Optimization of Synergetic Seismic and Energy Retrofitting Based on Timber Beams and Bio-Based Infill Panels: Application to an Existing Masonry Building in Switzerland
Abstract
:1. Introduction
2. Modelling of the Unretrofitted Building
2.1. Case-Study Building
2.2. Numerical Simulation of the Out-of-Plane Seismic Behavior of the Unretrofitted Building
3. Modelling of the Retrofitted Building
3.1. Synergetic Seismic and Energy Retrofitting Strategy
3.2. Retrofitting Alternatives
3.3. Numerical Simulation of the Out-of-Plane Seismic Behavior of the Retrofitted Building
3.4. Heating Demand of the Building before and after the Retrofitting
3.5. Embodied Carbon Emissions of the Synergetic Retrofitting Strategies
4. Seismic and Energy Retrofitting Scoreboard (SERS)
- The normalized reduction in the seismic out-of-plane displacement of the building αS due to retrofitting, defined as follows:
- The energy compliance of the building αE (Equation (2)).
- The embodied carbon emissions of retrofitting, defined in kg CO2-eq/a.
- The construction and installation cost of the retrofitting strategy.
5. Determination of the Optimal Retrofitting Strategy Based on Multi-Criteria-Decision Making (MCDM) Process
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Crowley, H.; Despotaki, V.; Rodrigues, D.; Silva, V.; Toma-Danila, D.; Riga, E.; Karatzetzou, A.; Zugic, Z.; Sousa, L.; Ozcebe, S.; et al. Exposure model for European seismic risk assessment. Earthq. Spectra 2020, 36, 252–273. [Google Scholar] [CrossRef]
- Calvi, G.M. Choices and Criteria for Seismic Strengthening. J. Earthq. Eng. 2013, 17, 769–802. [Google Scholar] [CrossRef]
- Wenk, T. Seismic Retrofitting of Structures, Strategies and Collection of Examples in Switzerland; Environmental Studies No. 0832; Federal Office for the Environment: Bern, Switzerland, 2008. [Google Scholar]
- Tomić, I.; Vanin, F.; Beyer, K. Uncertainties in the Seismic Assessment of Historical Masonry Buildings. Appl. Sci. 2021, 11, 2280. [Google Scholar] [CrossRef]
- Zhang, S.; Taheri Mousavi, S.M.; Richart, N.; Molinari, J.-F.; Beyer, K. Micro-mechanical finite element modeling of diagonal compression test for historical stone masonry structure. Int. J. Solids Struct. 2017, 112, 122–132. [Google Scholar] [CrossRef]
- Godio, M.; Stefanou, I.; Sab, K.; Sulem, J.; Sakji, S. A limit analysis approach based on Cosserat continuum for the evaluation of the in-plane strength of discrete media: Application to masonry. Eur. J. Mech. A/Solids 2017, 66, 168–192. [Google Scholar] [CrossRef] [Green Version]
- Martakis, P.; Reuland, Y.; Imesch, M.; Chatzi, E. Reducing uncertainty in seismic assessment of multiple masonry buildings based on monitored demolitions. Bull. Earthq. Eng. 2022, 1–42. [Google Scholar] [CrossRef]
- Asteris, P.G.; Moropoulou, A.; Skentou, A.D.; Apostolopoulou, M.; Mohebkhah, A.; Cavaleri, L.; Rodrigues, H.; Varum, H. Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration Aspects. Appl. Sci. 2019, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Vanin, F.; Penna, A.; Beyer, K. A three-dimensional macroelement for modelling the in-plane and out-of-plane response of masonry walls. Earthq. Eng. Struct. Dyn. 2020, 49, 1365–1387. [Google Scholar] [CrossRef]
