Carbonation and Corrosion Problems in Reinforced Concrete Structures
Abstract
:1. Introduction to Carbonation and Its Mechanisms
1.1. Factors Contribute to Carbonation
1.2. Carbonation Depth with Time
Carbonation Depth | Environment | Major Findings | Research Focus |
---|---|---|---|
Depth increases with stress Carbonation depth increases | Lab exposure Natural exposure | Low load decreases carbonation, while high load increases carbonation. Unstressed structure life decreased by 1/3 under combined stress. | Flexural stress effect on carbonation [25] Stress effect on carbonation [26] |
Carbonation time increases | Field exposure | More corrosion is needed to generate cracks on the surface. | Cover depth effect on carbonation-induced corrosion [27] |
Carbonation depth varies | Recycled mixed concrete | Recycled coarse aggregate controls carbonation more effectively than nono-SiO2. | Inhomogeneities in carbonation depth recycled aggregate [28] |
Carbonation depth decreases under sCO2 | Lab exposure | Among porosity, aggregate size, and their distribution, porosity in the interfacial transition zone makes the greatest contribution to carbonation | Interfacial transition zone changes under supercritical carbon dioxide [29] |
Carbonation depth increases | Accelerated lab environment | Carbonation depth increases exponential function for temperature, power function for CO2, and polynomial function for relative humidity. | Carbonation depth as a function of temperature, humidity, and CO2 [24] |
Carbonation depth decreases for BF slag | Natural carbonation | Among Portland cement, fly ash, and blast furnace slag, the latter yields the lowest uptake. | Changes in CO2 uptake due to different mineral additions [30] |
Carbonation depth depends on additives | Natural and accelerated environment | It is hard to establish a correlation between lab-simulated and natural data. Only a simplistic model can be useful. | Carbonation modeling under normal and accelerated conditions [31] |
Carbonation changes with temperature, humidity, and CO2 | Natural environment | Climatic changes (e.g., changes in CO2 concentration, humidity, and temperature) contribute to carbonation and induce damage. | Carbonation depth changes under climate changes [32] Climate change impact on faster CO2 ingress [33] |
Uniform carbonation | Lab accelerated environment | Ambient pressure carbonation corrosion delays corrosion initiation. | Ambient pressure carbonation curing [34] |
Carbonation increases | Accelerated carbonation | Carbonation decreases the strength of concrete and increases corrosion damage. | Accelerated carbonation testing in a sewage environment [35] |
Corrosion increases with carbonation | Accelerated environment | Chloride penetration significantly increases with carbonation and crack size. | Combined impact of carbonation and crack width on chloride-assisted corrosion [36] |
Carbonation depth increases with sulfates | Lab simulated environment | Sodium sulfate, which sometimes exists in slag materials, increases carbonation. | Sulfate-assisted carbonation [37] |
2. Corrosion of Concrete Structures
2.1. Steel Bar Corrosion in Concrete
2.2. Volume Expansion around Concrete Bars
3. Previous Research on Concrete Corrosion
3.1. Corrosion Mechanisms
3.2. Corrosion Protection in Concrete by Inhibitors
3.3. Corrosion Protection in Concrete by Coatings
3.4. Corrosion Protection in Concrete by Cathodic Protection
4. Discussion Summary
5. Conclusions
- The structure of the concrete in terms of its porosity, water-to-cement ratio, and aggregate size and distribution, significantly contributes to carbonation, as do environmental factors.
- Carbonation destroys the passive film of steel bars, but it does not corrode the bars.
- The initiation of corrosion can be studied by destructive and nondestructive methods.
- Cracks initiate horizontally by breaking down the passive film and then propagate vertically due to the volume expansion of the corrosion product around the rebar.
- Chloride ions are a major contributor to localized corrosion and damage to the passive layer.
- Protection methods can be applied as per the required service life of the RC structure. If a long service life is required, an effective protection method should be utilized.
- Corrosion protection can be achieved through cathodic protection, inhibitor addition, or the application of metallic or nonmetallic coatings, depending on the environment in which the concrete is built.
- Measurement of corrosion potential, linear polarization, potentiodynamic polarization, and electrochemical impedance spectroscopy can all be used for qualitative and quantitative corrosion analyses.
