Assessment of Integrated Solutions for the Combined Energy Efficiency Improvement and Seismic Strengthening of Existing URM Buildings
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Overview of Seismic and Energy Retrofitting Techniques
1.3. Combined Seismic and Energy Retrofitting Techniques
1.4. Scope and Novelty of the Work
2. Case Study
2.1. ‘El Plantinar’ Neighbourhood
2.2. Case Study Building
2.2.1. Structural Characterisation
2.2.2. Energetic Characterisation
3. Energy and Seismic Performance of the As-Built Building
3.1. Seismic Performance Assessment
3.1.1. Numerical Modelling
3.1.2. Seismic Safety Criteria
3.1.3. Preliminary Seismic Assessment of the As-Built Structure
3.2. Energy Performance Assessment
3.2.1. Numerical Modelling
3.2.2. Configuration of the Simulation
3.2.3. Preliminary Energy Assessment of the As-Built Structure
4. Integrated Seismic and Energy Retrofitting Interventions
4.1. Description of the Solutions Proposed and Sensitivity Analysis
4.2. Proposed Seismic Retrofitting Solutions and Numerical Modelling
4.3. Energy Retrofitting Solutions Proposed and Numerical Modelling
4.4. Results of the Sensitivity Analysis
4.5. Results of the Benefit–Cost Assessment
4.6. Results of the Combined Energy and Seismic Assessment
5. Conclusions
6. Future Research Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibañez Iralde, N.S.; Pascual, J.; Salom, J. Energy Retrofit of Residential Building Clusters. A Literature Review of Crossover Recommended Measures, Policies Instruments and Allocated Funds in Spain. Energy Build. 2021, 252, 111409. [Google Scholar] [CrossRef]
- Menna, C.; del Vecchio, C.; di Ludovico, M.; Mauro, G.M.; Ascione, F.; Prota, A. Conceptual Design of Integrated Seismic and Energy Retrofit Interventions. J. Build. Eng. 2021, 38, 102190. [Google Scholar] [CrossRef]
- Bournas, D.A. Concurrent Seismic and Energy Retrofitting of RC and Masonry Building Envelopes Using Inorganic Textile-Based Composites Combined with Insulation Materials: A New Concept. Compos. Part B Eng. 2018, 148, 166–179. [Google Scholar] [CrossRef]
- Instituto para la Diversificación y Ahorro de la Energía (IDAE). Proyecto SECH-SPAHOUSEC. Análisis del Consumo Energético del Sector Residencial en España; Informe Final; Instituto para la Diversificación y Ahorro de la Energía (IDAE): Madrid, Spain, 2011.
- European Parliament. The European Green Deal; European Parliament: Strasbourg, France, 2019.
- Freddi, F.; Galasso, C.; Cremen, G.; Dall’Asta, A.; di Sarno, L.; Giaralis, A.; Gutiérrez-Urzúa, F.; Málaga-Chuquitaype, C.; Mitoulis, S.A.; Petrone, C.; et al. Innovations in Earthquake Risk Reduction for Resilience: Recent Advances and Challenges. Int. J. Disaster Risk Reduct. 2021, 60, 102267. [Google Scholar] [CrossRef]
- Requena-Garcia-Cruz, M.V.; Morales-Esteban, A.; Durand-Neyra, P. Optimal Ductility Enhancement of RC Framed Buildings Considering Different Non-Invasive Retrofitting Techniques. Eng. Struct. 2021, 242, 112572. [Google Scholar] [CrossRef]
- Sorrentino, L.; Cattari, S.; da Porto, F.; Magenes, G.; Penna, A. Seismic Behaviour of Ordinary Masonry Buildings during the 2016 Central Italy Earthquakes. Bull. Earthq. Eng. 2019, 17, 5583–5607. [Google Scholar] [CrossRef] [Green Version]
- Avila-Haro, J.A.; Gonzalez-Drigo, R.; Vargas-Alzate, Y.F.; Pujades, L.; Barbat, A. Probabilistic Seismic Assessment of a High-Rise URM Building. J. Build. Eng. 2022, 45, 103344. [Google Scholar] [CrossRef]