- Sarhosis, V.; Giarlelis, C.; Karakostas, C.; Smyrou, E.; Valkaniotis, S.; Ganas, A. Observations from the March 2021 Thessaly Earthquakes: An earthquake engineering perspective for masonry structures. Bull. Earthq. Eng. 2022. [Google Scholar] [CrossRef]
- Asikoglu, A.; Avsar, O.; Lourenço, P.B.; Silva, L. Effectiveness of seismic retrofitting of a historical masonry structure: Kutahya Kursunlu Mosque, Turkey. Bull. Earthq. Eng. 2019, 17, 3365–3395. [Google Scholar] [CrossRef]
- Tsiavos, A.; Amrein, P.; Bender, N.; Stojadinovic, B. Compliance-Based Estimation of Seismic Collapse Risk of an Existing Reinforced Concrete Frame Building. Bull. Earthq. Eng. 2021, 19, 6027–6048. [Google Scholar] [CrossRef]
- Tsiavos, A.; Schlatter, D.; Markic, T.; Stojadinovic, B. Shaking table investigation of inelastic deformation demand for a structure isolated using friction-pendulum sliding bearings. Structures 2021, 31, 1041–1052. [Google Scholar] [CrossRef]
- Tsiavos, A.; Stojadinovic, B. Constant yield displacement procedure for seismic evaluation of existing structures. Bull. Earthq. Eng. 2018, 17, 2137–2164. [Google Scholar] [CrossRef] [Green Version]
- Bournas, D. Innovative Materials for Seismic and Energy Retrofitting of the Existing EU Buildings; JRC Technical Report; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Singh, M.; Stavridis, A. Nonlinear Analysis of Unreinforced Masonry Structures Strengthened with FRP Strips under In-Plane Lateral Loads. In Proceedings of the 1th International Conference on Natural Hazards & Infrastructure, Chania, Greece, 28–30 June 2016. [Google Scholar]
- Minafò, G.; Cucchiara, C.; Monaco, A.; La Mendola, L. Effect of FRP strengthening on the flexural behaviour of calcarenite masonry walls. Bull. Earthq. Eng. 2017, 15, 3777–3795. [Google Scholar] [CrossRef]
- Aprile, A.; Benedetti, A.; Cosentino, N. Seismic reliability of masonry structures strengthened with FRP materials. In Proceedings of the 8th US National Conference on Earthquake Engineering, San Francisco, CA, USA, 18–22 April 2006; p. 167. [Google Scholar]
- Passer, A.; Ouellet-Plamondon, C.; Kenneally, P.; John, V.; Habert, G. The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy Build. 2016, 124, 153–163. [Google Scholar] [CrossRef]
- Ostermeyer, Y.; Naegeli, C.; Heeren, N.; Wallbaum, H. Building inventory and refurbishment scenario database development for Switzerland. J. Ind. Ecol. 2018, 22, 629–642. [Google Scholar] [CrossRef] [Green Version]
- Sigrist, D.; Deb, C.; Frei, M.; Schlüter, A. Cost-optimal retrofit analysis for residential buildings. J. Phys. Conf. Ser. 2019, 1343, 012030. [Google Scholar] [CrossRef]
- Swiss Federal Office of Energy, Energy Strategy 2050. Available online: https://www.bfe.admin.ch/bfe/en/home/policy/energy-strategy-2050.html (accessed on 9 January 2022).
- Clemett, N.; Gallo, W.; O’Reilly, G.; Gabbianelli, G.; Monteiro, R. Optimal seismic retrofitting of existing buildings considering environmental impact. Eng. Struct. 2022, 250, 113391. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency; Council of the European Union: Brussels, Belgium, 2018.