- Constituent analysis of the passive layer and corrosion product can be carried out by X-ray diffraction or X-ray photoelectron spectroscopy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stewart, M.G.; Wang, X.; Nguyen, M.N. Climate change impact and risks of concrete infrastructure deterioration. Eng. Struct. 2011, 33, 1326–1337. [Google Scholar] [CrossRef]
- Marques, P.F.; Chastre, C.; Nunes, Â. Carbonation service life modelling of RC structures for concrete with Portland and blended cements. Cem. Concr. Compos. 2013, 37, 171–184. [Google Scholar] [CrossRef]
- Aguiar, J.B.; Júnior, C. Carbonation of surface protected concrete. Constr. Build. Mater. 2013, 49, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Park, D.C. Carbonation of concrete in relation to CO2 permeability and degradation of coatings. Constr. Build. Mater. 2008, 22, 2260–2268. [Google Scholar] [CrossRef]
- Šavija, B.; Luković, M. Carbonation of cement paste: Understanding, challenges, and opportunities. Constr. Build. Mater. 2016, 117, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Marques, P.F.; Costa, A. Service life of RC structures: Carbonation induced corrosion. Prescriptive vs. performance-based methodologies. Constr. Build. Mater. 2010, 24, 258–265. [Google Scholar] [CrossRef]
- Neves, R.; Branco, F.; de Brito, J. Field assessment of the relationship between natural and accelerated concrete carbonation resistance. Cem. Concr. Compos. 2013, 41, 9–15. [Google Scholar] [CrossRef]
- Jiang, J.-Y.; Wang, D.; Chu, H.-Y.; Ma, H.; Liu, Y.; Gao, Y.; Shi, J.; Sun, W. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study. Materials 2017, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Marie-Victoire, E.; Cailleux, E.; Texier, A. Carbonation and historical buildings made of concrete. J. Phys. IV 2006, 136, 305–318. [Google Scholar] [CrossRef]
- Stewart, M.G.; Wang, X.; Nguyen, M.N. Climate change adaptation for corrosion control of concrete infrastructure. Struct. Saf. 2012, 35, 29–39. [Google Scholar] [CrossRef]
- Roy, S.K.; Northwood, D.O.; Poh, K.B. Effect of plastering on the carbonation of a 19-year-old reinforced concrete building. Constr. Build. Mater. 1996, 10, 267–272. [Google Scholar] [CrossRef]
- Huang, N.; Chang, J.; Liang, M. Effect of plastering on the carbonation of a 35-year-old reinforced concrete building. Constr. Build. Mater. 2012, 29, 206–214. [Google Scholar] [CrossRef]
- Talakokula, V.; Bhalla, S.; Ball, R.J.; Bowen, C.R.; Pesce, G.L.; Kurchania, R.; Bhattacharjee, B.; Gupta, A.; Paine, K. Diagnosis of carbonation induced corrosion initiation and progression in reinforced concrete structures using piezo-impedance transducers. Sens. Actuators A Phys. 2016, 242, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Jiang, Z.; Zhang, W.; Gu, X.; Dou, X. Numerical analysis of the effect of coarse aggregate distribution on concrete carbonation. Constr. Build. Mater. 2012, 37, 27–35. [Google Scholar] [CrossRef]
- Basheer, L.; Basheer, P.A.M.; Long, A.E. Influence of coarse aggregate on the permeation, durability and the microstructure characteristics of ordinary Portland cement concrete. Constr. Build. Mater. 2005, 19, 682–690. [Google Scholar] [CrossRef]
- Jiang, Z.-L.; Gu, X.-L.; Huang, Q.-H.; Zhang, W.-P. Statistical analysis of concrete carbonation depths considering different coarse aggregate shapes. Constr. Build. Mater. 2019, 229, 116856. [Google Scholar] [CrossRef]
- Zhou, Y.; Gencturk, B.; Willam, K.; Attar, A. Carbonation-Induced and Chloride-Induced Corrosion in Reinforced Concrete Structures. J. Mater. Civ. Eng. 2014, 27, 04014245. [Google Scholar] [CrossRef]