- Sarhosis, V.; Giarlelis, C.; Karakostas, C.; Smyrou, E.; Bal, I.E.; Valkaniotis, S.; Ganas, A. Observations from the March 2021 Thessaly Earthquakes: An Earthquake Engineering Perspective for Masonry Structures. Bull. Earthq. Eng. 2022, 20, 5483–5515. [Google Scholar] [CrossRef]
- Sarhosis, V.; Dais, D.; Smyrou, E.; Bal, İ.E.; Drougkas, A. Quantification of Damage Evolution in Masonry Walls Subjected to Induced Seismicity. Eng. Struct. 2021, 243, 112529. [Google Scholar] [CrossRef]
- Domínguez, S.; Sendra, J.J.; León, A.L.; Esquivias, P.M. Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies. Energies 2012, 5, 2263–2287. [Google Scholar] [CrossRef] [Green Version]
- Segovia-Verjel, M.L.; Requena-García-Cruz, M.V.; De-Justo-Moscardó, E.; Morales-Esteban, A. Optimal Seismic Retrofitting Techniques for URM School Buildings Located in the Southwestern Iberian Peninsula. PLoS ONE 2019, 14, e0223491. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Forth, J.P.; Nikitas, N.; Sarhosis, V. Retrofitting of Masonry Walls by Using a Mortar Joint Technique; Experiments and Numerical Validation. Eng. Struct. 2016, 117, 58–70. [Google Scholar] [CrossRef]
- Abeling, S.; Dizhur, D.; Ingham, J. An Evaluation of Successfully Seismically Retrofitted URM Buildings in New Zealand and Their Relevance to Australia. Australian J. Struct. Eng. 2018, 19, 234–244. [Google Scholar] [CrossRef]
- Shabdin, M.; Attari, N.K.A.; Zargaran, M. Experimental Study on Seismic Behavior of Un-Reinforced Masonry (URM) Brick Walls Strengthened with Shotcrete. Bull. Earthq. Eng. 2018, 16, 3931–3956. [Google Scholar] [CrossRef]
- Spinella, N. Push-over Analysis of a Rubble Full-Scale Masonry Wall Reinforced with Stainless Steel Ribbons. Bull. Earthq. Eng. 2018, 17, 497–518. [Google Scholar] [CrossRef]
- Garcia-Ramonda, L.; Pelà, L.; Roca, P.; Camata, G. Experimental Cyclic Behaviour of Shear Masonry Walls Reinforced with Single and Double Layered Steel Reinforced Grout. Constr. Build. Mater. 2022, 320, 126053. [Google Scholar] [CrossRef]
- Proença, J.M.; Gago, A.S.; Vilas Boas, A. Structural Window Frame for In-Plane Seismic Strengthening of Masonry Wall Buildings. Int. J. Archit. Herit. 2019, 13, 98–113. [Google Scholar] [CrossRef]
- Proença, J.; Gago, A.S.; Cardoso, J.; Cóias, V.; Paula, R. Development of an Innovative Seismic Strengthening Technique for Traditional Load-Bearing Masonry Walls. Bull. Earthq. Eng. 2012, 1, 113–133. [Google Scholar] [CrossRef]
- Turco, V.; Secondin, S.; Morbin, A.; Valluzzi, M.R.; Modena, C. Flexural and Shear Strengthening of Un-Reinforced Masonry with FRP Bars. Compos. Sci. Technol. 2006, 66, 289–296. [Google Scholar] [CrossRef]
- Broderick, Á.; Byrne, M.; Armstrong, S.; Sheahan, J.; Coggins, A.M. A Pre and Post Evaluation of Indoor Air Quality, Ventilation, and Thermal Comfort in Retrofitted Co-Operative Social Housing. Build. Environ. 2017, 122, 126–133. [Google Scholar] [CrossRef]
- Recart, C.; Sturts Dossick, C. Hygrothermal Behavior of Post-Retrofit Housing: A Review of the Impacts of the Energy Efficiency Upgrade Strategies. Energy Build. 2022, 262, 112001. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; Bruse, M.; Meng, Q. An Integrated Simulation Method for Building Energy Performance Assessment in Urban Environments. Energy Build. 2012, 54, 243–251. [Google Scholar] [CrossRef]
- Ratti, C.; Baker, N.; Steemers, K. Energy Consumption and Urban Texture. Energy Build. 2005, 37, 762–776. [Google Scholar] [CrossRef]
- Rodrigues, E.; Amaral, A.R.; Gaspar, A.R.; Gomes, Á. An Approach to Urban Quarter Design Using Building Generative Design and Thermal Performance Optimization. Energy Procedia 2015, 78, 2899–2904. [Google Scholar] [CrossRef] [Green Version]