- World Meteorological Organization. State of Global Climate; Provisional Report; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- European Commission. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Off. J. Eur. Union 2010, 53, 13–35. [Google Scholar]
- Furtado, A.; Rodrigues, H.; Arêde, A.; Rodrigues, F.; Varum, H. Interactions between Seismic Safety and Energy Efficiency for Masonry Infill Walls: A Shift of the Paradigm. Energies 2022, 15, 3269. [Google Scholar] [CrossRef]
- Belleri, A.; Marini, A. Does seismic risk affect the environmental impact of existing buildings? Energy Build. 2016, 110, 149–158. [Google Scholar] [CrossRef]
- Formisano, A.; Vaiano, G. Combined Energy-Seismic Retrofit of Existing Historical Masonry Buildings: The Novel “DUO System” Coating System Applied to a Case Study. Heritage 2021, 4, 255. [Google Scholar] [CrossRef]
- Negro, P.; Dimova, S.; Bournas, D.; Tsionis, G.; Strezova, D. Integrated Techniques for the Seismic Strengthening and Energy Efficiency of Existing Buildings: A Pilot Project. In Proceedings of the 17th World Conference on Earthquake Engineering (17WCEE), Sendai, Japan, 13–18 September 2020. [Google Scholar]
- Caprino, A.; Lorenzoni, F.; Canieletto, L.; Feletto, L.; De Carli, M.; Da Porto, F. Integrated Seismic and Energy Retrofit Interventions on a URM Masonry Building: The Case Study of the Former Courthouse in Fabriano. Sustainability 2021, 13, 9592. [Google Scholar] [CrossRef]
- Triantafillou, T.C.; Karlos, K.; Kefalou, K.; Argyropoulou, E. An innovative structural and energy retrofitting system for URM walls using textile reinforced mortars combined with thermal insulation: Mechanical and fire behaviour. Constr. Build. Mater. 2017, 133, 1–13. [Google Scholar] [CrossRef]
- Caruso, M.; Pinho, R.; Bianchi, F.; Cavalieri, F.; Lemmo, M.T. Integrated economic and environmental building classification and optimal seismic vulnerability/energy efficiency retrofitting. Bull. Earthq. Eng. 2021, 19, 3627–3670. [Google Scholar] [CrossRef]
- Baek, E.; Pohoryles, D.A.; Kallioras, S.; Bournas, D.A.; Choi, H.; Kim, T. Innovative seismic and energy retrofitting of wall envelopes using prefabricated textile-reinforced concrete panels with an embedded capillary tube system. Eng. Struct. 2022, 265, 114453. [Google Scholar] [CrossRef]
- Gkournelos, D.; Bournas, D.; Triantafillou, T. Combined Seismic and Energy Upgrading of Existing Buildings Using Advanced Materials: Case Studies on Reinforced Concrete Buildings in South Europ; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Ehrhart, T.; Palma, P.; Steiger, R.; Frangi, A. Numerical and experimental studies on mechanical properties of glued laminated timber beams made from European beech wood. In Proceedings of the 2018 World Conference on Timber Engineering, Seoul, Korea, 20–23 August 2018. [Google Scholar]
- De Wolf, C.; Fivet, C. Can timber lower the environmental impact of tall buildings? In Structures and Architecture: Bridging the Gap and Crossing Borders; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Geier, S.; Herres, U.M.; Sturm, U. Holzbausanierung Zwischen Ortsbildschutz und Energieeffizienz: Ein Roter Faden für Bauherrschaften; Lignum, Holzwirtschaft Schweiz: Zürich, Switzerland, 2017. [Google Scholar]
- Badini, L.; Ott, S.; Aondio, P.; Winter, S. Seismic strengthening of existing RC buildings with external cross-laminated timber (CLT) walls hosting an integrated energetic and architectural renovation. Bull. Earthq. Eng. 2022. [Google Scholar] [CrossRef]
- Simões, A.G. Seismic Behaviour of a Pombalino Quarter of Buildings. Ph.D. Dissertation, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, 2010. [Google Scholar]