- Elsalamawy, M.; Mohamed, A.; Kamal, E. The role of relative humidity and cement type on carbonation resistance of concrete. Alex. Eng. J. 2019, 58, 1257–1264. [Google Scholar] [CrossRef]
- Ferreira, M.; Jalali, S. Software for probability-based durability analysis of concrete structures. Concr. Repair Rehabil. Retrofit. 2005, 01, 117. [Google Scholar]
- Leemann, A.; Moro, F. Carbonation of concrete: The role of CO2 concentration, relative humidity and CO2 buffer capacity. Mater. Struct. 2016, 50, 30. [Google Scholar] [CrossRef]
- Jaffer, S.J.; Hansson, C.M. Chloride-induced corrosion products of steel in cracked-concrete subjected to different loading conditions. Cem. Concr. Res. 2009, 39, 116–125. [Google Scholar] [CrossRef]
- Czarnecki, L.; Woyciechowski, P. Prediction of the reinforced concrete structure durability under the risk of carbonation and chloride aggression. Bull. Pol. Acad. Sci. Tech. Sci. 2013, 61, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-s.; Cheng, M.; Zhu, J.-h. Carbonation Depth Model and Prediction of Hybrid Fiber Fly Ash Concrete. Adv. Civ. Eng. 2020, 2020, 9863963. [Google Scholar] [CrossRef]
- Liu, P.; Yu, Z.; Chen, Y. Carbonation depth model and carbonated acceleration rate of concrete under different environment. Cem. Concr. Compos. 2020, 114, 103736. [Google Scholar] [CrossRef]
- Wang, J.; Su, H.; Du, J. Influence of coupled effects between flexural tensile stress and carbonation time on the carbonation depth of concrete. Constr. Build. Mater. 2018, 190, 439–451. [Google Scholar] [CrossRef]
- Shi, X.; Yao, Y.; Wang, L.; Zhang, C.; Ahmad, I. A modified numerical model for predicting carbonation depth of concrete with stress damage. Constr. Build. Mater. 2021, 304, 124389. [Google Scholar] [CrossRef]
- Otieno, M.; Ikotun, J.; Ballim, Y. Experimental investigations on the influence of cover depth and concrete quality on time to cover cracking due to carbonation-induced corrosion of steel in RC structures in an urban, inland environment. Constr. Build. Mater. 2018, 198, 172–181. [Google Scholar] [CrossRef]
- Mi, R.; Pan, G. Inhomogeneities of carbonation depth distributions in recycled aggregate concretes: A visualisation and quantification study. Constr. Build. Mater. 2022, 330, 127300. [Google Scholar] [CrossRef]
- Bao, H.; Xu, G.; Yu, M.; Wang, Q.; Li, R.; Saafi, M.; Ye, J. Evolution of ITZ and its effect on the carbonation depth of concrete under supercritical CO2 condition. Cem. Concr. Compos. 2021, 126, 104336. [Google Scholar] [CrossRef]
- Younsi, A.; Turcry, P.; Aït-Mokhtar, A. Quantification of CO2 uptake of concretes with mineral additions after 10-year natural carbonation. J. Clean. Prod. 2022, 349, 131362. [Google Scholar] [CrossRef]
- Rathnarajan, S.; Dhanya, B.S.; Pillai, R.G.; Gettu, R.; Santhanam, M. Carbonation model for concretes with fly ash, slag, and limestone calcined clay-using accelerated and five-year natural exposure data. Cem. Concr. Compos. 2021, 126, 104329. [Google Scholar] [CrossRef]
- Chen, G.; Lv, Y.; Zhang, Y.; Yang, M. Carbonation depth predictions in concrete structures under changing climate condition in China. Eng. Fail. Anal. 2020, 119, 104990. [Google Scholar] [CrossRef]
- Al-Ameeri, A.S.; Rafiq, M.I.; Tsioulou, O.; Rybdylova, O. Impact of climate change on the carbonation in concrete due to carbon dioxide ingress: Experimental investigation and modelling. J. Build. Eng. 2021, 44, 102594. [Google Scholar] [CrossRef]
- Xian, X.; Zhang, D.; Lin, H.; Shao, Y. Ambient pressure carbonation curing of reinforced concrete for CO2 utilization and corrosion resistance. J. CO2 Util. 2021, 56, 101861. [Google Scholar] [CrossRef]