- Mangan, S.D.; Koclar Oral, G.; Erdemir Kocagil, I.; Sozen, I. The Impact of Urban Form on Building Energy and Cost Efficiency in Temperate-Humid Zones. J. Build. Eng. 2021, 33, 101626. [Google Scholar] [CrossRef]
- Caprino, A.; Lorenzoni, F.; Carnieletto, L.; Feletto, L.; de Carli, M.; da Porto, F. Integrated Seismic and Energy Retrofit Interventions on a URM Masonry Building: The Case Study of the Former Courthouse in Fabriano. Sustainability 2021, 13, 9592. [Google Scholar] [CrossRef]
- Shen, Y.; Yarnold, M. A Novel Sensitivity Analysis of Commercial Building Hybrid Energy-Structure Performance. J. Build. Eng. 2021, 43, 102808. [Google Scholar] [CrossRef]
- Formisano, A.; Vaiano, G.; Fabbrocino, F. Seismic and Energetic Interventions on a Typical South Italy Residential Building: Cost Analysis and Tax Detraction. Front. Built Environ. 2019, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Copiello, S.; Donati, E. Is Investing in Energy Efficiency Worth It? Evidence for Substantial Price Premiums but Limited Profitability in the Housing Sector. Energy Build. 2021, 251, 111371. [Google Scholar] [CrossRef]
- de Angelis, A.; Ascione, F.; de Masi, R.; Pecce, M.; Vanoli, G. A Novel Contribution for Resilient Buildings. Theoretical Fragility Curves: Interaction between Energy and Structural Behavior for Reinforced Concrete Buildings. Buildings 2020, 10, 194. [Google Scholar] [CrossRef]
- de Angelis, A.; Tariello, F.; de Masi, R.F.; Pecce, M.R. Comparison of Different Solutions for a Seismic and Energy Retrofit of an Auditorium. Sustainability 2021, 13, 8761. [Google Scholar] [CrossRef]
- Marini, A.; Passoni, C.; Belleri, A.; Feroldi, F.; Preti, M.; Metelli, G.; Riva, P.; Giuriani, E.; Plizzari, G. Combining Seismic Retrofit with Energy Refurbishment for the Sustainable Renovation of RC Buildings: A Proof of Concept. Eur. J. Environ. Civ. Eng. 2022, 26, 2475–2495. [Google Scholar] [CrossRef]
- Negro, E.; D’Amato, M.; Cardinale, N. Non-Invasive Methods for Energy and Seismic Retrofit in Historical Building in Italy. Front. Built Environ. 2019, 5, 125. [Google Scholar] [CrossRef]
- Formisano, A.; Vaiano, G. Combined Energy-Seismic Retrofit of Existing Historical Masonry Buildings: The Novel “DUO System” Coating System Applied to a Case Study. Heritage 2021, 4, 4629–4646. [Google Scholar] [CrossRef]
- D’Angola, A.; Manfredi, V.; Masi, A.; Mecca, M. Energy and Seismic Rehabilitation of RC Buildings through an Integrated Approach: An Application Case Study. In Green Energy Advances; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Menna, C.; Felicioni, L.; Negro, P.; Lupíšek, A.; Romano, E.; Prota, A.; Hájek, P. Review of Methods for the Combined Assessment of Seismic Resilience and Energy Efficiency towards Sustainable Retrofitting of Existing European Buildings. Sustain. Cities Soc. 2022, 77, 103556. [Google Scholar] [CrossRef]
- Requena-García-Cruz, M.V.; Morales-Esteban, A.; Durand-Neyra, P.; Estêvão, J.M.C. An Index-Based Method for Evaluating Seismic Retrofitting Techniques. Application to a Reinforced Concrete Primary School in Huelva. PLoS ONE 2019, 14, e0215120. [Google Scholar] [CrossRef] [Green Version]
- Angiolilli, M.; Lagomarsino, S.; Cattari, S.; Degli Abbati, S. Seismic Fragility Assessment of Existing Masonry Buildings in Aggregate. Eng. Struct. 2021, 247, 113218. [Google Scholar] [CrossRef]
- Spanish Ministry of Housing MV-201. Unreinforced Ceramic Masonry Walls [Muros Resistentes de Fábrica de Ladrillo]; Spanish Ministry of Housing: Madrid, Spain, 1972.
