Reuse of Untreated Fine Sediments as Filler: Is It More Beneficial than Incorporating Them as Sand?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Concrete Mixtures
2.3. Methods
2.3.1. Fresh Concrete
2.3.2. Cement Hydration
2.3.3. Mechanical Strength
2.3.4. Shrinkage Deformation
3. Results and Discussion
3.1. Slump and Unit Weight
3.2. Hydration Kinetics
3.3. Compressive Strength
3.4. Drying Shrinkage
4. Use of Fine Sediment: As Filler vs. as Sand
4.1. Technical Aspect
4.2. Environmental and Economic Aspects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, M.F.; Liu, Q.; Azim, I.; Zhu, X.; Yang, J.; Javed, M.F.; Rauf, M. Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming. J. Hazard. Mater. 2020, 384, 121322. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.F.; Javed, M.F.; Rauf, M.; Azim, I.; Ashraf, M.; Yang, J.; Liu, Q. Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming. Sci. Total Environ. 2021, 780, 146524. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Iqbal, M.F.; Rauf, M.; Ashraf, M.U.; Ulhaq, A.; Muhammad, H.; Liu, Q. Developing a sustainable concrete incorporating bentonite clay and silica fume: Mechanical and durability performance. J. Clean. Prod. 2022, 337, 130315. [Google Scholar] [CrossRef]
- Tazi, N.; Idir, R.; Ben Fraj, A. Towards achieving circularity in residential building materials: Potential stock, locks and opportunities. J. Clean. Prod. 2021, 281, 124489. [Google Scholar] [CrossRef]
- Idir, R.; Ben Fraj, A. Concrete based on recycled aggregates—Recycling and environmental analysis: A case study of paris’ region. Constr. Build. Mater. 2017, 157, 952–964. [Google Scholar]
- Idir, R.; Cyr, M.; Pavoine, A. Investigations on the durability of alkali-activated recycled glass. Constr. Build. Mater. 2020, 236, 117477. [Google Scholar] [CrossRef]
- DTBS. Bilan des Opérations de Dragage du Bassin de la Seine en 2018; Direction Territoriale Bassin de la Seine: Paris, France, 2019. (In French) [Google Scholar]
- ADEME. Etude sur le Prix D’élimination des Déchets Inertes du BTP; Direction Consommation Durable et Déchets–ADEME: Paris, France, 2012. (In French) [Google Scholar]
- Kasmi, A.; Abriak, N.-E.; Benzerzour, M.; Azrar, H. Environmental impact and mechanical behavior study of experimental road made with river sediments: Recycling of river sediments in road construction. J. Mater. Cycles Waste Manag. 2017, 19, 1405–1414. [Google Scholar] [CrossRef]
- Kamali, S.; Bernard, F.; Abriak, N.; Degrugilliers, P. Marine dredged sediments as new materials resource for road construction. Waste Manag. 2008, 28, 919–928. [Google Scholar]
- Bellara, S.; Hidjeb, M.; Maherzi, W.; Mezazigh, S.; Senouci, A. Optimization of an Eco-Friendly Hydraulic Road Binders Comprising Clayey Dam Sediments and Ground Granulated Blast-Furnace Slag. Buildings 2021, 11, 443. [Google Scholar] [CrossRef]
- Van Bunderen, C.; Snellings, R.; Vandewalle, L.; Cizer, O. Early-age hydration and autogenous deformation of cement paste containing flash calcined dredging sediments. Constr. Build. Mater. 2019, 200, 104–115. [Google Scholar] [CrossRef]
- Dang, T.A.; Kamali-Bernard, S.; Prince, W.A. Design of new blended cement based on marine dredged sediment. Constr. Build. Mater. 2013, 41, 602–611. [Google Scholar] [CrossRef]
- Ez-zaki, H.; Diouri, A. Microstructural and physico-mechanical properties of mortars-based dredged sediment. Asian J. Civ. Eng. 2019, 20, 9–19. [Google Scholar] [CrossRef]
- Benzerzour, M.; Amar, M.; Abriak, N.-E. New experimental approach of the reuse of dredged sediments in a cement matrix by physical and heat treatment. Constr. Build. Mater. 2017, 140, 432–444. [Google Scholar] [CrossRef]