- Kong, L.; Han, M.; Yang, X. Evaluation on relationship between accelerated carbonation and deterioration of concrete subjected to a high-concentrated sewage environment. Constr. Build. Mater. 2019, 237, 117650. [Google Scholar] [CrossRef]
- Al-Ameeri, A.S.; Rafiq, M.I.; Tsioulou, O. Combined impact of carbonation and crack width on the Chloride Penetration and Corrosion Resistance of Concrete Structures. Cem. Concr. Compos. 2020, 115, 103819. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, W.; Hou, L.; Deng, D. Effect of carbonation on physical sulfate attack on concrete by Na2SO4. Constr. Build. Mater. 2018, 193, 211–220. [Google Scholar] [CrossRef]
- Golewski, G.L. A novel specific requirements for materials used in reinforced concrete composites subjected to dynamic loads. Compos. Struct. 2019, 223, 110939. [Google Scholar] [CrossRef]
- Parameshwaran, R.; Naresh, R.; Ram, V.V.; Srinivas, P.V. Microencapsulated bio-based phase change material-micro concrete composite for thermal energy storage. J. Build. Eng. 2021, 39, 102247. [Google Scholar] [CrossRef]
- Babalola, O.E.; Awoyera, P.O.; Le, D.H.; Bendea Romero, L.M. A review of residual strength properties of normal and high strength concrete exposed to elevated temperatures: Impact of materials modification on behaviour of concrete composite. Constr. Build. Mater. 2021, 296, 123448. [Google Scholar] [CrossRef]
- Bicer, K.; Yalciner, H.; Pekrioglu Balkas, A.; Kumbasaroglu, A. Effect of corrosion on flexural strength of reinforced concrete beams with polypropylene fibers. Constr. Build. Mater. 2018, 185, 574–588. [Google Scholar] [CrossRef]
- Tapan, M.; Aboutaha, R.S. Effect of steel corrosion and loss of concrete cover on strength of deteriorated RC columns. Constr. Build. Mater. 2010, 25, 2596–2603. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Z.; Wang, P.; Zhao, T. Corrosion mechanism of reinforced bars inside concrete and relevant monitoring or detection apparatus: A review. Constr. Build. Mater. 2021, 279, 122432. [Google Scholar] [CrossRef]
- Rodrigues, R.; Gaboreau, S.p.; Gance, J.; Ignatiadis, I.; Betelu, S.p. Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Constr. Build. Mater. 2020, 269, 121240. [Google Scholar] [CrossRef]
- Dhawan, S.; Bhalla, S.; Bhattacharjee, B. Reinforcement Corrosion in Concrete Structures and Service Life Predictions—A Review. In Proceedings of the 9th International Symposium on Advanced Science and Technology, New Delhi, India, 1–6 November 2014. [Google Scholar]
- Garcaos, P.; Saura, P.; Zornoza, E.; Andrade, C. Influence of pH on the nitrite corrosion inhibition of reinforcing steel in simulated concrete pore solution. Corros. Sci. 2011, 53, 3991–4000. [Google Scholar] [CrossRef]
- Xu, W.; Li, Y.; Li, H.; Wang, K.; Zhang, C.; Jiang, Y.; Qiang, S. Corrosion mechanism and damage characteristic of steel fiber concrete under the effect of stray current and salt solution. Constr. Build. Mater. 2021, 314, 125618. [Google Scholar] [CrossRef]
- Xu, X.; He, D.; Zeng, S.; He, W.; Tan, H.; Yu, Z. Effect of concrete cracks on the corrosion of headed studs in steel and concrete composite structures. Constr. Build. Mater. 2021, 293, 123440. [Google Scholar] [CrossRef]
- Akkaya, A.; Hakki, I. Investigation of the density, porosity, and permeability properties of pervious concrete with different methods. Constr. Build. Mater. 2021, 294, 123539. [Google Scholar] [CrossRef]
- Ridengaoqier, E.; Hatanaka, S.; Palamy, P.; Kurita, S. Experimental study on the porosity evaluation of pervious concrete by using ultrasonic wave testing on surfaces. Constr. Build. Mater. 2021, 300, 123959. [Google Scholar] [CrossRef]