- de-Miguel-Rodríguez, J.; Morales-Esteban, A.; Requena-García-Cruz, M.-V.; Zapico-Blanco, B.; Segovia-Verjel, M.-L.; Romero-Sánchez, E.; Carvalho-Estêvão, J.M. Fast Seismic Assessment of Built Urban Areas with the Accuracy of Mechanical Methods Using a Feedforward Neural Network. Sustainability 2022, 14, 5274. [Google Scholar] [CrossRef]
- McKenna, F.; Fenves, G.L.; Scott, M.H. OpenSees: Open System for Earthquake Engineering Simulation; Pacific Earthquake Engineering Research Center: Berkeley, CA, USA, 2000. [Google Scholar]
- Petracca, M.; Candeloro, F.; Camata, G. STKO User Manual; ASDEA Software Technology: Pescara, Italy, 2017. [Google Scholar]
- The MathWorks Inc. MATLAB and Statistics Toolbox Release 2018b; The MathWorks Inc.: Natick, MA, USA, 2018. [Google Scholar]
- D’Altri, A.M.; Sarhosis, V.; Milani, G.; Rots, J.; Cattari, S.; Lagomarsino, S.; Sacco, E.; Tralli, A.; Castellazzi, G.; de Miranda, S. Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Arch. Comput. Methods Eng. 2020, 27, 1153–1185. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Penna, A.; Galasco, A.; Cattari, S. TREMURI Program: An Equivalent Frame Model for the Nonlinear Seismic Analysis of Masonry Buildings. Eng. Struct. 2013, 56, 1787–1799. [Google Scholar] [CrossRef]
- Serena, C.; Magenes, G. Benchmarking the Software Packages to Model and Assess the Seismic Response of Unreinforced Masonry Existing Buildings through Nonlinear Static Analyses. Bull. Earthq. Eng. 2021, 20, 1901–1936. [Google Scholar] [CrossRef]
- Requena-García-Cruz, M.-V.; Cattari, S.; Bento, R.; Morales-Esteban, A. Comparative Study of Alternative Equivalent Frame Approaches for the Seismic Assessment of Masonry Buildings in OpenSees (Under Review). J. Build. Eng. 2022, in press. [Google Scholar]
- Raka, E.; Spacone, E.; Sepe, V.; Camata, G. Advanced Frame Element for Seismic Analysis of Masonry Structures: Model Formulation and Validation. Earthq. Eng. Struct. Dyn. 2015, 44, 2489–2506. [Google Scholar] [CrossRef]
- Beyer, K.; Eeri, M.; Dazio, A. Quasi-Static Cyclic Tests on Masonry Spandrels. Earthq. Spectra 2012, 28, 907–929. [Google Scholar] [CrossRef] [Green Version]
- Turnšek, V.; Čačovič, F. Some Experimental Results on the Strength of Brick Masonry Walls. In Proceedings of the Second International Brick Masonry Conference, Stoke-on-Trent, England, UK, 12–15 April 1971; pp. 149–156. [Google Scholar]
- Cattari, S.; Camilletti, D.; Lagomarsino, S.; Bracchi, S.; Rota, M.; Penna, A. Masonry Italian Code-Conforming Buildings. Part 2: Nonlinear Modelling and Time-History Analysis. J. Earthq. Eng. 2018, 22, 2010–2040. [Google Scholar] [CrossRef] [Green Version]
- Spanish Ministry for the Ecological Transfer [Ministerio para la Transición Ecológica y el Reto Demográfico]. Processes for the Certification of Buildings; Spanish Ministry for the Ecological Transfer: Madrid, Spain, 2022.