- Safhi, A.-E.; Rivard, P.; Yahia, A.; Benzerzour, M.; Khayat, K.H. Valorization of dredged sediments in self-consolidating concrete: Fresh, hardened, and microstructural properties. J. Clean. Prod. 2020, 263, 121472. [Google Scholar] [CrossRef]
- Hadj Sadok, R.; Belas, N.; Tahlaiti, M.; Mazouzi, R. Reusing calcined sediments from Chorfa II dam as partial replacement of cement for sustainable mortar production. J. Build. Eng. 2021, 40, 102273. [Google Scholar] [CrossRef]
- Benzerzour, M.; Maherzi, W.; Amar, M.; Abriak, N.-E.; Damidot, D. Formulation of mortars based on thermally treated sediments. J. Mater. Cycles Waste Manag. 2018, 20, 592–603. [Google Scholar] [CrossRef]
- Zhao, Z.; Benzerzour, M.; Abriak, N.-E.; Damidot, D.; Courard, L.; Wang, D. Use of uncontaminated marine sediments in mortar and concrete by partial substitution of cement. Cem. Concr. Compos. 2018, 93, 155–162. [Google Scholar] [CrossRef]
- Agostini, F.; Skoczylas, F.; Lafhaj, Z. About a possible valorisation in cementitious materials of polluted sediments after treatment. Cem. Concr. Compos. 2007, 29, 270–278. [Google Scholar] [CrossRef]
- Limeira, J.; Etxeberria, M.; Agulló, L.; Molina, D. Mechanical and durability properties of concrete made with dredged marine sand. Constr. Build. Mater. 2011, 25, 4165–4174. [Google Scholar] [CrossRef]
- Said, I.; Missaoui, A.; Lafhaj, Z. Reuse of Tunisian marine sediments in paving blocks: Factory scale experiment. J. Clean. Prod. 2015, 102, 66–77. [Google Scholar] [CrossRef]
- Beddaa, H.; Ben Fraj, A.; Ducléroir, S. Experimental study on river sediment incorporation in concrete as a full aggregate replacement: Technical feasibility and economic viability. Constr. Build. Mater. 2021, 313, 125425. [Google Scholar] [CrossRef]
- Beddaa, H.; Ouazi, I.; Ben Fraj, A.; Lavergne, F.; Torrenti, J.-M. Reuse potential of dredged river sediments in concrete: Effect of sediment variability. J. Clean. Prod. 2020, 265, 121665. [Google Scholar] [CrossRef]
- Millrath, K.; Kozlova, S.; Shimanovich, S.; Meyer, C. Beneficial Use of Dredge Material. Progress Report Prepared for Echo Environmental; Columbia University: New York, NY, USA, 2001. [Google Scholar]
- Ouédraogo, N.P.; Becquart, F.; Benzerzour, M.; Abriak, N.-E. Influence of fine sediments on rheology properties of self-compacting concretes. Powder Technol. 2021, 392, 544–557. [Google Scholar] [CrossRef]
- Legifrance. Arrêté du 12 Décembre 2014, Relatif Aux Conditions D’admission des Déchets Inertes Dans les Installations Relevant des Rubriques 2515, 2516, 2517 et dans les Installations de Stockage de Déchets Inertes Relevant de la Rubrique 2760 de la Nomenclature des Installations Classées; Legifrance: Paris, France, 2014; Available online: https://www.legifrance.gouv.fr/loda/id/JORFTEXT000029893828/ (accessed on 20 November 2021). (In French)
- Legifrance. Arrêté du 9 Août 2006, Relatif aux Niveaux à Prendre en Compte lors D’une Analyse de Rejets dans les Eaux de Surface ou de Sédiments Marins, Estuariens ou Extraits de Cours d’eau ou Canaux Relevant Respectivement des Rubriques 2.2.3.0, 4.1.3.0 et 3.2.1.0 de la Nomenclature Annexée à L’article r. 214–1 du code de L’environnement; Legifrance: Paris, France, 2006; Available online: https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000423497/ (accessed on 20 November 2021). (In French)
- EN12350-2; Testing Fresh Concrete–Part 2: Slump Test. Françaisede Normalization: Paris, France, 2012.
- EN196-9; Methods of Testing Cement—Part 9: Heat of Hydration-Semi-Adiabatic Method. Françaisede Normalization: Paris, France, 2010.