- Chen, L.; Su, R.K.L. Corrosion rate measurement by using polarization resistance method for microcell and macrocell corrosion: Theoretical analysis and experimental work with simulated concrete pore solution. Constr. Build. Mater. 2020, 267, 121003. [Google Scholar] [CrossRef]
- Robuschi, S.; Tengattini, A.; Dijkstra, J.; Fernandez, I.; Lundgren, K. A closer look at corrosion of steel reinforcement bars in concrete using 3D neutron and X-ray computed tomography. Cem. Concr. Res. 2021, 144, 106439. [Google Scholar] [CrossRef]
- Roubin, E.; Andò, E.; Roux, S. The colours of concrete as seen by X-rays and neutrons. Cem. Concr. Compos. 2019, 104, 103336. [Google Scholar] [CrossRef] [Green Version]
- Dauti, D.; Tengattini, A.; Dal Pont, S.; Toropovs, N.; Briffaut, M.; Weber, B. Analysis of moisture migration in concrete at high temperature through in-situ neutron tomography. Cem. Concr. Res. 2018, 111, 41–55. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Z.; Wang, Y.; Yang, J.; Han, S.; Zhao, T. 3D neutron tomography of steel reinforcement corrosion in cement-based composites. Constr. Build. Mater. 2018, 162, 561–565. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.; Wang, Y.; Li, X.; Wang, F.; Zhu, W. Experimental Analysis of the Co-Deposition of Metal Cu and Nano-Sized SiC Particles with CTAB in Micro Via Filling. J. Electrochem. Soc. 2019, 166, D237–D243. [Google Scholar] [CrossRef]
- Mirghiasi, Z.; Bakhtiari, F.; Darezereshki, E.; Esmaeilzadeh, E. Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. J. Ind. Eng. Chem. 2014, 20, 113–117. [Google Scholar] [CrossRef]
- Sadowski, Ł.; Hoła, J.; Czarnecki, L.; Mathia, T.G. New paradigm in the metrology of concrete surface morphology: Methods, parameters and applications. Measurement 2021, 169, 108497. [Google Scholar] [CrossRef]
- Liang, Y.; Chu, H.; Guo, M.-Z.; Zeng, Y.; Zhu, Z.; Jiang, L. CTAB-assisted electrodeposition of Cu coating on hardened cement paste for controlling microbial induced concrete corrosion. Constr. Build. Mater. 2021, 304, 124605. [Google Scholar] [CrossRef]
- Wilks, S.A.; Michels, H.T.; Keevil, C.W. Survival of Listeria monocytogenes Scott A on metal surfaces: Implications for cross-contamination. Int. J. Food Microbiol. 2006, 111, 93–98. [Google Scholar] [CrossRef]
- Song, Q.; Guo, M.-Z.; Wang, L.; Ling, T.-C. Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resour. Conserv. Recycl. 2021, 173, 105740. [Google Scholar] [CrossRef]
- Samson, G.; Deby, F.; Garciaz, J.-L.; Lassoued, M. An alternative method to measure corrosion rate of reinforced concrete structures. Cem. Concr. Compos. 2020, 112, 103672. [Google Scholar] [CrossRef]
- Nasser, H.; Van Steen, C.; Vandewalle, L.; Verstrynge, E. An experimental assessment of corrosion damage and bending capacity reduction of singly reinforced concrete beams subjected to accelerated corrosion. Constr. Build. Mater. 2021, 286, 122773. [Google Scholar] [CrossRef]
- Senga Kiesse, T.; Bonnet, S.; Amiri, O.; Ventura, A. Analysis of corrosion risk due to chloride diffusion for concrete structures in marine environment. Mar. Struct. 2020, 73, 102804. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, W.; Yu, L.; Chen, M.; Yang, C.; Franasois, R.; Yang, K. Characteristics of the steel-concrete interface and their effect on the corrosion of steel bars in concrete. Constr. Build. Mater. 2020, 253, 119162. [Google Scholar] [CrossRef]
- Yang, D.; Yan, C.; Zhang, J.; Liu, S.; Li, J. Chloride threshold value and initial corrosion time of steel bars in concrete exposed to saline soil environments. Constr. Build. Mater. 2020, 267, 120979. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Z.; Xu, X.; Zhao, T.; Wang, P.; Li, Z. Combined application of novel electromagnetic sensors and acoustic emission apparatus to monitor corrosion process of reinforced bars in concrete. Constr. Build. Mater. 2020, 245, 118472. [Google Scholar] [CrossRef]