- Spanish Ministry of Public Works [Ministerio de Fomento de España]. Spanish Technical Code of Buildings [Código Técnico de La Edificación (CTE)]; Spanish Ministry of Public Works: Madrid, Spain, 2006.
- Spanish Ministry of Transports Mobility and Urban Agenda [Ministerio de Transportes Movilidad y Agenda Urbana]. Basic Document: Energy Saving [Documento Básico HE-Ahorro de Energía]; Spanish Ministry of Transports Mobility and Urban Agenda: Madrid, Spain, 2022.
- de la Flor, F.J.S.; Domínguez, S.Á.; Félix, J.L.M.; Falcón, R.G. Climatic Zoning and Its Application to Spanish Building Energy Performance Regulations. Energy Build. 2008, 40, 1984–1990. [Google Scholar] [CrossRef]
- Spanish Ministry of Transports Mobility and Urban Agenda [Ministerio de Transportes Movilidad y Agenda Urbana]. Basic Document: Healthiness [Documento Básico HS-Salubridad]; Spanish Ministry of Transports Mobility and Urban Agenda: Madrid, Spain, 2022.
- Instituto para la Diversificación y Ahorro de la Energía (IDAE). Condiciones de Aceptación de Procedimientos Alternativos a LiDER y CALENER; Instituto para la Diversificación y Ahorro de la Energía (IDAE): Madrid, Spain, 2009.
- Spanish Ministry of Public Works [Ministerio de Fomento]. Atlas de Puentes Térmicos DA DB-HE/3; Spanish Ministry of Public Works [Ministerio de Fomento]: Madrid, Spain, 2006.
- Fernández-Agüera, J.; Domínguez-Amarillo, S.; Sendra, J.J.; Suarez, R. Predictive Models for Airtightness in Social Housing in a Mediterranean Region. Sustain. Cities Soc. 2019, 51, 101695. [Google Scholar] [CrossRef]
- León, Á.L.; Domínguez, S.; Campano, M.A.; Ramírez-Balas, C. Reducing the Energy Demand of Multi-Dwelling Units in a Mediterranean Climate Using Solar Protection Elements. Energies 2012, 5, 3398–3424. [Google Scholar] [CrossRef]
- Santamaría, J.; Girón, S.; Campano, M.A. Economic Assessments of Passive Thermal Rehabilitations of Dwellings in Mediterranean Climate. Energy Build. 2016, 128, 772–784. [Google Scholar] [CrossRef]
- Petrovčič, S.; Kilar, V. Design Considerations for Retrofitting of Historic Masonry Structures with Externally Bonded FRP Systems. Int. J. Archit. Herit. 2020, 16, 957–976. [Google Scholar] [CrossRef]
- Fernández-Agüera, J.; Domínguez-Amarillo, S.; Sendra, J.J.; Suárez, R. An Approach to Modelling Envelope Airtightness in Multi-Family Social Housing in Mediterranean Europe Based on the Situation in Spain. Energy Build. 2016, 128, 236–253. [Google Scholar] [CrossRef]
- Salehi, A.; Torres, I.; Ramos, A. Experimental Analysis of Building Airtightness in Traditional Residential Portuguese Buildings. Energy Build. 2017, 151, 198–205. [Google Scholar] [CrossRef]
