Masonry Elements Strengthened with TRM: A Review of Experimental, Design and Numerical Methods
Abstract
:1. Introduction
2. Experimental Tests
2.1. In-Plane Loading
Reference | Masonry Type | Sample dim. TxB [mm] | Sample Orientation | TRM Side | Mortar fc 1 [MPa] | Thick [mm] | Embedded Grid | Load Scheme | Base Length [mm] | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Diagonal compression tests | |||||||||||
Parisi et al., 2013 [8] | Tuff solid blocks | 310 | 1230 | 45° | 1/2 | 16 | 10 | Glass | Monotonic | 400 | |
Ferrara et al., 2020 [10] | Clay solid bricks | 120 | 1030 | 45° | 2 | 11 | 5, 8 | Flax | Monotonic | 1000 | |
Almeida et al., 2015 [17] | Clay hollow bricks | 140 | 990 | 45° | 2 | 44 | 25 | Carbon | Monotonic/Load–unload | 700 | |
Borri et al., 2011 [18] | Rubble stone | 670 | 1200 | 0° 2 | 2 | 11 | 30 | Glass | Load–unload | 1000 | |
D’Antino et al., 2019 [19] | Clay solid bricks | 270 315 | 830 1000 | 45° | 2 | 7.5 | 20 | Glass | Monotonic | 620–800 | |
Babaeidarabad et al., 2014 [22] | Clay solid bricks | 92 | 1200 | 0° | 2 | 24 | 10, 25 | Carbon | Load–unload | ||
Menna et al., 2015 [23] | Tuff/Clay solid bricks | 250 | 1200 | 0° | 2 | 14, 16 | 15, 40 | Hemp | Monotonic | 400 | |
Gattesco et al., 2015 [24] | Clay solid bricks Infill Rubble stone | 250/380 380 400 | 1160 | 0° | 2 | 7 | 30 | Glass | Load–unload | 1200 | |
Gattesco and Boem, 2015 [25] | Clay solid bricks Rubble/Cobblestone | 250 400 | 1160 | 0° | 2 | 4–12 | 30 | Glass | Load–unload | 1200 | |
Garcia-Ramonda et al., 2020 [26] | Clay solid bricks | 310 | 1270 | 0° | 2 | 14 | 10 | Basalt | Monotonic | 900 | |
Del Zoppo et al., 2019 [27] | Tuff solid blocks | 250 | 1200 | 0° | 1/2 | 14 | 40 | Glass | Monotonic | 400 | |
Borri et al., 2016 [28] | Clay solid bricks | 250 | 1160 | 0° | 2 | 0.7–2.7 | 50 | Glass | Load–unload | 1200 | |
Carozzi et al.., 2018 [29] | Clay solid bricks | 300 | 1000 | 0° 2 | 2 | 7.5 | 10 | Glass | Monotonic | 850 | |
Angiolilli et al., 2021 [30] | Rubble stone | 540 | 1200 | 0° 2 | 2 | 15 | 25 | Glass | Load–unload | 900 | |
D’Ambrisi et al., 2013 [31] | Clay solid bricks | 260 | 1200 | 45° | 2 | 7 | 20 | Polymer | Load–unload | 1150 | |
Prota et al., 2006 [32] | Tuff solid blocks | 250 | 1030 | 45° | 1/2 | 24 | 10 | Glass | Monotonic | 400 | |
Marcari et al., 2017 [33] | Tuff solid blocks | 250 | 1000 | 45° | 1/2 | 9 | 8 | Basalt | Monotonic | 500 | |
Basili et al., 20219 [34] | Clay solid bricks | 250 | 960 | 45° | 1/2 | 9 | 5 | Basalt | Monotonic | 500 | |
Benedetti, 2019 [35] | Clay solid bricks | 118 | 1160 | 45° | 2 | 7.4–16 | 12, 15, 30 | Glass | Monotonic | 1200 | |
Wang et al., 2019 [36] | Clay solid bricks | 110 | 900 | 45° | 2 | ~35/40 | 15 | Basalt | Monotonic | 1030 | |
Donnini et al., 2021 [38] | Tuff/Clay solid bricks | 250 | 1200 | 45° | 2 | 8.4 | 30 | Glass | Monotonic | 1000 | |
Oskouei et al., 2018 [39] | Clay solid bricks | 100 | 600 | 45° | 2 | - | 20 | Glass/Polymer | Monotonic | - | |
Yardim e Lalaj. 2016 [40] | Clay solid bricks | 250 | 650 | 45° | 1/2 | 22 | 8 | Glass | Monotonic | - | |
Casacci et al., 2019 [41] | Clay solid bricks | 100 | 530 | 45° | 1/2 | 7 | 10 | Glass | Monotonic | 500 | |
Reference | Masonry type | Sample dim. TxWxL [mm] | Bed-joints Orientation 3 | TRM Side | Mortar fc 1 [MPa] | Thick [mm] | Embedded Grid | Load Scheme | Axial Stress [MPa] | ||
In-plane bending tests | |||||||||||
Papanicolaou et al., 2007–11 [41,42] | Clay hollow bricks | 85 | 400 | 1300 | V H | 2 | 31 | 4–6 | Carbon | Cyclic | 0.2, 0.5 0 |
Boem and Gattesco, 2021 [44] | Clay solid bricks | 250 | 380 | 840 | V | 2 | 7 | 30 | Glass | Load–unload | 0, 0.15, 0.3 |
2.2. Out-of-Plane Loading
3. Design Methods
3.1. In-Plane Loading
3.2. Out-of-Plane Loading
4. Numerical Modeling
4.1. In-Plane Loading
4.2. Out-of-Plane Loading
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boem, I. Characterization of textile-reinforced mortar: State of the art and detailed level modelling with a free open-source finite element code. J. Compos. Constr. 2022, 26, 4022060. [Google Scholar] [CrossRef]
- Cordis Website. Available online: https://cordis.europa.eu/project/id/101003410 (accessed on 4 August 2022).
