The Structural Use of Recycled Aggregate Concrete for Renovation of Massive External Walls of Czech Fortification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recycled Aggregate
2.2. Recycled Aggregate Concrete Mixtures
2.3. Evaluation Methodology
3. Results and Discussion
3.1. Physical Properties
3.2. Mechanical Properties
3.3. Durability Properties
3.3.1. Freeze–Thaw Resistance
3.3.2. Carbonation Resistance
4. Conclusions
- The crystalline admixture reduces the capillary water absorption of RAC mixtures; however, it was still more than three times higher for most concretes. The results of capillary water absorption confirmed the results of the mechanical properties in terms of better suitability of recycled masonry aggregate concretes.
- The results of frost resistance showed the suitability of using recycled aggregate concretes for external application. The majority of RAC mixtures meet the requirement of frost resistance according to the Czech standard. The use of crystalline admixture slightly improves the frost resistance of recycled aggregate concrete; however, it is not necessary to use it in this case.
- The carbonation depth of the recycled concrete aggregate concrete without crystalline admixture was 2.7 times higher and the recycled concrete aggregate concrete, 4.6 times higher compared to conventional concrete. The recycled masonry aggregate concrete where crystalline admixture was used, the carbonation depth of the mixture with 1.5% was only approximately 25% higher compared to ordinary concrete. Recycled concrete aggregate mixtures with crystalline admixture also show lower carbonation depth in comparison with the mixture without it. Thus, the positive influence of the crystalline admixture on the carbonation resistance was shown.
- It was found that the addition of crystalline admixture, especially 1.5% (of the cement content), significantly improves the evaluated mechanical properties; for example, improvement in RAC mixtures by mineral admixture. Furthermore, better mechanical properties were found for recycled masonry aggregate concrete.
Author Contributions
Funding
Conflicts of Interest
References
- Pacheco-Torgal, F.; Tam, V.; Labrincha, J.; Ding, Y.; de Brito, J. Handbook of Recycled Concrete and Demolition Waste; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-85709-690-6. [Google Scholar]
- De Brito, J.; Saikia, N. Recycled Aggregate in Concrete; Green Energy and Technology; Springer: London, UK, 2013; ISBN 978-1-4471-4539-4. [Google Scholar]
- Dhir, R.K.; de Brito, J.; Silva, R.V.; Lye, C.Q. Sustainable Construction Materials: Recycled Aggregates; Woodhead Publishing: Sawston, UK, 2019; ISBN 978-0-08-100991-8. [Google Scholar]
- Guo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.-C.; Zhang, H.; Wang, Y. Durability of Recycled Aggregate Concrete—A Review. Cem. Concr. Compos. 2018, 89, 251–259. [Google Scholar] [CrossRef]
- Pavlů, T. The Utilization of Recycled Materials for Concrete and Cement Production- A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 442, 012014. [Google Scholar] [CrossRef]
- Nedeljković, M.; Visser, J.; Šavija, B.; Valcke, S.; Schlangen, E. Use of Fine Recycled Concrete Aggregates in Concrete: A Critical Review. J. Build. Eng. 2021, 38, 102196. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A Review of Recycled Aggregate in Concrete Applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- De Andrade Salgado, F.; de Andrade Silva, F. Recycled Aggregates from Construction and Demolition Waste towards an Application on Structural Concrete: A Review. J. Build. Eng. 2022, 52, 104452. [Google Scholar] [CrossRef]
- Gomes, M.; De Brito, J. Structural Concrete with Incorporation of Coarse Recycled Concrete and Ceramic Aggregates: Durability Performance. Mater. Struct./Mater. Constr. 2009, 42, 663–675. [Google Scholar] [CrossRef]