- EN12390-3; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. Françaisede Normalization: Paris, France, 2012.
- NF P 15-433; Cement Test Methods—Determination of Shrinkage and Swelling. Françaisede Normalization: Paris, France, 1994.
- Beddaa, H.; Ben Fraj, A.; Lavergne, F.; Torrenti, J.-M. Effect of potassium humate as humic substances from river sediments on the rheology, the hydration and the strength development of a cement paste. Cem. Concr. Compos. 2019, 104, 103400. [Google Scholar] [CrossRef]
- Agostini, F.; Davy, C.A.; Skoczylas, F.; Dubois, T. Effect of microstructure and curing conditions upon the performance of a mortar added with Treated Sediment Aggregates (TSA). Cem. Concr. Res. 2010, 40, 1609–1619. [Google Scholar] [CrossRef]
- Van Bunderen, C.; Benboudjema, F.; Snellings, R.; Vandewalle, L.; Cizer, Ö. Experimental analysis and modelling of mechanical properties and shrinkage of concrete recycling flash calcined dredging sediments. Cem. Concr. Compos. 2021, 115, 103787. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Q. The behaviour of organic matter in the process of soft soil stabilization using cement. Bull. Eng. Geol. Environ. 2006, 65, 445–448. [Google Scholar] [CrossRef]
- Beddaa, H.; Ben Fraj, A.; Lavergne, F.; Torrenti, J.-M. Early-Age Shrinkage of Cement Paste Containing Humic Substances as that from River Dredging Sediments in France. Symp. Paper 2021, 349, 23–39. [Google Scholar]
- EN1744-1+A1; Tests for Determining the Chemical Properties of Aggregates—Part 1: Chemical Analysis. Afnor: Paris, France, 2014.
- Snellings, R.; Horckmans, L.; Van Bunderen, C.; Vandewalle, L.; Cizer, O. Flash-calcined dredging sediment blended cements: Effect on cement hydration and properties. Mater. Struct. 2017, 50, 1–12. [Google Scholar] [CrossRef]
- Buth, E.; Ivey, D.L.; Hirsch, T.J. Clay, Aggregate, and Concrete; Deleterious Materials in Concrete; Texas A&M University: College Station, TX, USA, 1967; p. 34. [Google Scholar]
- Zhao, H.; Ma, Y.; Zhang, J.; Hu, Z.; Li, H.; Wang, Y.; Liu, J.; Wang, K. Effect of clay content on shrinkage of cementitious materials. Constr. Build. Mater. 2022, 322, 125959. [Google Scholar] [CrossRef]
- ADEME. Guide Sectorial 2015: Réaliser une Analyse Environnementale Dans les Travaux Publics; ADEME: Paris, France, 2015. (In French) [Google Scholar]
Parameter | Unit | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | S1 | ISDI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | mg/kg | 13.9 | 6.4 | 1.6 | 1.1 | 3.4 | 15.1 | 4.5 | 4.7 | 10.3 | 2.6 | 100 | – |
Zn | mg/kg | 138.5 | 124.5 | 121.6 | 9.2 | 143.5 | 228.2 | 84.5 | 128.9 | 163.6 | 16.1 | 300 | – |
Sb (leached) | mg/kg | <0.01 | <0.01 | 0.014 | 0.017 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | 0.031 | – | 0.06 |
PCBs | mg/kg | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.135 | <0.1 | <0.1 | 0.131 | 0.68 | – |
Sulphates | mg/kg | 9.8 | 18.6 | 9.6 | 58.4 | 19.5 | 16.4 | 12.4 | 5.3 | <5 | 55.1 | – | 1000 |
Organic matter | % | 12.7 | 6.5 | 9.9 | 5.4 | 14.8 | 11.9 | 13.0 | 13.0 | 12.9 | 4.6 | – | – |