- Sunny, A.I.; Tian, G.Y.; Zhang, J.; Pal, M. Low frequency (LF) RFID sensors and selective transient feature extraction for corrosion characterisation. Sens. Actuators A Phys. 2016, 241, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Wiggenhauser, H.; Helmerich, R.; Dong, B.; Dong, P.; Xing, F. Long-term monitoring of reinforcement corrosion in concrete using ground penetrating radar. Corros. Sci. 2017, 114, 123–132. [Google Scholar] [CrossRef]
- Caines, S.; Khan, F.; Zhang, Y.; Shirokoff, J. Simplified electrochemical potential noise method to predict corrosion and corrosion rate. J. Loss Prev. Process Ind. 2017, 47, 72–84. [Google Scholar] [CrossRef]
- Li, C.; Chen, Q.; Wang, R.; Wu, M. Corrosion assessment of reinforced concrete structures exposed to chloride environments in underground tunnels: Theoretical insights and practical data interpretations. Cem. Concr. Compos. 2020, 112, 103652. [Google Scholar] [CrossRef]
- Zhang, W.; Francois, R.; Wang, R.; Cai, Y.; Yu, L. Corrosion behavior of stirrups in corroded concrete beams exposed to chloride environment under sustained loading. Constr. Build. Mater. 2020, 274, 121987. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Liu, B.; Liu, B.; Wu, W.; Yang, C. Corrosion-induced spalling of concrete cover and its effects on shear strength of RC beams. Eng. Fail. Anal. 2021, 127, 105538. [Google Scholar] [CrossRef]
- Piyasena, R. Crack Spacing, Crack Width, and Tension Stiffening Effect in Reinforced Concrete Beams and One-Way Slabs; Griffith University: Brisbane, Austria, 2003. [Google Scholar]
- Niu, D.; Zhang, L.; Fu, Q.; Wen, B.; Luo, D. Critical conditions and life prediction of reinforcement corrosion in coral aggregate concrete. Constr. Build. Mater. 2019, 238, 117685. [Google Scholar] [CrossRef]
- Zahid, H.F.; Jiradilok, P.; Kuntal, V.; Nagai, K. Investigation of the effects of multiple and multi-directional reinforcement on corrosion-induced concrete cracking pattern. Constr. Build. Mater. 2021, 283, 122594. [Google Scholar] [CrossRef]
- Li, Q.; Jin, X.; Yan, D.; Fu, C.; Xu, J. Study of wiring method on accelerated corrosion of steel bars in concrete. Constr. Build. Mater. 2020, 269, 121286. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, J.; Li, G.; Wang, P.; Wang, P.; Li, F.; Zhang, B.; Chi, H. Corrosion inhibition efficiency of compound nitrite with D-sodium gluconate on carbon steel in simulated concrete pore solution. Constr. Build. Mater. 2021, 288, 123101. [Google Scholar] [CrossRef]
- Bellal, Y.; Benghanem, F.; Keraghel, S. A new corrosion inhibitor for steel rebar in concrete: Synthesis, electrochemical and theoretical studies. J. Mol. Struct. 2020, 1225, 129257. [Google Scholar] [CrossRef]
- Tiwari, A.; Goyal, S.; Luxami, V.; Chakraborty, M.K.; Prabhakar, G. Assessment of corrosion inhibition efficiency of generic compounds having different functional groups in carbonated pore solution with chlorides and migration ability in concrete. Constr. Build. Mater. 2021, 290, 123275. [Google Scholar] [CrossRef]
- Khatami, D.; Hajilar, S.; Shafei, B. Investigation of oxygen diffusion and corrosion potential in steel-reinforced concrete through a cellular automaton framework. Corros. Sci. 2021, 187, 109496. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, Y.; Hang, J.; Zhang, Z.; Ma, Y.; Huang, H.; Yu, Q.; Wei, J. The effect of organic core–shell corrosion inhibitors on corrosion performance of the reinforcement in simulated concrete pore solution. Constr. Build. Mater. 2020, 267, 121011. [Google Scholar] [CrossRef]