- Simões, A.; Bento, R. Characterization and Classification of Lisbon Old Masonry Buildings; Report DTC nº 01/2012, ICIST; Technical University of Lisbon: Lisbon, Portugal, 2010. [Google Scholar]
- Cardoso, R.; Lopez, M.; Bento, R. Earthquake resistant structures of portuguese old ‘pombalino’ buildings. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2016; p. 918. [Google Scholar]
- Jiménez, B.; Saloustros, S.; Pelà, L. Seismic vulnerability index method for hybrid timber–masonry structures. Numerical calibration and application to the city of Valparaíso, Chile. J. Build. Eng. 2021, 44, 103185. [Google Scholar] [CrossRef]
- Müller, K.; Frangi, A. Micro-notches as a novel connection system for timber-concrete composite slabs. Eng. Struct. 2021, 245, 112688. [Google Scholar] [CrossRef]
- Taylor, B.; Barbosa, A.R.; Sinha, A. In-Plane Shear Cyclic Performance of Spline Cross-Laminated Timber-Concrete Composite Diaphragms. J. Struct. Eng. 2021, 147, 04021148. [Google Scholar] [CrossRef]
- Fischer, E.C.; Shephard, A.B.; Shinha, A.; Barbosa, A.R. Design of timber-concrete composite floors for fire. In Proceedings of the 11th International Conference on Structuresin Fire (SiF2020), Brisbane, Australia, 30 November–2 December 2020. [Google Scholar]
- Dizhur, D.Y.; Giaretton, M.; Giongo, I.; Ingham, J. Seismic retrofit of masonry walls using timber strong backs. SESOC J. 2017, 30, 30–44. [Google Scholar]
- Miglietta, M.; Damiani, N.; Guerrini, G.; Graziotti, G.F. Full-scale shake-table tests on two unreinforced masonry cavity-wall buildings: Effect of an innovative timber retrofit. Bull. Earthq. Eng. 2021, 19, 2561–2596. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Penna, A.; Galasco, A.; Cattari, S. TreMuri program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Eng. Struct. 2013, 56, 1787–1799. [Google Scholar] [CrossRef]
- Penna, A.; Lagomarsino, S.; Galasco, A. A nonlinear macroelement model for the seismic analysis of masonry buildings. Earthq. Eng. Struct. Dyn. 2014, 43, 159–179. [Google Scholar] [CrossRef]
- Bracchi, S.; Penna, A. A novel macroelement model for the nonlinear analysis of masonry buildings. Part 1: Axial and flexural behavior. Earthq. Eng. Struct. Dyn. 2021, 50, 2233–2252. [Google Scholar] [CrossRef]
- Bracchi, S.; Galasco, A.; Penna, A. A novel macroelement model for the nonlinear analysis of masonry buildings. Part 2: Shear behavior. Earthq. Eng. Struct. Dyn. 2021, 50, 2212–2232. [Google Scholar] [CrossRef]
- Vamvatsikos, D.; Cornell, C.A. Incremental dynamic analysis. Earthq. Eng. Struct. Dyn. 2002, 31, 491–514. [Google Scholar] [CrossRef]
- Luzi, L.; Lanzano, G.; Felicetta, C.; D’Amico, M.C.; Russo, E.; Sgobba, S.; Pacor, F. ORFEUS Working Group 5 (2020). Engineering Strong Motion Database (ESM); Version 2.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Roma, Italy, 2020.
- Russo, E.; Felicetta, C.; Amico, M.; Sgobba, S.; Lanzano, G.; Mascandola, C.; Pacor, F.; Luzi, L. Italian Accelerometric Archive v3.2; Istituto Nazionale di Geofisica e Vulcanologia, Dipartimento della Protezione Civile Nazionale: Roma, Italy, 2022.
- PEER NGA Strong Motion Database, Pacific Earthquake Engineering Research Center, University of California, Berkeley. Available online: https://ngawest2.berkeley.edu/ (accessed on 17 April 2022).
- Ubakus. Available online: https://www.ubakus.com/en/r-value-calculator/ (accessed on 10 May 2022).
- Stolz, P.; Frischknecht, R. Umweltkennwerte und Primärenergiefaktoren von Energiesystemen KBOB. KBOB-Ökobilanzdatenbestand V.2.2. 2017, p. 82. Available online: http://treeze.ch/fileadmin/user_upload/downloads/Publications/Case_Studies/Energy/563-Energiesysteme-v1.0.pdf (accessed on 13 May 2022).
- SIA 380/1; Heizwärmebedarf. Schweizerischer Ingenieur- und Architektenverein: Zürich, Switzerland, 2016.
