Experimental Studies for Shear and Multi-Impact Resistance Performance of Sand–Geofoam Material
Abstract
:1. Introduction
2. Experimental Program
2.1. Direct Shear Tests
2.1.1. Material Properties
2.1.2. Direct Shear Test Method
2.2. Laboratory Multi-Impact Tests
2.2.1. Test Instruments
2.2.2. Test Method
3. Results and Discussion
3.1. Results in Direct Shear Tests
3.1.1. Effect of the Moisture Content on Shear-Stress–Shear Displacement Curve
3.1.2. Effect of the Moisture Content and Normal Stress on Shear Strength
3.1.3. Effect of the Moisture Content on Internal Friction Angle and Cohesion
3.2. Results in Multi-Impact Tests
3.2.1. Effect of the Impact Height on the Multi-Impact Resistance for Different Sand Cushion Thickness
3.2.2. Effect of the Geofoam Quantity on the Multi-Impact Resistance of Sand–Geofoam Composite Cushion
3.2.3. Effect of the Geofoam Placement Height and the Geofoam Type on the Multi-Impact Resistance of Sand–Geofoam Composite Cushion
4. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Delhomme, F.; Mommessin, M.; Mougin, J.; Perrotin, P. Behavior of a structurally dissipating rock-shed: Experimental analysis and study of punching effects. Int. J. Solids Struct. 2005, 42, 4204–4219. [Google Scholar] [CrossRef]
- Zhao, P.; Xie, L.Z.; He, B.; Zhang, Y. Experimental study of rock-sheds constructed with PE fibers and composite cushion against rockfall impacts. Eng. Struct. 2018, 177, 175–189. [Google Scholar] [CrossRef]
- Zhao, P.; Xie, L.; Li, L.; Liu, Q.; Yuan, S. Large-scale rockfall impact experiments on a RC rock-shed with a newly proposed cushion layer composed of sand and EPE. Eng. Struct. 2018, 175, 386–398. [Google Scholar] [CrossRef]
- Zhao, P.; Yuan, S.; Li, L.; Ge, Q.; Liu, J.; Du, L. Experimental study on the multi-impact resistance of a composite cushion composed of sand and geofoam. Geotext. Geomembr. 2020, 49, 45–56. [Google Scholar] [CrossRef]
- Kawahara, S.; Muro, T. Effects of dry density and thickness of sandy soil on impact response due to rockfall. J. Terramechanics 2006, 43, 329–340. [Google Scholar] [CrossRef]
- Pei, X.J.; Liu, Y.; Wang, D.P. Study on the energy dissipation of sandy soil cushions on the rock-shed under rockfall impact load. J. Sichuan Univ. 2016, 48, 15–22. [Google Scholar]
- Ouyang, C.; Liu, Y.; Wang, D.; He, S. Dynamic Analysis of Rockfall Impacts on Geogrid Reinforced Soil and EPS Absorption Cushions. KSCE J. Civ. Eng. 2018, 23, 37–45. [Google Scholar] [CrossRef]
- Bhatti, A.Q. Computational Modeling of Energy Dissipation Characteristics of Expanded Polystyrene (EPS) Cushion of Reinforce Concrete (RC) Bridge Girder Under Rockfall Impact. Int. J. Civ. Eng. 2018, 16, 1635–1642. [Google Scholar] [CrossRef]
- Tsang, H.H.; Lo, S.; Xu, X.; Neaz Sheikh, M. Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures: Numerical study. Earthq. Eng. Struct. Dyn. 2012, 41, 2009–2024. [Google Scholar] [CrossRef]
- Hazarika, H.; Okuzono, S.; Matsuo, Y. Seismic stability enhancement of rigid nonyielding structures. In Proceedings of the 13th (2003) International Offshore and Polar Engineering Conference, Honolulu, HI, USA, 25–30 May 2003; pp. 1244–1249. [Google Scholar]
- Sreya, M.V.; Jayalekshmi, B.R.; Venkataramana, K. Seismic Response of Buildings Resting on Raft Foundation with EPS Geofoam Buffer. In Soil Dynamics, Select Proceedings of 7th ICRAGEE 2020, Lecture Notes in Civil Engineering 119 (LNCE 119); Springer: Berlin/Heidelberg, Germany, 2021; pp. 417–425. [Google Scholar]
- Maleska, T.; Nowacka, J.; Beben, D. Application of EPS Geofoam to a Soil–Steel Bridge to Reduce Seismic Excitations. Geosciences 2019, 9, 448. [Google Scholar] [CrossRef] [Green Version]
- Turer, A.; Özden, B. Seismic base isolation using low-cost Scrap Tire Pads (STP). Mater. Struct. 2007, 41, 891–908. [Google Scholar] [CrossRef]
- Rekha, S.; Kumar, P.R. Properties and application of EPS beads as a lightweight fill material for embankment construction. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 428–438. [Google Scholar]
- Brunet, S.; de la Llera, J.C.; Kausel, E. Non-linear modeling of seismic isolation systems made of recycled tire-rubber. Soil Dyn. Earthq. Eng. 2016, 85, 134–145. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, J.; Chen, X.; Wang, X.; Jia, Y. Experimental investigation on static and dynamic characteristics of granulated rubber-sand mixtures as a new railway subgrade filler. Constr. Build. Mater. 2020, 273, 121955. [Google Scholar] [CrossRef]
- Bartlett, S.F.; Lingwall, B.N.; Vaslestad, J. Methods of protecting buried pipelines and culverts in transportation infrastructure using EPS geofoam. Geotext. Geomembranes 2015, 43, 450–461. [Google Scholar] [CrossRef]