- CSN EN 206+A1; Concrete: Specification, Performance, Production and Conformity; Czech Standardization Agency: Prague, Czech, 2018. (In Czech)
- Kim, N.; Kim, J.; Yang, S. Mechanical Strength Properties of RCA Concrete Made by a Modified EMV Method. Sustainability 2016, 8, 924. [Google Scholar] [CrossRef] [Green Version]
- Montero, J.; Laserna, S. Influence of Effective Mixing Water in Recycled Concrete. Constr. Build. Mater. 2017, 132, 343–352. [Google Scholar] [CrossRef]
- Silva, R.V.; Neves, R.; de Brito, J.; Dhir, R.K. Carbonation Behaviour of Recycled Aggregate Concrete. Cem. Concr. Compos. 2015, 62, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, L.; Yan, S.; Zhang, M.; Xia, J.; Xie, Y. Effect of Freeze-Thaw Cycles on Mechanical and Porosity Properties of Recycled Construction Waste Mixtures. Constr. Build. Mater. 2019, 210, 347–363. [Google Scholar] [CrossRef]
- Santana Rangel, C.; Amario, M.; Pepe, M.; Martinelli, E.; Toledo Filho, R.D. Durability of Structural Recycled Aggregate Concrete Subjected to Freeze-Thaw Cycles. Sustainability 2020, 12, 6475. [Google Scholar] [CrossRef]
- Tuyan, M.; Mardani-Aghabaglou, A.; Ramyar, K. Freeze–Thaw Resistance, Mechanical and Transport Properties of Self-Consolidating Concrete Incorporating Coarse Recycled Concrete Aggregate. Mater. Des. 2014, 53, 983–991. [Google Scholar] [CrossRef]
- Sáez del Bosque, I.F.; Van den Heede, P.; De Belie, N.; Sánchez de Rojas, M.I.; Medina, C. Carbonation of Concrete with Construction and Demolition Waste Based Recycled Aggregates and Cement with Recycled Content. Constr. Build. Mater. 2020, 234, 117336. [Google Scholar] [CrossRef]
- Amorim, P.; De Brito, J.; Evangelista, L. Concrete Made with Coarse Concrete Aggregate: Influence of Curing on Durability. ACI Mater. J. 2012, 109, 195–204. [Google Scholar]
- Buyle-Bodin, F.; Hadjieva-Zaharieva, R. Influence of Industrially Produced Recycled Aggregates on Flow Properties of Concrete. Mater. Struct./Mater. Constr. 2002, 35, 504–509. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Durability Performance of Concrete Made with Fine Recycled Concrete Aggregates. Cem. Concr. Compos. 2010, 32, 9–14. [Google Scholar] [CrossRef]
- Sagoe-Crentsil, K.K.; Brown, T.; Taylor, A.H. Performance of Concrete Made with Commercially Produced Coarse Recycled Concrete Aggregate. Cem. Concr. Res. 2001, 31, 707–712. [Google Scholar] [CrossRef]
- Dhir, R.K.; Limbachiya, M.C.; Leelawat, T. Suitability of recycled concrete aggregate for use in bs 5328 designated mixes. Proc. Inst. Civ. Eng. Struct. Build. 1999, 134, 257–274. [Google Scholar] [CrossRef]
- Rao, A.; Jha, K.N.; Misra, S. Use of Aggregates from Recycled Construction and Demolition Waste in Concrete. Resour. Conserv. Recycl. 2007, 50, 71–81. [Google Scholar] [CrossRef]
- Xiao, J.; Lei, B.; Zhang, C. On Carbonation Behavior of Recycled Aggregate Concrete. Sci. China Technol. Sci. 2012, 55, 2609–2616. [Google Scholar] [CrossRef]
- Leemann, A.; Loser, R. Carbonation Resistance of Recycled Aggregate Concrete. Constr. Build. Mater. 2019, 204, 335–341. [Google Scholar] [CrossRef]
- Zega, C.J.; Di Maio, Á.A. Use of Recycled Fine Aggregate in Concretes with Durable Requirements. Waste Manag. 2011, 31, 2336–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartuxo, F.; De Brito, J.; Evangelista, L.; Jiménez, J.R.; Ledesma, E.F. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers. Materials 2016, 9, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjellsen, K.O.; Guimaraes, M.; Nilsson, Å. The CO2 Balance of Concrete in a Life Cycle Perspective. Dan. Technol. DTI. 2005, 33. Available online: http://www.dti.dk/_root/media/21047_769203_task%204_co2%20balance_final%20report_dti_31-01-2006.pdf (accessed on 1 May 2022).