- Pittau, F.; Krause, F.; Lumia, G.; Habert, G. Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Build. Environ. 2018, 129, 117–129. [Google Scholar] [CrossRef]
- Galimshina, A.; Moustapha, M.; Hollberg, A.; Padey, P.; Lasvaux, S.; Sudret, B.; Habert, G. Bio-based materials as a robust solution for building renovation: A case study. Appl. Energy 2022, 316, 119102. [Google Scholar] [CrossRef]
- Nunes, L. Nonwood bio-based materials. In Performance of Bio-based Building Materials; Woodhead Publishing: Sawston, UK, 2017; pp. 97–186. [Google Scholar]
- Products/Technical Specifications. Clean Insulating Technologies SA, Lausanne. Available online: https://gramitherm.ch/?lang=en (accessed on 7 June 2022).
- Silvestre, J.D.; Pargana, N.; de Brito, J.; Pinheiro, M.D.; Durão, V. Insulation Cork Boards-Environmental Life Cycle Assessment of an Organic Construction Material. Materials 2016, 9, 394. [Google Scholar] [CrossRef] [Green Version]
- Soares, B.; Reis, L.; Sousa, L. Cork composites and their role in sustainable development. Procedia Eng. 2011, 10, 3214–3219. [Google Scholar] [CrossRef] [Green Version]
- Guerrini, G.; Senaldi, I.; Graziotti, F.; Magenes, G.; Beyer, K.; Penna, A. Shake-Table Test of a Strengthened Stone Masonry Building Aggregate with Flexible Diaphragms. Int. J. Archit. Herit. 2019, 13, 1078–1097. [Google Scholar] [CrossRef]
- Carofilis, W.; Gabbianelli, G.; Monteiro, R. Assessment of multi-criteria evaluation procedures for identification of optimal retrofitting strategies for existing RC buildings. J. Earthq. Eng. 2021, 1–34. [Google Scholar] [CrossRef]
- Caterino, N.; Iervolino, I.; Manfredi, G.; Cosenza, E. Multi-Criteria Decision Making for Seismic Retrofitting of RC Structures. J. Earthq. Eng. 2008, 12, 555–583. [Google Scholar] [CrossRef]
- Santarsiero, G.; Masi, A.; Manfredi, V.; Ventura, G. Requalification of RC Frame Apartment Buildings: Comparison of Seismic Retrofit Solutions Based on a Multi-Criteria Approach. Sustainability 2021, 13, 9962. [Google Scholar] [CrossRef]
- Gentile, R.; Galasso, C. Shedding some light on multi-criteria decision making for seismic retrofitting of RC buildings. In Proceedings of the 2019 Society for Earthquake and Civil Engineering Dynamics Conference (SECED 2019), London, UK, 9–10 September 2019; p. 10. [Google Scholar]
- Carofilis Gallo, W.W.; Clemett, N.; Gabbianelli, G.; O’Reilly, G.; Monteiro, R. Seismic Resilience Assessment in Optimally Integrated Retrofitting of Existing School Buildings in Italy. Buildings 2022, 12, 845. [Google Scholar] [CrossRef]
- Almeida, J.P.; Beyer, K.; Brunner, R.; Wenk, T. Characterization of mortar–timber and timber–timber cyclic friction in timber floor connections of masonry buildings. Mater. Struct. 2020, 53, 51. [Google Scholar] [CrossRef]
Timber Beams | |
Beam width b | 15 cm |
Beam height h | 20 cm |
Beam spacing i | 50 cm |
Modulus of elasticity E | 6875 N/mm2 |
Timber planking | |
Thickness | 4 cm |
Shear modulus G | 10 N/mm2 |
No | Earthquake | Date | Station | Name | PGA-Recorded Motion (g) |
---|---|---|---|---|---|