- Miki, G. Ten year history of EPS method in Japan and its future challenges. In Proceeding of the International Symposium on EPS Construction Method, Tokyo, Japan, 29–30 October 1996; pp. 394–411. [Google Scholar]
- Negussey, D. Properties and Applications of Geofoam, Society of the Plastics Industry; Foamed Polystyrene Alliance, Inc.: Washington, DC, USA, 1997. [Google Scholar]
- Xenaki, V.; Athanasopoulos, G. Experimental Investigation of the Interaction Mechanism at the EPS Geofoam-Sand Interface by Direct Shear Testing. Geosynth. Int. 2001, 8, 471–499. [Google Scholar] [CrossRef] [Green Version]
- AbdelSalam, S.S.; Azzam, S.A. Reduction of lateral pressures on retaining walls using geofoam inclusion. Geosynth. Int. 2016, 23, 395–407. [Google Scholar] [CrossRef]
- Khan, M.I.; Meguid, M.A. Experimental Investigation of the Shear Behavior of EPS Geofoam. Int. J. Geosynth. Ground Eng. 2018, 4, 12. [Google Scholar] [CrossRef]
- Basti, T.H.; Chenari, R.J.; Payan, M.; Senetakis, K. Monotonic, cyclic and post-cyclic shearing behavior of sand-EPS geofoam interface. Geosynth. Int. 2021, 28, 259–278. [Google Scholar] [CrossRef]
- Lin, L.-K.; Chen, L.-H.; Chen, R.H.L. Evaluation of Geofoam as a Geotechnical Construction Material. J. Mater. Civ. Eng. 2010, 22, 160–170. [Google Scholar] [CrossRef]
- Liu, H.; Deng, A.; Chu, J. Effect of different mixing ratios of polystyrene pre-puff beads and cement on the mechanical behavior of lightweight fill. Geotext. Geomembr. 2006, 24, 331–338. [Google Scholar] [CrossRef]
- Tsuchida, T.; Porbaha, A.; Yamane, N. Development of a Geomaterial from Dredged Bay Mud. J. Mater. Civ. Eng. 2001, 13, 152–160. [Google Scholar] [CrossRef]
- Deng, A.; Xiao, Y. Measuring and Modeling Proportion-Dependent Stress-Strain Behavior of EPS-SandMixture. Int. J. Géoméch. 2010, 10, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Wang, F.; Han, J.; Lv, W.; Li, J. Properties and Applications of Cement-Treated Sand-Expanded Polystyrene Bead Lightweight Fill. J. Mater. Civ. Eng. 2013, 25, 86–93. [Google Scholar] [CrossRef]
- Edinçliler, A.; Özer, A. Effects of EPS bead inclusions on stress–strain behaviour of sand. Geosynth. Int. 2014, 21, 89–102. [Google Scholar] [CrossRef]
- Wang, F.; Miao, L. A proposed lightweight fill for embankments using cement-treated Yangzi River sand and expanded polystyrene (EPS) beads. Bull. Eng. Geol. Environ. 2009, 68, 517–524. [Google Scholar] [CrossRef]
- Shirazi, A.N.; Haydarian, H.; Nasehi, S.A. Shear and Compression Behaviors of Sandy and Clayey Soils Mixed with Different Sizes of Expanded Polystyrene Beads. Geotech. Geol. Eng. 2018, 36, 3823–3830. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ahmad, F.; Hassan, Z.A.; Ali, F. Strength of expanded polystyrene (EPS)-sand as lightweight material in geotechnical engineering. J. Fundam. Appl. Sci. 2018, 9, 566. [Google Scholar] [CrossRef] [Green Version]
- Alaie, R.; Chenari, R.J. Cyclic and Post-Cyclic Shear Behaviour of Interface between Geogrid and EPS Beads-Sand Backfill. KSCE J. Civ. Eng. 2018, 22, 3340–3357. [Google Scholar] [CrossRef]
- Chenari, R.J.; Khonachah, R.E.; Hosseinpour, I.; Khajeh, A. An Experimental Study for the Cyclic Interface Properties of the EPS–sand Mixtures Reinforced with Geogrid. Int. J. Civ. Eng. 2019, 18, 151–159. [Google Scholar] [CrossRef]
- Rocco, N.T. Characterization of Expanded Polystyrene (EPS) and Cohesive Soil Mixtures. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2012. [Google Scholar]
- El-Sherbiny, R.M.; Ramadan, S.H.; El-Khouly, M.A. Dynamic properties of sand-EPS bead mixtures. Geosynth. Int. 2018, 25, 456–470. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, S.; Chen, C. A united deformation-strength framework for Lightweight Sand–EPS Beads Soil (LSES) under cyclic loading. Soil Dyn. Earthq. Eng. 2011, 31, 1144–1153. [Google Scholar] [CrossRef]
- Thaothip, A.; Kongkitkul, W. Strength and deformation characteristics of eps bead-mixed sand. Int. J. Geomate 2017, 13, 8–15. [Google Scholar] [CrossRef]
- Alaie, R.; Chenari, R.J. Dynamic properties of EPS-sand mixtures using cyclic triaxial and bender element tests. Geosynth. Int. 2019, 26, 563–579. [Google Scholar] [CrossRef]
- Yaghoobzadeh, S.; Azizkandi, A.S.; Salehzadeh, H.; Hasanaklou, S.H. Effect of EPS Beads on the Behavior of Sand–EPS and Slope Stability Using Triaxial and Centrifuge Tests. Int. J. Civ. Eng. 2021, 19, 1269–1282. [Google Scholar] [CrossRef]
- GB/T 50123-2019; Standard for Geotechnical Testing Method. Ministry of Housing and Urban-Rural Development of the People’s of China: Beijing, China, 2019.
