
- Miller, D.; Doh, J.H.; Mulvey, M. Concrete slab comparison and embodied energy optimisation for alternate design and construction techniques. Constr. Build. Mater. 2015, 80, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Hamdaoui, S.; Mahdaoui, M.; Allouhi, A.; Alaiji, R.E.; Kousksou, T.; El Bouardi, A. Energy demand and environmental impact of various construction scenarios of an office building in Morocco. J. Clean. Prod. 2018, 188, 113–124. [Google Scholar] [CrossRef]
- Macias, J.; Iturburu, L.; Rodriguez, C.; Agdas, D.; Boero, A.; Soriano, G. Embodied and operational energy assessment of different construction methods employed on social interest dwellings in Ecuador. Energy Build. 2017, 151, 107–120. [Google Scholar] [CrossRef]
- Heravi, G.; Qaemi, M. Energy performance of buildings: The evaluation of design and construction measures concerning building energy efficiency in Iran. Energy Build. 2014, 75, 456–464. [Google Scholar] [CrossRef]
- Devi, L.P.; Palaniappan, S. A study on energy use for excavation and transport of soil during building construction. J. Clean. Prod. 2017, 164, 543–556. [Google Scholar] [CrossRef]
- Wang, H.; Xia, S.; Zhang, Q.; Zhang, P. Has China’s construction waste change been decoupled from economic growth? Buildings 2022, 12, 147. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, Q.; Zhu, B. Comparisons of decoupling trends of global economic growth and energy consumption between developed and developing countries. Energy Policy 2018, 116, 30–38. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z. Decoupling economic growth from energy consumption in top five energy consumer economies: A technological and urbanization perspective. J. Clean. Prod. 2022, 357, 131890. [Google Scholar] [CrossRef]
- Chen, X.; Shuai, C.; Zhang, Y.; Wu, Y. Decomposition of energy consumption and its decoupling with economic growth in the global agricultural industry. Environ. Impact Assess. Rev. 2020, 81, 106364. [Google Scholar] [CrossRef]
- Zhang, M.; Song, Y.; Su, B.; Sun, X. Decomposing the decoupling indicator between the economic growth and energy consumption in China. Energy Effic. 2015, 8, 1231–1239. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, M. Using a new decoupling indicator (ZM decoupling indicator) to study the relationship between the economic growth and energy consumption in China. Nat. Hazards 2017, 88, 1013–1022. [Google Scholar] [CrossRef]
- Shi, L.; Vause, J.; Li, Q.; Tang, L.; Zhao, J. Decoupling analysis of energy consumption and economic development in China. Energy Sources Part B Econ. Plan. Policy 2016, 11, 788–792. [Google Scholar] [CrossRef]
- Wei, W.; Cai, W.; Guo, Y.; Bai, C.; Yang, L. Decoupling relationship between energy consumption and economic growth in China’s provinces from the perspective of resource security. Resour. Policy 2020, 68, 101693. [Google Scholar] [CrossRef]
- Meng, M.; Fu, Y.; Wang, X. Decoupling, decomposition and forecasting analysis of China’s fossil energy consumption from industrial output. J. Clean. Prod. 2018, 177, 752–759. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, L.; Zha, D.; Wu, F.; Wang, Q. Decoupling and decomposing analysis of construction industry’s energy consumption in China. Nat. Hazards 2019, 95, 39–53. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, X.; Wang, Y.; Song, R.; Li, J.; Yuan, W.; Zhang, S. The increasing district heating energy consumption of the building sector in China: Decomposition and decoupling analysis. J. Clean. Prod. 2020, 271, 122696. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, C. Exploring the influencing factors and decoupling state of residential energy consumption in Shandong. J. Clean. Prod. 2018, 194, 253–262. [Google Scholar] [CrossRef]
- Román-Collado, R.; Cansino, J.M.; Botia, C. How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes. Energy 2018, 148, 687–700. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Zhao, K.; Zhao, S. Spatial pattern and driving mechanism of urban–rural income gap in Gansu province of China. Land 2021, 10, 1002. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, K.; Zhang, P. Spatial inequality in China’s housing market and the driving mechanism. Land 2021, 10, 841. [Google Scholar] [CrossRef]
- Li, W.; Zhang, P.; Zhao, K.; Zhao, S. The geographical distribution and influencing factors of COVID-19 in China. Trop. Med. Infect. Dis. 2022, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, K.; Yan, Y.; Zhu, K.; Guan, C. Spatio-temporal evolution characteristics and influencing factors of urban service-industry land in China. Land 2022, 11, 13. [Google Scholar] [CrossRef]