- Feijó-Muñoz, J.; Pardal, C.; Echarri, V.; Fernández-Agüera, J.; Assiego de Larriva, R.; Montesdeoca Calderín, M.; Poza-Casado, I.; Padilla-Marcos, M.Á.; Meiss, A. Energy Impact of the Air Infiltration in Residential Buildings in the Mediterranean Area of Spain and the Canary Islands. Energy Build. 2019, 188–189, 226–238. [Google Scholar] [CrossRef]
Masonry | γ = 18 kN/m3 | fc = 4.0 MPa | fck = 1.14 MPa | E = 1200 MPa | G = 150 GPa | τ0 = 0.05 MPa |
RC | γ = 25 kN/m3 | fc = 25.5 MPa | fck = 17.5 MPa | E = 3000 GPa | G = 17000 GPa | |
Steel | γ = 78.6 kN/m3 | fy = 428 MPa | fyk = 400 MPa | E = 210 GPa | G = 800 GPa |
Composition | Transmittance U (W/m2K) | Solar Factor | |
---|---|---|---|
Façade | Cement mortar (2 cm); one foot of hollow metric brick ‘gafa type’ (24 cm); cladding of plaster (1 cm). | 1.74 | - |
Façade of the ground floor | Foot and a half of solid metric brick (36 cm); cladding of plaster (1 cm). | 1.54 | - |
Floor slab | Terrazzo floor (2 cm); cement mortar (3 cm); jack arch brick one-way spanning slab (25 cm); cladding of plaster (1.5 cm). | 1.57 | - |
Roof | Pressed brick flooring (0.8 cm); cement mortar (1.5 cm); lost flooring (0.8 cm); lightweight aggregate concrete, formation of slope (mean 5 cm); jack arch brick one-way spanning slab (25 cm); cladding of plaster (1.5 cm). | 1.59 | - |
Ground floor | Terrazzo floor (2 cm); cement mortar (3 cm); conventional solid concrete slab (10 cm) | 1.24 | - |
Windows | Aluminium frame with no thermal break; single glass pane (6 mm) | 5.70 | 0.83 |
1–7 h | 8 h | 9–15 h | 16–18 h | 19 h | 20–23 h | 24 h | |
---|---|---|---|---|---|---|---|
Cooling | |||||||
January to May (°C) | - | - | - | - | - | - | - |
June to September (°C) | 27 | - | - | 25 | 25 | 25 | 27 |
October to December (°C) | - | - | - | - | - | - | - |
Heating | |||||||
January to May (°C) | 17 | 20 | 20 | 20 | 20 | 20 | 17 |
June to September (°C) | - | - | - | - | - | - | - |
October to December (°C) | 17 | 20 | 20 | 20 | 20 | 20 | 17 |
Sensitive loads due to occupation | |||||||
Weekdays (W/m2) | 2.15 | 0.54 | 0.54 | 1.08 | 1.08 | 1.08 | 2.15 |
Weekend (W/m2) | 2.15 | 2.15 | 2.15 | 2.15 | 2.15 | 2.15 | 2.15 |
Latent loads due to occupation | |||||||
Weekdays (W/m2) | 1.36 | 0.34 | 0.34 | 0.68 | 0.68 | 0.68 | 1.36 |
Weekend (W/m2) | 1.36 | 1.36 | 1.36 | 1.36 | 1.36 | 1.36 | 1.36 |
Sensitive loads due to lighting equipment | |||||||
Every day (W/m2) | 0.44 | 1.32 | 1.32 | 1.32 | 2.20 | 4.40 | 2.20 |
Sensitive loads due to electronic equipment | |||||||
Every day (W/m2) | 0.44 | 1.32 | 1.32 | 1.32 | 2.20 | 4.40 | 2.20 |
Ventilation | |||||||
January to May (ac/h) | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
June to September (ac/h) | 4.00 | 4.00 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