- Kikuchi, T.; Kuroda, Y. Carbon Dioxide Uptake in Demolished and Crushed Concrete. ACT 2011, 9, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.V.; Vieira, T.F.; de Brito, J.; Correia, J.R. Mechanical Properties of Structural Concrete with Fine Recycled Ceramic Aggregates. Constr. Build. Mater. 2014, 64, 103–113. [Google Scholar] [CrossRef]
- Debieb, F.; Kenai, S. The Use of Coarse and Fine Crushed Bricks as Aggregate in Concrete. Constr. Build. Mater. 2008, 22, 886–893. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Gao, X.F.; Tam, C.M. Microstructural Analysis of Recycled Aggregate Concrete Produced from Two-Stage Mixing Approach. Cem. Concr. Res. 2005, 35, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Grabiec, A.M.; Zawal, D.; Rasaq, W.A. The Effect of Curing Conditions on Selected Properties of Recycled Aggregate Concrete. Appl. Sci. 2020, 10, 4441. [Google Scholar] [CrossRef]
- Bogas, J.A.; de Brito, J.; Ramos, D. Freeze–Thaw Resistance of Concrete Produced with Fine Recycled Concrete Aggregates. J. Clean. Prod. 2016, 115, 294–306. [Google Scholar] [CrossRef]
- Yildirim, S.T.; Meyer, C.; Herfellner, S. Effects of Internal Curing on the Strength, Drying Shrinkage and Freeze–Thaw Resistance of Concrete Containing Recycled Concrete Aggregates. Constr. Build. Mater. 2015, 91, 288–296. [Google Scholar] [CrossRef]
- Bendimerad, A.Z.; Rozière, E.; Loukili, A. Plastic Shrinkage and Cracking Risk of Recycled Aggregates Concrete. Constr. Build. Mater. 2016, 121, 733–745. [Google Scholar] [CrossRef]
- Seara-Paz, S.; González-Fonteboa, B.; Martínez-Abella, F.; González-Taboada, I. Time-Dependent Behaviour of Structural Concrete Made with Recycled Coarse Aggregates. Creep and Shrinkage. Constr. Build. Mater. 2016, 122, 95–109. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Munir, M.J.; Wu, Y.-F.; Patnaikuni, I.; Zhou, Y.; Xing, F. Effect of Different Aggregate Treatment Techniques on the Freeze-Thaw and Sulfate Resistance of Recycled Aggregate Concrete. Cold Reg. Sci. Technol. 2020, 178, 103126. [Google Scholar] [CrossRef]
- Wang, J.; Vandevyvere, B.; Vanhessche, S.; Schoon, J.; Boon, N.; De Belie, N. Microbial Carbonate Precipitation for the Improvement of Quality of Recycled Aggregates. J. Clean. Prod. 2017, 156, 355–366. [Google Scholar] [CrossRef]
- Jaskulski, R.; Reiterman, P.; Kubissa, W.; Yakymechko, Y. Influence of Impregnation of Recycled Concrete Aggregate on the Selected Properties of Concrete. Materials 2021, 14, 4611. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Jiang, L.; Zhao, L.; Li, Z. Effect of Physical Properties of Recycled Coarse Aggregate on the Mechanical Properties of Recycled Aggregate Thermal Insulation Concrete (RATIC). Constr. Build. Mater. 2018, 180, 229–238. [Google Scholar] [CrossRef]
- Shaban, W.M.; Elbaz, K.; Yang, J.; Thomas, B.S.; Shen, X.; Li, L.; Du, Y.; Xie, J.; Li, L. Effect of Pozzolan Slurries on Recycled Aggregate Concrete: Mechanical and Durability Performance. Constr. Build. Mater. 2021, 276, 121940. [Google Scholar] [CrossRef]
- Al-Bayati, H.K.A.; Das, P.K.; Tighe, S.L.; Baaj, H. Evaluation of Various Treatment Methods for Enhancing the Physical and Morphological Properties of Coarse Recycled Concrete Aggregate. Constr. Build. Mater. 2016, 112, 284–298. [Google Scholar] [CrossRef]
- Salem, R.M.; Burdette, E.G. Role of Chemical and Mineral Admixtures on Physical Properties and Frost-Resistance of Recycled Aggregate Concrete. ACI Mater. J. 1998, 95, 558–563. [Google Scholar]
- Liu, Q.; Cen, G.; Cai, L.; Wu, H. Frost-Resistant Performance and Mechanism of Recycled Concrete for Airport Pavement. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2011, 39, 128–132. [Google Scholar]