- Zhu, Z.; Chu, H.; Guo, M.-Z.; Zhang, Y.; Song, Z.; Jiang, L. Anti-microbial corrosion performance of concrete treated by Cu2O electrodeposition: Influence of different treatment parameters. Cem. Concr. Compos. 2021, 123, 104195. [Google Scholar] [CrossRef]
- Kamde, D.K.; Pillai, R.G. Corrosion initiation mechanisms and service life estimation of concrete systems with fusion-bonded-epoxy (FBE) coated steel exposed to chlorides. Constr. Build. Mater. 2021, 277, 122314. [Google Scholar] [CrossRef]
- Al-Negheimish, A.; Hussain, R.R.; Alhozaimy, A.; Singh, D.D.N. Corrosion performance of hot-dip galvanized zinc-aluminum coated steel rebars in comparison to the conventional pure zinc coated rebars in concrete environment. Constr. Build. Mater. 2020, 274, 121921. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, B.; Qi, W.H.; Deng, Y.G.; Misra, R.D.K. Corrosion response of zinc phosphate conversion coating on steel fibers for concrete applications. J. Mater. Res. Technol. 2020, 9, 5912–5921. [Google Scholar] [CrossRef]
- Polder, R.; Peelen, W.H.A. Cathodic protection of steel in concrete–experience and overview of 30 years application. MATEC Web Conf. 2018, 199, 01002. [Google Scholar] [CrossRef]
- Zhang, E.Q.; Abbas, Z.; Tang, L. Predicting degradation of the anode–concrete interface for impressed current cathodic protection in concrete. Constr. Build. Mater. 2018, 185, 57–68. [Google Scholar] [CrossRef]
- Bahekar, P.V.; Gadve, S.S. Impressed current cathodic protection of rebar in concrete using Carbon FRP laminate. Constr. Build. Mater. 2017, 156, 242–251. [Google Scholar] [CrossRef]
- Parthiban, G.T.; Parthiban, T.; Ravi, R.; Saraswathy, V.; Palaniswamy, N.; Sivan, V. Cathodic protection of steel in concrete using magnesium alloy anode. Corros. Sci. 2008, 50, 3329–3335. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Xu, Y.; Jiang, L.; Ma, G. A comparative investigation on cathodic protections of three sacrificial anodes on chloride-contaminated reinforced concrete. Constr. Build. Mater. 2020, 246, 118476. [Google Scholar] [CrossRef]
- Redaelli, E.; Lollini, F.; Bertolini, L. Throwing power of localised anodes for the cathodic protection of slender carbonated concrete elements in atmospheric conditions. Constr. Build. Mater. 2012, 39, 95–104. [Google Scholar] [CrossRef]
- Van Belleghem, B.; Maes, M.; Soetens, T. Throwing power and service life of galvanic cathodic protection with embedded discrete anodes for steel reinforcement in chloride contaminated concrete. Constr. Build. Mater. 2021, 310, 125187. [Google Scholar] [CrossRef]
- Goyal, A.; Olorunnipa, E.K.; Pouya, H.S.; Ganjian, E.; Olubanwo, A.O. Potential and current distribution across different layers of reinforcement in reinforced concrete cathodic protection system—A numerical study. Constr. Build. Mater. 2020, 262, 120580. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuhaid, A.F.A.; Niaz, A. Carbonation and Corrosion Problems in Reinforced Concrete Structures. Buildings 2022, 12, 586. https://doi.org/10.3390/buildings12050586
Fuhaid AFA, Niaz A. Carbonation and Corrosion Problems in Reinforced Concrete Structures. Buildings. 2022; 12(5):586. https://doi.org/10.3390/buildings12050586
Chicago/Turabian StyleFuhaid, Abdulrahman Fahad Al, and Akbar Niaz. 2022. "Carbonation and Corrosion Problems in Reinforced Concrete Structures" Buildings 12, no. 5: 586. https://doi.org/10.3390/buildings12050586
APA StyleFuhaid, A. F. A., & Niaz, A. (2022). Carbonation and Corrosion Problems in Reinforced Concrete Structures. Buildings, 12(5), 586. https://doi.org/10.3390/buildings12050586