Sample | Cement | Limestone Filler | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Density | 3.11 | 2.70 | 2.20 | 2.26 | 2.24 | 2.41 | 2.00 | 2.26 | 2.11 | 2.16 | 2.16 | 2.31 |
Concrete Notation | Cement | Limestone Filler | Sediment | Sand (0/4 mm) | Coarse Aggregates (4/20 mm) | Effective Water | Total Water |
---|---|---|---|---|---|---|---|
CC | 335.0 | 0.0 | 0.0 | 881.1 | 814.4 | 184.3 | 244.3 |
CF | 301.5 | 31.7 | 0.0 | 881.1 | 814.4 | 183.3 | 243.3 |
CF1 | 301.5 | 0.0 | 29.0 | 881.1 | 814.4 | 181.8 | 241.8 |
CF2 | 301.5 | 0.0 | 29.4 | 881.1 | 814.4 | 182.0 | 242.0 |
CF3 | 301.5 | 0.0 | 29.2 | 881.1 | 814.4 | 181.9 | 241.9 |
CF4 | 301.5 | 0.0 | 30.2 | 881.1 | 814.4 | 182.5 | 242.5 |
CF5 | 301.5 | 0.0 | 27.8 | 881.1 | 814.4 | 181.1 | 241.1 |
CF6 | 301.5 | 0.0 | 29.4 | 881.1 | 814.4 | 182.0 | 242.0 |
CF7 | 301.5 | 0.0 | 28.5 | 881.1 | 814.4 | 181.5 | 241.5 |
CF8 | 301.5 | 0.0 | 28.8 | 881.1 | 814.4 | 181.6 | 241.6 |
CF9 | 301.5 | 0.0 | 28.8 | 881.1 | 814.4 | 181.6 | 241.6 |
CF10 | 301.5 | 0.0 | 29.6 | 881.1 | 814.4 | 182.1 | 242.1 |
CC | CF | CF1 | CF2 | CF3 | CF4 | CF5 | CF6 | CF7 | CF8 | CF9 | CF10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slump (cm) | 18 | 20 | 20 | 20 | 20 | 19 | 19 | 19 | 18 | 20 | 20 | 21 |
Unit weight (t/m) | 2.30 | 2.28 | 2.24 | 2.25 | 2.25 | 2.28 | 2.28 | 2.28 | 2.28 | 2.25 | 2.23 | 2.26 |
Control Concrete | Fine Sediments as Sand (Substitution of 30%) [24] | Fine Sediments as Addition to Cement (Substitution of 10%) | |
---|---|---|---|
Slump (cm) | 18 | 16–18 | 18–21 |
Hydration delay (hours) | - | 3–18 | <4 |
Compressive strength (MPa) | 38 | 18 (−53%) on average | 35 (−8%) on average |
Shrinkage at 90 days (%) | 0.049 | 0.105 (+114%) on average | 0.057 (+17%) on average |
Valorised amount per m of concrete | - | 240 kg on average | 29 kg on average |
Ingredients | Concrete Mixtures (kg/m) | Carbon Footprint (kg CO eq/t) | Cost (EUR/t) | ||
---|---|---|---|---|---|
Control Concrete | Sediments as Sand | Sediments as Filler | |||
Cement | 335 | 335 | 301.5 | 866 | 100 |
Aggregates | 1695.5 | 1431.2 | 1695.5 | 2.3 | 15 |
Sediment | 0 | 240.8 | 29.1 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beddaa, H.; Ben Fraj, A.; Lavergne, F.; Torrenti, J.-M. Reuse of Untreated Fine Sediments as Filler: Is It More Beneficial than Incorporating Them as Sand? Buildings 2022, 12, 211. https://doi.org/10.3390/buildings12020211
Beddaa H, Ben Fraj A, Lavergne F, Torrenti J-M. Reuse of Untreated Fine Sediments as Filler: Is It More Beneficial than Incorporating Them as Sand? Buildings. 2022; 12(2):211. https://doi.org/10.3390/buildings12020211
Chicago/Turabian StyleBeddaa, Hamza, Amor Ben Fraj, Francis Lavergne, and Jean-Michel Torrenti. 2022. "Reuse of Untreated Fine Sediments as Filler: Is It More Beneficial than Incorporating Them as Sand?" Buildings 12, no. 2: 211. https://doi.org/10.3390/buildings12020211
APA StyleBeddaa, H., Ben Fraj, A., Lavergne, F., & Torrenti, J. -M. (2022). Reuse of Untreated Fine Sediments as Filler: Is It More Beneficial than Incorporating Them as Sand? Buildings, 12(2), 211. https://doi.org/10.3390/buildings12020211