- Sun, J.-Y.; Geng, J. Effect of Particle Size and Content of Recycled Fine Aggregate on Frost Resistance of Concrete. Jianzhu Cailiao Xuebao/J. Build. Mater. 2012, 15, 382–385. [Google Scholar] [CrossRef]
- Çakır, Ö.; Dilbas, H. Durability Properties of Treated Recycled Aggregate Concrete: Effect of Optimized Ball Mill Method. Constr. Build. Mater. 2021, 268, 121776. [Google Scholar] [CrossRef]
- Habibi, A.; Ramezanianpour, A.M.; Mahdikhani, M.; Bamshad, O. RSM-Based Evaluation of Mechanical and Durability Properties of Recycled Aggregate Concrete Containing GGBFS and Silica Fume. Constr. Build. Mater. 2021, 270, 121431. [Google Scholar] [CrossRef]
- Reiterman, P.; Holčapek, O.; Jaskulski, R.; Kubissa, W. Long-Term Behaviour of Ceramic Powder Containing Concrete for Pavement Blocks. Int. J. Pavement Eng. 2021, 22, 1813–1820. [Google Scholar] [CrossRef]
- Kubissa, W.; Jaskulski, R.; Reiterman, P. Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition. J. Renew. Mater. 2017, 5, 53–61. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Donnini, J.; Giosué, C.; Mobili, A.; Tittarelli, F. Durability Assessment of Recycled Aggregate HVFA Concrete. Appl. Sci. 2020, 10, 6454. [Google Scholar] [CrossRef]
- Masood, B.; Elahi, A.; Barbhuiya, S.; Ali, B. Mechanical and Durability Performance of Recycled Aggregate Concrete Incorporating Low Calcium Bentonite. Constr. Build. Mater. 2020, 237, 117760. [Google Scholar] [CrossRef]
- Matias, D.; de Brito, J.; Rosa, A.; Pedro, D. Mechanical Properties of Concrete Produced with Recycled Coarse Aggregates—Influence of the Use of Superplasticizers. Constr. Build. Mater. 2013, 44, 101–109. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhuo, J.; Zhang, P. A Review on Durability of Nano-SiO2 and Basalt Fiber Modified Recycled Aggregate Concrete. Constr. Build. Mater. 2021, 304, 124659. [Google Scholar] [CrossRef]
- Pavlů, T.; Fořtová, K.; Řepka, J.; Mariaková, D.; Pazderka, J. Improvement of the Durability of Recycled Masonry Aggregate Concrete. Materials 2020, 13, 5486. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Evangelista, L.; Dhir, R.K. Design of Reinforced Recycled Aggregate Concrete Elements in Conformity with Eurocode 2. Constr. Build. Mater. 2016, 105, 144–156. [Google Scholar] [CrossRef]
- González, J.S.; Gayarre, F.L.; Pérez, C.L.-C.; Ros, P.S.; López, M.A.S. Influence of Recycled Brick Aggregates on Properties of Structural Concrete for Manufacturing Precast Prestressed Beams. Constr. Build. Mater. 2017, 149, 507–514. [Google Scholar] [CrossRef]
- Juan-Valdés, A.; García-González, J.; Rodríguez-Robles, D.; Guerra-Romero, M.I.; López Gayarre, F.; De Belie, N.; Morán-del Pozo, J.M. Paving with Precast Concrete Made with Recycled Mixed Ceramic Aggregates: A Viable Technical Option for the Valorization of Construction and Demolition Wastes (CDW). Materials 2019, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Pavlu, T.; Fortova, K.; Divis, J.; Hajek, P. The Utilization of Recycled Masonry Aggregate and Recycled EPS for Concrete Blocks for Mortarless Masonry. Materials 2019, 12, 1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, C.; Miñano, I.; Aguilar, M.Á.; Ortega, J.M.; Parra, C.; Sánchez, I. Properties of Concrete Paving Blocks and Hollow Tiles with Recycled Aggregate from Construction and Demolition Wastes. Materials 2017, 10, 1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlů, T.; Šefflová, M. The Static and the Dynamic Modulus of Elasticity of Recycled Aggregate Concrete. Adv. Mater. Res. 2014, 1054, 221–226. [Google Scholar] [CrossRef]