October to December (ac/h) | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
Hot water utilisation at 60 °C | |||||||
Every day (L/m2) | 0.00 | 0.26 | 0.065 | 0.065 | 0.13 | 0.26 | 0.00 |
AVERAGE | AVERAGE | AVERAGE | |||||||
---|---|---|---|---|---|---|---|---|---|
Dheat, m2 | Dcool, m2 | Dtot, m2 | Dheat, m2 | Dcool, m2 | Dtot, m2 | Dheat, m2 | Dcool, m2 | Dtot, m2 | |
(kWh/m2·year) | (kWh/m2·year) | (kWh/m2·year) | (kWh/m2·year) | (kWh/m2·year) | (kWh/m2·year) | (kWh/m2·year) | (kWh/m2·year) | (kWh/m2·year) | |
E-Asbuilt-NE | 42.55 | 14.49 | 57.04 | 58.35 | 22.50 | 79.44 | 31.85 | 6.55 | 39.72 |
E-Asbuilt-SW | 43.48 | 14.08 | 57.57 | 59.27 | 21.51 | 79.68 | 32.69 | 6.54 | 39.76 |
E-Asbuilt-NW | 43.77 | 14.02 | 57.79 | 58.40 | 21.33 | 78.66 | 32.72 | 6.51 | 39.93 |
E-Asbuilt-SE | 42.06 | 14.44 | 56.50 | 57.57 | 21.92 | 78.08 | 31.86 | 6.66 | 39.79 |
Seismic Performance | Energy Performance | ||||||
---|---|---|---|---|---|---|---|
RP1 | RP2 | RP1 | RP2 | ||||
Extended | Ab. | Extended | Ab. | Extended | Ab. | Extended | Ab. |
RP1-L-60-1 | S-W1 | RP2-15-6-1 | S-F1 | RP1-AL-STA-NE | E-W1-NE | RP2-EPS-5-NE | E-F1-NE |
RP1-L-60-2 | S-W2 | RP2-15-8-1 | S-F2 | RP1-AL-STA-SW | E-W1-SW | RP2-EPS-5-SW | E-F1-SW |
RP1-L-90-1 | S-W3 | RP2-20-6-1 | S-F3 | RP1-AL-STA-NW | E-W1-NW | RP2-EPS-5-NW | E-F1-NW |
RP1-L-90-2 | S-W4 | RP2-20-8-1 | S-F4 | RP1-AL-STA-SE | E-W1-SE | RP2-EPS-5-SE | E-F1-SE |
RP1-L-120-1 | S-W5 | RP2-30-6-1 | S-F5 | RP1-AL-LEM-NE | E-W2-NE | RP2-EPS-10-NE | E-F2-NE |
RP1-L-120-2 | S-W6 | RP2-30-8-1 | S-F6 | RP1-AL-LEM-SW | E-W2-SW | RP2-EPS-10-SW | E-F2-SW |
RP1-O-60-1 | S-W7 | RP2-15-6-2 | S-F7 | RP1-AL-LEM-NW | E-W2-NW | RP2-EPS-10-NW | E-F2-NW |
RP1-O-60-2 | S-W8 | RP2-15-8-2 | S-F8 | RP1-AL-LEM-SE | E-W2-SE | RP2-EPS-10-SE | E-F2-SE |
RP1-O-90-1 | S-W9 | RP2-20-6-2 | S-F9 | RP1-WOOD-STA-NE | E-W3-NE | RP2-EPS-5-10-NE | E-F3-NE |
RP1-O-90-2 | S-W10 | RP2-20-8-2 | S-F10 | RP1-WOOD-STA-SW | E-W3-SW | RP2-EPS-5-10-SW | E-F3-SW |
RP1-O-120-1 | S-W11 | RP2-30-6-2 | S-F11 | RP1-WOOD-STA-NW | E-W3-NW | RP2-EPS-5-10-NW | E-F3-NW |
RP1-O-120-2 | S-W12 | RP2-30-8-2 | S-F12 | RP1-WOOD-STA-SE | E-W3-SE | RP2-EPS-5-10-SE | E-F3-SE |
RP1-WOOD-LEM-NE | E-W4-NE | RP2-RW-5-NE | E-F4-NE | ||||
RP1-WOOD-LEM-SW | E-W4-SW | RP2-RW-5-SW | E-F4-SW | ||||
RP1-WOOD-LEM-NW | E-W4-NW | RP2-RW-5-NW | E-F4-NW | ||||
RP1-WOOD-LEM-SE | E-W4-SE | RP2-RW-5-SE | E-F4-SE | ||||
RP1-PVC-STA-NE | E-W5-NE | RP2-RW-10-NE | E-F5-NE | ||||
RP1- PVC-STA-SW | E-W5-SW | RP2-RW-10-SW | E-F5-SW | ||||
RP1- PVC-STA-NW | E-W5-NW | RP2-RW-10-NW | E-F5-NW | ||||
RP1- PVC-STA-SE | E-W5-SE | RP2-RW-10-SE | E-F5-SE | ||||
RP1-PVC-LEM-NE | E-W6-NE | RP2-RW-5-10-NE | E-F6-NE | ||||