- Li, M.; Hao, J.; Chen, L.; Gu, T.; Guan, Q.; Chen, A. Decoupling of urban and rural construction land and population change in China at the prefectural level. Resour. Sci. 2019, 41, 1897–1910. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development (OECD). Indicators to Measure Decoupling of Environmental Pressure and Economic Growth; OECD: Paris, France, 2002. [Google Scholar]
- Zhang, P.; Hu, J.; Zhao, K.; Chen, H.; Zhao, S.; Li, W. Dynamics and decoupling analysis of carbon emissions from construction industry in China. Buildings 2022, 12, 257. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Vaden, T.; Lahde, V.; Majava, A.; Jarvensivu, P.; Toivanen, T.; Hakala, E.; Eronen, J.T. Decoupling for ecological sustainability: A categorisation and review of research literature. Environ. Sci. Policy 2020, 112, 236–244. [Google Scholar] [CrossRef]
- Peng, H.; Guo, L.; Zhang, J.; Zhong, S.; Yu, H.; Yan, Y. Research progress and implication of the relationship between regional economic growth and resource-environmental pressure. Resour. Sci. 2020, 42, 593–606. [Google Scholar] [CrossRef]
- Song, Y.; Sun, J.; Zhang, M.; Su, B. Using the Tapio-Z decoupling model to evaluate the decoupling status of China’s CO2 emissions at provincial level and its dynamic trend. Struct. Chang. Econ. Dyn. 2020, 52, 120–129. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, Y.; Hong, J.; Chen, Y.; Ni, D.; Shen, Q. Spillover effect of technological innovation on CO2 emissions in China’s construction industry. Build. Environ. 2020, 171, 106653. [Google Scholar] [CrossRef]
- Hou, L. Research on the Chinese architecture energy resource consumption. Huazhong Archit. 2015, 33, 94–100. [Google Scholar] [CrossRef]
- Duan, H.; Chen, S.; Liu, Y.; Zhang, S.; Wang, X.; Wang, S.; Song, J. Characteristics of reginal energy consumption of China’s construction industry from the perspective of life cycle. China Popul. Resour. Environ. 2020, 30, 57–65. [Google Scholar] [CrossRef]
- Lai, X.; Lu, C.; Liu, J. A synthesized factor analysis on energy consumption, economy growth, and carbon emission of construction industry in China. Environ. Sci. Pollut. Res. Int. 2019, 26, 13896–13905. [Google Scholar] [CrossRef]
- Guo, S.; Yan, D.; Hu, S.; Zhang, Y. Modelling building energy consumption in China under different future scenarios. Energy 2021, 214, 119063. [Google Scholar] [CrossRef]
- Hassan, J.S.; Zin, R.M.; Abd Majid, M.Z.; Balubaid, S.; Hainin, M.R. Building energy consumption in Malaysia: An overview. J. Teknol. 2014, 70, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Salam, R.A.; Amber, K.P.; Ratyal, N.I.; Alam, M.; Akram, N.; Gómez Muñoz, C.Q.; García Márquez, F.P. An overview on energy and development of energy integration in major south Asian countries: The building sector. Energies 2020, 13, 5776. [Google Scholar] [CrossRef]
- Štreimikienė, D. Residential energy consumption trends, main drivers and policies in Lithuania. Renew. Sustain. Energy Rev. 2014, 35, 285–293. [Google Scholar] [CrossRef]
- Liu, X.; Hu, S.; Li, L. Temporal and spatial changes of building energy comsumption in China’s provinces and analysis of its influencing factors. Math. Pract. Theory 2020, 50, 74–85. [Google Scholar]
- Zhong, X.; Hu, M.; Deetman, S.; Rodrigues, J.F.D.; Lin, H.; Tukker, A.; Behrens, P. The evolution and future perspectives of energy intensity in the global building sector 1971–2060. J. Clean. Prod. 2021, 305, 127098. [Google Scholar] [CrossRef]
- Krarti, M. Evaluation of energy efficiency potential for the building sector in the Arab region. Energies 2019, 12, 4279. [Google Scholar] [CrossRef]
- Blomqvist, S.; Ödlund, L.; Rohdin, P. Understanding energy efficiency decisions in the building sector: A survey of barriers and drivers in Sweden. Clean. Eng. Technol. 2022, 9, 100527. [Google Scholar] [CrossRef]
- Du, P.; Zheng, L.; Xie, B.; Mahalingam, A. Barriers to the adoption of energy-saving technologies in the building sector: A survey study of Jing-Jin-Tang, China. Energy Policy 2014, 75, 206–216. [Google Scholar] [CrossRef]
- Wang, T.; Li, X.; Liao, P.; Fang, D. Building energy efficiency for public hospitals and healthcare facilities in China: Barriers and drivers. Energy 2016, 103, 588–597. [Google Scholar] [CrossRef]