- Pešta, J.; Pavlů, T.; Fořtová, K.; Kočí, V. Sustainable Masonry Made from Recycled Aggregates: LCA Case Study. Sustainability 2020, 12, 1581. [Google Scholar] [CrossRef] [Green Version]
- Šefflová, M.; Volf, M.; Pavlů, T. Thermal Properties of Concrete with Recycled Aggregate. Adv. Mater. Res. 2014, 1054, 227–233. [Google Scholar] [CrossRef]
- Pazderka, J.; Reiterman, P. Czech ww2 concrete fortifications: Corrosion processes and remediation method based on crystallizing coating. Acta Polytech. 2019, 59, 359–371. [Google Scholar] [CrossRef]
- Pazderka, J.; Michal, Ž.; Pavlů, T.; Reiterman, P.; Holpaček, O. Remediation technology of cloche replacement for ww2 fortification in the czech republic. Stavební Obz. Civ. Eng. J. 2020, 29, 86–96. [Google Scholar] [CrossRef]
- Rahhal, V.; Bonavetti, V.; Delgado, A.; Pedrajas, C.; Talero, R. Scheme of the Portland Cement Hydration with Crystalline Mineral Admixtures and Other Aspects. Silic. Ind. 2009, 74, 347–352. [Google Scholar]
- Escoffres, P.; Desmettre, C.; Charron, J.-P. Effect of a Crystalline Admixture on the Self-Healing Capability of High-Performance Fiber Reinforced Concretes in Service Conditions. Constr. Build. Mater. 2018, 173, 763–774. [Google Scholar] [CrossRef]
- Bohus, S.; Drochytka, R. Cement Based Material with Crystal-Growth Ability under Long Term Aggressive Medium Impact. Appl. Mech. Mater. 2012, 166–169, 1773–1778. [Google Scholar] [CrossRef]
- Pazderka, J.; Hájková, E. Crystalline admixtures and their effect on selected properties of concrete. Acta Polytech 2016, 56, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Reiterman, P.; Pazderka, J. Crystalline Coating and Its Influence on the Water Transport in Concrete. Adv. Civ. Eng. 2016, 2016, 2513514. [Google Scholar]
- Jianxin, W.; Guangda, L.; Liping, L. Influence of Shenkebao Permeable Crystalline Admixture on Concrete Resistance to Chemical Corrosion and Freeze-Thaw Cycles. Jiangsu Build. Mater. 2010, 2, 18–21. [Google Scholar]
- Azarsa, P.; Gupta, R.; Biparva, A. Crystalline Waterproofing Admixtures Effects on Self-Healing and Permeability of Concrete. In Proceedings of the International Conference on New Horizons in Green Civil Engineering, University of Victoria, Victoria, BC, Canada, 25–27 April 2018. [Google Scholar]
- Evangelista, L.; de Brito, J. Concrete with Fine Recycled Aggregates: A Review. Eur. J. Environ. Civ. Eng. 2014, 18, 129–172. [Google Scholar] [CrossRef]
- Kwan, A.K.H.; Ng, P.L.; Huen, K.Y. Effects of Fines Content on Packing Density of Fine Aggregate in Concrete. Constr. Build. Mater. 2014, 61, 270–277. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Mechanical Behaviour of Concrete Made with Fine Recycled Concrete Aggregates. Cem. Concr. Compos. 2007, 29, 397–401. [Google Scholar] [CrossRef]
- Khatib, J.M. Properties of Concrete Incorporating Fine Recycled Aggregate. Cem. Concr. Res. 2005, 35, 763–769. [Google Scholar] [CrossRef]
- CSN EN 12620+A1; Aggregate for Concrete; Czech Technical Standard: Prague, Czech Republic, 2008. (In Czech)
- Dhir, R.K.; de Brito, J.; Silva, R.V.; Lye, C.Q. 10-Recycled Aggregate Concrete: Durability Properties. In Sustainable Construction Materials; Dhir, R.K., de Brito, J., Silva, R.V., Lye, C.Q., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2019; pp. 365–418. ISBN 978-0-08-100985-7. [Google Scholar]
- Medina, C.; Sánchez de Rojas, M.I.; Thomas, C.; Polanco, J.A.; Frías, M. Durability of Recycled Concrete Made with Recycled Ceramic Sanitary Ware Aggregate. Inter-Indicator Relationships. Constr. Build. Mater. 2016, 105, 480–486. [Google Scholar] [CrossRef]