1 | Basso Tirreno, Italy | 15.04.1978 | Milazzo | MLZ000 | 0.07 |
2 | Southern Italy | 11.05.1984 | Lazio Abruzzo | D-VLB000 | 0.15 |
3 | Kalamata, Greece | 15.09.1986 | Messini-Town Hall | MES-NS | 0.16 |
4 | Kozani, Greece | 13.05.1995 | Kozani | KOZ-L | 0.14 |
5 | Imotski, Croatia | 23.05.1974 | Imotsko-Sum. Gos. | IMO | 0.15 |
6 | Friuli, Italy | 06.05.1976 | Buia | FRIULI -BUI000 | 0.14 |
7 | Umbria-Marche, Italy | 03.04.1998 | Gubbio-Piana | UBMARCHE. NCB000 | 0.15 |
8 | Sicilia-Orientale, Italy | 13.12.1990 | Sortino | SICORIEN.P_SRT-UP | 0.18 |
T1 (s) | T2 (s) | T3 (s) | |
---|---|---|---|
Unretrofitted building | 0.443 | 0.418 | 0.267 |
Retrofitted building | 0.276 | 0.203 | 0.129 |
Variable | Retrofit Variant 1 | Retrofit Variant 2a | Retrofit Variant 2b |
---|---|---|---|
Normalized out-of-plane displacement reduction αS | 22% | 20% | 20% |
Energy compliance αE | 140% | 140% | 140% |
Embodied carbon emissions (kg CO2-eq/a) | −605 | −582 | −1577 |
Installation cost (EUR) | 33,300 | 32,455 | 35,640 |
Class | Points in Scoreboard | Normalized Out-of-Plane Displacement Reduction αS | Energy Compliance αE | Embodied Carbon Emissions kg CO2-eq/a | Cost (EUR) |
---|---|---|---|---|---|
A | 7 | >30% | >200% | <−1500 | 10,000–30,000 |
B | 6 | 25–30% | 100–200% | −1500 to −1000 | 30,000–50,000 |
C | 5 | 20–25% | 80–100% | −1000 to −500 | 50,000–100,000 |
D | 4 | 15–20% | 60–80% | −500 to 0 | 100,000–200,000 |
E | 3 | 10–15% | 40–60% | 0 to 500 | 200,000–300,000 |
F | 2 | 5–10% | 20–40% | 500 to 1000 | 300,000–500,000 |
G | 1 | 0 | 0–20% | >1000 | >500,000 |
Variable | Relative Importance |
---|---|
P1: Seismic performance | 0.48 |
P2: Embodied carbon footprint | 0.16 |
P3: Energy compliance | 0.24 |
P4: Cost | 0.12 |
Retrofit Variant | ||
---|---|---|
I | II | III |
Retrofit variant 2b | Retrofit variant 2a | Retrofit variant 1 |
0.955 | 0.849 | 0.839 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuluaga, S.S.; Kallioras, S.; Tsiavos, A. Optimization of Synergetic Seismic and Energy Retrofitting Based on Timber Beams and Bio-Based Infill Panels: Application to an Existing Masonry Building in Switzerland. Buildings 2022, 12, 1126. https://doi.org/10.3390/buildings12081126
Zuluaga SS, Kallioras S, Tsiavos A. Optimization of Synergetic Seismic and Energy Retrofitting Based on Timber Beams and Bio-Based Infill Panels: Application to an Existing Masonry Building in Switzerland. Buildings. 2022; 12(8):1126. https://doi.org/10.3390/buildings12081126
Chicago/Turabian StyleZuluaga, Simon Sanchez, Stylianos Kallioras, and Anastasios Tsiavos. 2022. "Optimization of Synergetic Seismic and Energy Retrofitting Based on Timber Beams and Bio-Based Infill Panels: Application to an Existing Masonry Building in Switzerland" Buildings 12, no. 8: 1126. https://doi.org/10.3390/buildings12081126
APA StyleZuluaga, S. S., Kallioras, S., & Tsiavos, A. (2022). Optimization of Synergetic Seismic and Energy Retrofitting Based on Timber Beams and Bio-Based Infill Panels: Application to an Existing Masonry Building in Switzerland. Buildings, 12(8), 1126. https://doi.org/10.3390/buildings12081126