RP1- PVC-LEM-SW | E-W6-SW | RP2-RW-5-10-SW | E-F6-SW | ||||
RP1-PVC-LEM-NW | E-W6-NW | RP2-RW-5-10-NW | E-F6-NW | ||||
RP1-PVC-LEM-SE | E-W6-SE | RP2-RW-5-10-SE | E-F6-SE |
S-RP1 | S-RP2 | |
---|---|---|
(i) Amount of reinforcing material | L-profile 60.5.8/90.10.11/120.10.13 O-profile 60.2/90.5/120.4 | Spacing: 15/20/30 mm Dimension: ϕ6/ϕ8 mm |
(ii) Type of reinforcing materials | fy = 235 (1)/275 (2) MPa | fy = 235 (1)/275 (2) MPa |
(iii) Type of reinforcing elements | L-profile/O-profile |
Material (Transmittance U (W/m2K)) | Properties (Transmittance U (W/m2K)) | Transmittance U (W/m2K) | Solar Factor | ||
---|---|---|---|---|---|
As-built | W0 | Aluminium (no thermal bridge break) (5.70) | 4 mm single glass (5.70) | - | 0.83 |
E-RP1 | W1 | Aluminium w/thermal bridge break (2.80) | 4/6/4 normal glass (3.30) | - | 0.75 |
W2 | 4/6/4 low-e glass (2.50) | - | 0.48 | ||
W3 | Wood (1.43) | 4/6/4 normal glass (3.30) | - | 0.75 | |
W4 | 4/6/4 low-e glass (2.50) | - | 0.48 | ||
W5 | PVC (2.30) | 4/6/4 normal glass (3.30) | - | 0.75 | |
W6 | 4/6/4 low-e glass (2.50) | - | 0.48 | ||
As-built | F0 | - | - | 1.74 | - |
E-RP2 | F1 | Expanded polystyrene styroboard (EPS) (0.037) | 5 cm | 0.51 | - |
F2 | 10 cm | 0.31 | - | ||
F3 | Combined | 0.51/0.31 | - | ||
F4 | Rock wool (0.037) | 5 cm | 0.51 | - | |
F5 | 10 cm | 0.31 | - | ||
F6 | Combined | 0.51/0.31 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Requena-Garcia-Cruz, M.-V.; Díaz-Borrego, J.; Romero-Sánchez, E.; Morales-Esteban, A.; Campano, M.-A. Assessment of Integrated Solutions for the Combined Energy Efficiency Improvement and Seismic Strengthening of Existing URM Buildings. Buildings 2022, 12, 1276. https://doi.org/10.3390/buildings12081276
Requena-Garcia-Cruz M-V, Díaz-Borrego J, Romero-Sánchez E, Morales-Esteban A, Campano M-A. Assessment of Integrated Solutions for the Combined Energy Efficiency Improvement and Seismic Strengthening of Existing URM Buildings. Buildings. 2022; 12(8):1276. https://doi.org/10.3390/buildings12081276
Chicago/Turabian StyleRequena-Garcia-Cruz, Maria-Victoria, Julia Díaz-Borrego, Emilio Romero-Sánchez, Antonio Morales-Esteban, and Miguel-Angel Campano. 2022. "Assessment of Integrated Solutions for the Combined Energy Efficiency Improvement and Seismic Strengthening of Existing URM Buildings" Buildings 12, no. 8: 1276. https://doi.org/10.3390/buildings12081276
APA StyleRequena-Garcia-Cruz, M. -V., Díaz-Borrego, J., Romero-Sánchez, E., Morales-Esteban, A., & Campano, M. -A. (2022). Assessment of Integrated Solutions for the Combined Energy Efficiency Improvement and Seismic Strengthening of Existing URM Buildings. Buildings, 12(8), 1276. https://doi.org/10.3390/buildings12081276