- Pavlů, T.; Šefflová, M. Study of the Freeze-Thaw Resistance of the Fine-Aggregate Concrete. In Proceedings of the 2nd Congress of the European Academy of Neurology (EAN), Copenhagen, Denmark, 28–31 May 2016. [Google Scholar]
- Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. Durability Performance of Concrete with Recycled Aggregates from Construction and Demolition Waste Plants. Constr. Build. Mater. 2015, 77, 357–369. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Compressive Strength and Durability Properties of Ceramic Wastes Based Concrete. Mater. Struct. 2011, 44, 155–167. [Google Scholar] [CrossRef]
- Senthamarai, R.M.; Devadas Manoharan, P. Concrete with Ceramic Waste Aggregate. Cem. Concr. Compos. 2005, 27, 910–913. [Google Scholar] [CrossRef]
- Yang, J.; Du, Q.; Bao, Y. Concrete with Recycled Concrete Aggregate and Crushed Clay Bricks. Constr. Build. Mater. 2011, 25, 1935–1945. [Google Scholar] [CrossRef]
- Mansur, M.A.; Wee, T.H.; Lee, S.C. Crushed Bricks as Coarse Aggregate for Concrete. Mater. J. 1999, 96, 478–484. [Google Scholar] [CrossRef]
- Vieira, T.; Alves, A.; de Brito, J.; Correia, J.R.; Silva, R.V. Durability-Related Performance of Concrete Containing Fine Recycled Aggregates from Crushed Bricks and Sanitary Ware. Mater. Des. 2016, 90, 767–776. [Google Scholar] [CrossRef]
- Correia, J.R.; de Brito, J.; Pereira, A.S. Effects on Concrete Durability of Using Recycled Ceramic Aggregates. Mater Struct. 2006, 39, 169–177. [Google Scholar] [CrossRef]
- Nepomuceno, M.C.S.; Isidoro, R.A.S.; Catarino, J.P.G. Mechanical Performance Evaluation of Concrete Made with Recycled Ceramic Coarse Aggregates from Industrial Brick Waste. Constr. Build. Mater. 2018, 165, 284–294. [Google Scholar] [CrossRef]
- Cachim, P.B. Mechanical Properties of Brick Aggregate Concrete. Constr. Build. Mater. 2009, 23, 1292–1297. [Google Scholar] [CrossRef]
- Anderson, D.J.; Smith, S.T.; Au, F.T.K. Mechanical Properties of Concrete Utilising Waste Ceramic as Coarse Aggregate. Constr. Build. Mater. 2016, 117, 20–28. [Google Scholar] [CrossRef]
- Zheng, C.; Lou, C.; Du, G.; Li, X.; Liu, Z.; Li, L. Mechanical Properties of Recycled Concrete with Demolished Waste Concrete Aggregate and Clay Brick Aggregate. Results Phys. 2018, 9, 1317–1322. [Google Scholar] [CrossRef]
- Nematzadeh, M.; Dashti, J.; Ganjavi, B. Optimizing Compressive Behavior of Concrete Containing Fine Recycled Refractory Brick Aggregate Together with Calcium Aluminate Cement and Polyvinyl Alcohol Fibers Exposed to Acidic Environment. Constr. Build. Mater. 2018, 164, 837–849. [Google Scholar] [CrossRef]
- Gonzalez-Corominas, A.; Etxeberria, M. Properties of High Performance Concrete Made with Recycled Fine Ceramic and Coarse Mixed Aggregates. Constr. Build. Mater. 2014, 68, 618–626. [Google Scholar] [CrossRef]
- Khalaf Fouad, M.; DeVenny Alan, S. Properties of New and Recycled Clay Brick Aggregates for Use in Concrete. J. Mater. Civ. Eng. 2005, 17, 456–464. [Google Scholar] [CrossRef]
- Khalaf Fouad, M.; DeVenny Alan, S. Recycling of Demolished Masonry Rubble as Coarse Aggregate in Concrete: Review. J. Mater. Civ. Eng. 2004, 16, 331–340. [Google Scholar] [CrossRef]
- Devenny, A.; Khalaf, F.M. The Use of Crushed Brick as Coarse Aggregate in Concrete. Mason. Int. 1999, 12, 81–84. [Google Scholar]
- Verian, K.P.; Ashraf, W.; Cao, Y. Properties of Recycled Concrete Aggregate and Their Influence in New Concrete Production. Resour. Conserv. Recycl. 2018, 133, 30–49. [Google Scholar] [CrossRef]