- Shen, L.; Zhou, J.; Skitmore, M.; Xia, B. Application of a hybrid Entropy–McKinsey matrix method in evaluating sustainable urbanization: A China case study. Cities 2015, 42, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Shen, C.; Guo, Z. Quantitative research of energy consumption in prefabricated construction phase. Constr. Econ. 2021, 42, 105–112. [Google Scholar] [CrossRef]
- Lam, P.T.I.; Chan, E.H.W.; Poon, C.S.; Chau, C.K.; Chun, K.P. Factors affecting the implementation of green specifications in construction. J. Environ. Manag. 2010, 91, 654–661. [Google Scholar] [CrossRef]
- Alsharef, A.; Banerjee, S.; Uddin, S.M.J.; Albert, A.; Jaselskis, E. Early Impacts of the COVID-19 Pandemic on the United States Construction Industry. Int. J. Environ. Res. Public Health 2021, 18, 1559. [Google Scholar] [CrossRef]
- Hoang, A.T.; Sandro, N.; Olcer, A.I.; Ong, H.C.; Chen, W.H.; Chong, C.T.; Thomas, S.; Bandh, S.A.; Nguyen, X.P. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 2021, 154, 112322. [Google Scholar] [CrossRef]
- Casals, X.G. Analysis of building energy regulation and certification in Europe: Their role, limitations and differences. Energy Build. 2006, 38, 381–392. [Google Scholar] [CrossRef]
- Jang, H.; Choi, S.; Kim, W.; Chang, C. Strategic selection of green construction products. KSCE J. Civ. Eng. 2012, 16, 1115–1122. [Google Scholar] [CrossRef]
- Wang, Y.; Chong, D.; Liu, X. Evaluating the critical barriers to green construction technologies adoption in China. Sustainability 2021, 13, 6510. [Google Scholar] [CrossRef]
- Xiao, X. State and development strategy for green construction. Constr. Technol. 2018, 47, 1–4, 40. [Google Scholar] [CrossRef]
- Lu, C.; Wu, J.; Wang, M.; Li, X.; Liu, B.; Liang, C.; Hu, X. Improvement of core competitiveness of Chinese construction enterprises against the background of high-quality development. Strateg. Study CAE 2021, 23, 79–86. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, J.; Xu, K.; Li, Y. Study on improvement system of building energy efficiency of China. Build. Sci. 2015, 31, 1–14. [Google Scholar] [CrossRef]
- Zhang, K.; Lu, Y.; Lu, H. Countermeasures for high quality development of green buildings in China under the background of “double carbon” goal. Constr. Econ. 2022, 43, 14–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, J.; Jin, H. A Review of green building development in China from the perspective of energy saving. Energies 2018, 11, 334. [Google Scholar] [CrossRef]
- Department of Economic and Social Affairs of United Nations (DESA). World Urbanization Prospects 2018; DESA: New York, NY, USA, 2019. [Google Scholar]
Decoupling Type | Situation | ||||
---|---|---|---|---|---|
Decoupling | Strong | <0 | >0 | <0 | Best status, enjoying economy growing with reduced energy consumption |
Weak | >0 | >0 | [0, 0.8) | Second best status, with economy growing faster than the energy consumption growing | |
Recessive | <0 | <0 | (1.2, +∞) | Negative growing, with economic slowdown slower than energy consumption reduction | |
Coupling | Expansive | >0 | >0 | [0.8, 1.2] | Economic development and energy consumption grow in tandem |
Recessive | <0 | <0 | [0.8, 1.2] | Economic development and energy consumption decline in tandem | |
Negative Decoupling | Strong | >0 | <0 | < 0 | Worst, experiencing economic recession with increased energy consumption |
Weak | <0 | <0 | [0, 0.8) | Second worst, with economic slowdown faster than energy consumption reduction | |
Expansive | >0 | >0 | (1.2, +∞) | Economic growth is slower than energy consumption growth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Cao, X.; Zhang, S.; Lei, Z.; Zhao, K. Dynamic Characteristic and Decoupling Relationship of Energy Consumption on China’s Construction Industry. Buildings 2022, 12, 1745. https://doi.org/10.3390/buildings12101745
Chen C, Cao X, Zhang S, Lei Z, Zhao K. Dynamic Characteristic and Decoupling Relationship of Energy Consumption on China’s Construction Industry. Buildings. 2022; 12(10):1745. https://doi.org/10.3390/buildings12101745
Chicago/Turabian StyleChen, Chao, Xiaoteng Cao, Shuaibing Zhang, Zhendong Lei, and Kaixu Zhao. 2022. "Dynamic Characteristic and Decoupling Relationship of Energy Consumption on China’s Construction Industry" Buildings 12, no. 10: 1745. https://doi.org/10.3390/buildings12101745
APA StyleChen, C., Cao, X., Zhang, S., Lei, Z., & Zhao, K. (2022). Dynamic Characteristic and Decoupling Relationship of Energy Consumption on China’s Construction Industry. Buildings, 12(10), 1745. https://doi.org/10.3390/buildings12101745