Condition Number | Cushion Layer | Sand: Geofoam: Sand | Sand Thickness (mm) | Geofoam Thickness (mm) | Total Thickness (mm) | Impact Height (m) |
---|---|---|---|---|---|---|
1 | Sand | - | 100 | 0 | 100 | 1 |
2 | 150 | 0 | 150 | |||
3 | 200 | 0 | 200 | |||
4 | 100 | 0 | 100 | 1.25 | ||
5 | 150 | 0 | 150 | |||
6 | 200 | 0 | 200 | |||
7 | 100 | 0 | 100 | 1.5 | ||
8 | 150 | 0 | 150 | |||
9 | 200 | 0 | 200 | |||
10 | Sand + EPS + Sand | 90:30:30 | 120 | 30 | 150 | 1.5 |
11 | 60:60:30 | 90 | 60 | |||
12 | 30:90:30 | 60 | 90 | |||
13 | 30:30:90 | 120 | 30 | |||
14 | 60:30:60 | 120 | 30 | |||
15 | 30:60:60 | 90 | 60 |
Condition Number | Cushion Layer | Geofoam: Quantity (g) | Sand Thickness of the Bottom Layer (mm) | Total Thickness (mm) | Impact Height (m) |
---|---|---|---|---|---|
16 | Sand + EPE + Sand | 68 | 30 | 150 | 1.5 |
17 | 136 | 30 | |||
18 | 204 | 30 | |||
19 | 68 | 60 | |||
20 | 68 | 90 | |||
21 | 136 | 60 |
Cushion Thickness (mm) | Difference Percentage for the Impact Height 1 m (%) | Difference Percentage for the Impact Height 1.25 m (%) | Difference Percentage for the Impact Height 1.5 m (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 | |
100 | 84.3 | 23.7 | 4.2 | 3.5 | 127.0 | 7.2 | 8.5 | −0.3 | 100.5 | 10.7 | 3.9 | 2.1 |
150 | 136.1 | 26.0 | 10.3 | 3.1 | 105.9 | 33.4 | 1.0 | 1.3 | 83.2 | 27.5 | 10.8 | −4.9 |
200 | 203.4 | 20.2 | 2.9 | 0.2 | 134.8 | 32.4 | 2.3 | 0.2 | 113.7 | 31.3 | 7.3 | −1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Q.; Zuo, W.; Liu, R.; Zhu, B.; Zhao, P.; Wan, L.; Wang, Y.; Zhao, R. Experimental Studies for Shear and Multi-Impact Resistance Performance of Sand–Geofoam Material. Buildings 2022, 12, 633. https://doi.org/10.3390/buildings12050633
Ge Q, Zuo W, Liu R, Zhu B, Zhao P, Wan L, Wang Y, Zhao R. Experimental Studies for Shear and Multi-Impact Resistance Performance of Sand–Geofoam Material. Buildings. 2022; 12(5):633. https://doi.org/10.3390/buildings12050633
Chicago/Turabian StyleGe, Qi, Wenhao Zuo, Renkuan Liu, Baoying Zhu, Peng Zhao, Li Wan, Yifan Wang, and Rong Zhao. 2022. "Experimental Studies for Shear and Multi-Impact Resistance Performance of Sand–Geofoam Material" Buildings 12, no. 5: 633. https://doi.org/10.3390/buildings12050633
APA StyleGe, Q., Zuo, W., Liu, R., Zhu, B., Zhao, P., Wan, L., Wang, Y., & Zhao, R. (2022). Experimental Studies for Shear and Multi-Impact Resistance Performance of Sand–Geofoam Material. Buildings, 12(5), 633. https://doi.org/10.3390/buildings12050633