- Uddin, M.T.; Mahmood, A.H.; Kamal, M.R.I.; Yashin, S.M.; Zihan, Z.U.A. Effects of Maximum Size of Brick Aggregate on Properties of Concrete. Constr. Build. Mater. 2017, 134, 713–726. [Google Scholar] [CrossRef]
- Chen, H.-J.; Yen, T.; Chen, K.-H. Use of Building Rubbles as Recycled Aggregates. Cem. Concr. Res. 2003, 33, 125–132. [Google Scholar] [CrossRef]
- Nili, M.; Sasanipour, H.; Aslani, F. The Effect of Fine and Coarse Recycled Aggregates on Fresh and Mechanical Properties of Self-Compacting Concrete. Materials 2019, 12, 1120. [Google Scholar] [CrossRef] [Green Version]
- Desmyter, J.; Van Dessel, J.; Blockmans, S. The Use of Recycled Concrete and Masonry Aggregates in Concrete: Improving the Quality and Purity of the Aggregates. In Exploiting Wastes in Concrete; Thomas Telford Publishing: London, UK, 1999; pp. 139–149. ISBN 978-0-7277-4724-2. [Google Scholar]
- Cavalline, T.L.; Weggel, D.C. Recycled Brick Masonry Aggregate Concrete: Use of Brick Masonry from Construction and Demolition Waste as Recycled Aggregate in Concrete. Struct. Surv. 2013, 31, 160–180. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Dhir, R.K. Establishing a Relationship between Modulus of Elasticity and Compressive Strength of Recycled Aggregate Concrete. J. Clean. Prod. 2016, 112, 2171–2186. [Google Scholar] [CrossRef]
- Dhir, R.K.; de Brito, J.; Silva, R.V.; Lye, C.Q. 9-Deformation of Concrete Containing Recycled Concrete Aggregate. In Sustainable Construction Materials; Dhir, R.K., de Brito, J., Silva, R.V., Lye, C.Q., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2019; pp. 283–363. ISBN 978-0-08-100985-7. [Google Scholar]
- Neville, A.M. Properties of Concrete, 5th ed.; Pearson: Harlow, UK; New York, NY, USA, 2011; ISBN 978-0-273-75580-7. [Google Scholar]
Types of Recycled Aggregate | Grading (mm) | Content of Finest Particles | Oven-Dried Particle Density | Water Absorption Capacity (%) | ||
---|---|---|---|---|---|---|
f (%) | ρRD (kg/m3) | σ | WA24 (%) | σ | ||
Natural aggregate (NA) | 0–4 | 2.0 | 2570 | 81 | 1.0 | 0.0 |
4–8 | 0.1 | 2530 | 12 | 1.7 | 0.3 | |
8–16 | 0.2 | 2540 | 12 | 1.9 | 0.2 | |
Recycled concrete aggregate (RCA) | 0–4 | 1.2 | 2240 | 21 | 4.6 | 0.3 |
4–8 | 0.2 | 2330 | 97 | 6.1 | 1.1 | |
8–16 | 0.2 | 2340 | 46 | 5.0 | 0.3 | |
Recycled masonry aggregate (RMA) | 0–4 | 1.0 | 2320 | 132 | 6.6 | 0.8 |
4–8 | 1.2 | 1910 | 87 | 15.6 | 2.2 | |
8–16 | 0.2 | 2050 | 33 | 10.7 | 1.4 |
Designation | NAC—REF | RCAC X0 | RCAC X1 | RCAC X3 | RMAC X0 | RMAC X1 | RMAC X3 |
---|---|---|---|---|---|---|---|
Cement (kg/m) | 260 | 260 | 260 | 260 | 260 | 260 | 260 |
Water (kg/m3) | 169 | 190 | 190 | 190 | 219 | 219 | 219 |
Sand (kg/m3) | 710 | 0 | 0 | 0 | 0 | 0 | 0 |
NA 4/8 (kg/m3) | 520 | 0 | 0 | 0 | 0 | 0 | 0 |
NA 8/16 (kg/m3) | 609 | 0 | 0 | 0 | 0 | 0 | 0 |
RMA 0/4 (kg/m3) | 0 | 805 | 805 | 805 | 807 | 807 | 807 |
RMA 4/8 (kg/m3) | 0 | 67 | 67 | 67 | 54 | 54 | 54 |
RMA 8/16 (kg/m3) | 0 | 775 | 775 | 775 | 653 | 653 | 653 |
Crystalline admixture (kg/m3) | 0 | 0 | 5 | 9 | 0 | 5 | 10 |
w/c eff (-) | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 |
w/c (-) | 0.65 | 0.73 | 0.73 | 0.73 | 0.84 | 0.84 | 0.84 |
Designation | CaO | SiO2 | Fe2O3 | Na2O | Al2O3 | MgO |
---|---|---|---|---|---|---|
Cement (%) | 61.9 | 20.2 | 3.0 | 0.2 | 4.7 | 2.6 |
Silica fume (%) | 0.4 | 94.5 | 0.1 | 0.1 | 0.9 | 1.6 |
Crystalline admixture (%) | 85.3 | 9.7 | 1.9 | 1.5 | 0.6 | - |
Recycled Concrete Mixture | Dry Density | Capillary Water Absorption | ||
---|---|---|---|---|
Designation | (kg/m3) | σ | (kg/m2) | σ |
NAC—REF | 2280 | 18 | 3.34 | 0.8 |
RCAC X0 | 1940 | 10 | 14.45 | 0.8 |
RCAC X1 | 2040 | 11 | 13.39 | 0.7 |
RCAC X3 | 1970 | 15 | 11.40 | 0.3 |
RMAC X0 | 1935 | 17 | 10.13 | 0.5 |
RMAC X1 | 1935 | 9 | 8.56 | 0.6 |
RMAC X3 | 1930 | 9 | 9.65 | 0.2 |
Recycled Concrete Mixture | Compressive Strength | Flexural Strength | Static Modulus of Elasticity | Dynamic Modulus of Elasticity | ||||
---|---|---|---|---|---|---|---|---|
28 days | ||||||||
Designation | (MPa) | σ | (MPa) | σ | (GPa) | σ | (GPa) | σ |
NAC—REF | 33.3 | 2.5 | 6.2 | 0.2 | 36.7 | 1.4 | 37.6 | 1.3 |
RCAC X0 | 14.9 | 0.2 | 2.8 | 0.1 | 13.2 | 0.3 | 18.6 | 0.6 |
RCAC X1 | 19.5 | 1.0 | 3.6 | 0.6 | 15.5 | 2.3 | 23.0 | 1.2 |
RCAC X3 | 16.8 | 0.4 | 3.0 | 0.3 | 14.0 | 0.5 | 19.5 | 1.0 |
RMAC X0 | 22.5 | 2.7 | 5.1 | 0.2 | 14.9 | 0.4 | 17.7 | 2.0 |
RMAC X1 | 27.3 | 0.6 | 4.9 | 0.2 | 15.2 | 0.0 | 21.1 | 1.5 |
RMAC X3 | 24.2 | 0.2 | 4.8 | 0.4 | 15.6 | 0.9 | 19.9 | 1.2 |
Recycled Concrete Mixture | Dynamic Modulus of Elasticity (GPa) + Frost Resistance Coefficient (-) | Freeze–Thaw Resistance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Designation | 0 Cycles | 25 Cycles | 50 Cycles | 75 Cycles | 100 Cycles | Cycles | ||||
NAC—REF | 37.6 | 36.5 | 0.97 | 36.6 | 0.97 | 35.9 | 0.95 | 37.0 | 0.98 | 100 |
RCAC X0 | 24.2 | 19.9 | 0.82 | 22.3 | 0.92 | 23.1 | 0.95 | 21.5 | 0.89 | 100 |
RCAC X1 | 27.6 | 21.1 | 0.76 | 11.5 | 0.42 | 8.5 | 0.31 | 3.1 | 0.11 | 25 |
RCAC X3 | 24.6 | 23.4 | 0.95 | 22.9 | 0.93 | 23.7 | 0.96 | 23.0 | 0.93 | 100 |
RMAC X0 | 23.6 | 20.8 | 0.88 | 19.1 | 0.81 | 21.0 | 0.89 | 21.4 | 0.91 | 100 |
RMAC X1 | 23.0 | 19.2 | 0.84 | 16.8 | 0.73 | 18.9 | 0.82 | 20.4 | 0.89 | 100 |
RMAC X3 | 23.1 | 19.0 | 0.82 | 18.6 | 0.81 | 18.3 | 0.79 | 20.1 | 0.87 | 100 |
Recycled Concrete Mixture | Flexural Strength | Frost Resistance Coefficient | |||
---|---|---|---|---|---|
(MPa) | σ | (-) | |||
Designation | 0 | 100 | 0 | 100 | |
NAC—REF | 6.2 | 6.9 | 0.2 | 0.1 | 1.13 |
RCAC X0 | 2.8 | 4.2 | 0.1 | 0.3 | 1.48 |
RCAC X1 | 3.6 | 1.0 | 0.6 | 0.6 | 0.29 |
RCAC X3 | 3.0 | 4.0 | 0.3 | 0.1 | 1.37 |
RMAC X0 | 5.1 | 4.3 | 0.2 | 0.5 | 0.85 |
RMAC X1 | 4.9 | 4.9 | 0.2 | 0.4 | 1.00 |
RMAC X3 | 4.8 | 5.0 | 0.4 | 0.3 | 1.06 |
Recycled Concrete Mixture | Carbonation Depth + Standard Deviation | Indicator of Increase of Carbonation Depth Compared to NAC | |
---|---|---|---|
Designation | (mm) | (-) | |
NAC—REF | 3.0 | 2.7 | 1.0 |
RCAC X0 | 13.6 | 2.2 | 4.6 |
RCAC X1 | 9.8 | 2.7 | 3.3 |
RCAC X3 | 12.0 | 2.4 | 4.0 |
RMAC X0 | 8.0 | 3.2 | 2.7 |
RMAC X1 | 3.7 | 3.5 | 1.3 |
RMAC X3 | 6.2 | 4.2 | 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlu, T.; Pazderka, J.; Fořtová, K.; Řepka, J.; Mariaková, D.; Vlach, T. The Structural Use of Recycled Aggregate Concrete for Renovation of Massive External Walls of Czech Fortification. Buildings 2022, 12, 671. https://doi.org/10.3390/buildings12050671
Pavlu T, Pazderka J, Fořtová K, Řepka J, Mariaková D, Vlach T. The Structural Use of Recycled Aggregate Concrete for Renovation of Massive External Walls of Czech Fortification. Buildings. 2022; 12(5):671. https://doi.org/10.3390/buildings12050671
Chicago/Turabian StylePavlu, Tereza, Jiří Pazderka, Kristina Fořtová, Jakub Řepka, Diana Mariaková, and Tomáš Vlach. 2022. "The Structural Use of Recycled Aggregate Concrete for Renovation of Massive External Walls of Czech Fortification" Buildings 12, no. 5: 671. https://doi.org/10.3390/buildings12050671
APA StylePavlu, T., Pazderka, J., Fořtová, K., Řepka, J., Mariaková, D., & Vlach, T. (2022). The Structural Use of Recycled Aggregate Concrete for Renovation of Massive External Walls of Czech Fortification. Buildings, 12(5), 671. https://doi.org/10.3390/buildings12050671