- ConFiRMa Website. Available online: https://sites.google.com/view/confirmaproject (accessed on 4 August 2022).
- Atalić, J.; Uroš, M.; Šavor Novak, M.; Demšić, M.; Nastev, M. The Mw5.4 Zagreb (Croatia) earthquake of March 22, 2020: Impacts and response. Bull. Earthq. Eng. 2021, 19, 3461–3489. [Google Scholar] [CrossRef]
- Sorrentino, L.; Cattari, S.; Da Porto, F.; Magenes, G.; Penna, A. Seismic behaviour of ordinary masonry buildings during the 2016 central Italy earthquakes. Bull. Earthq. Eng. 2019, 17, 5583–5607. [Google Scholar] [CrossRef]
- Penna, A.; Morandi, P.; Rota, M.; Manzini, C.F.; Da Porto, F.; Magenes, G. Performance of masonry buildings during the Emilia 2012 earthquake. Bull. Earthq. Eng. 2014, 12, 2255–2273. [Google Scholar] [CrossRef]
- Ural, A.; Doğangün, A.; Sezen, H.; Angın, Z. Seismic performance of masonry buildings during the 2007 Bala, Turkey earthquakes. Nat. Hazards 2012, 60, 1013–1026. [Google Scholar] [CrossRef]
- Parisi, F.; Iovinella, I.; Balsamo, A.; Augenti, N.; Prota, A. In-plane behaviour of tuff masonry strengthened with inorganic matrix–grid composites. Compos. B Eng. 2013, 45, 1657–1666. [Google Scholar] [CrossRef]
- Ismail, N.; Ingham, J.M. In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Eng. Struct. 2016, 118, 167–177. [Google Scholar] [CrossRef]
- Ferrara, G.; Caggegi, C.; Martinelli, E.; Gabor, A. Shear capacity of masonry walls externally strengthened using Flax-TRM composite systems: Experimental tests and comparative assessment. Constr. Build. Mater. 2020, 261, 120490. [Google Scholar] [CrossRef]
- Turnsek, V.; Sheppard, P. The shear and flexural resistance of masonry walls. In Proceedings of the International Research Conference on Earthquake Engineering, Skopje, Yugoslavia, 30 June–3 July 1980. [Google Scholar]
- Magenes, G.; Calvi, G.M. In-plane seismic response of brick masonry walls. Earthq. Eng. Struct. Dyn. 1997, 26, 1091–1112. [Google Scholar] [CrossRef]
- Petry, S.; Beyer, K. Influence of boundary conditions and size effect on the drift capacity of URM walls. Eng. Struct. 2014, 65, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Beyer, K.; Dazio, A. Quasi-static cyclic tests on masonry spandrels. Earthq. Spectra 2012, 28, 907–929. [Google Scholar] [CrossRef]
- Graziotti, F.; Magenes, G.; Penna, A. Experimental cyclic behaviour of stone masonry spandrels. In Proceedings of the 15th World Conference on. Earthquake Engineering 15WCEE, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Gattesco, N.; Macorini, L.; Dudine, A. Experimental response of brick-masonry spandrels under in-plane cyclic loading. J. Struct. Eng. 2016, 142, 04015146. [Google Scholar] [CrossRef]
- Almeida, J.A.P.P.; Pereira, E.B.; Barros, J.A.O. Assessment of overlay masonry strengthening system under in-plane monotonic and cyclic loading using the diagonal tensile test. Constr. Build. Mater. 2015, 94, 851–865. [Google Scholar] [CrossRef]
- Borri, A.; Castori, G.; Corradi, M.; Speranzini, E. Shear behavior of unreinforced and reinforced masonry panels subjected to in situ diagonal compression tests. Constr. Build. Mater. 2011, 25, 4403–4414. [Google Scholar] [CrossRef]
- D’Antino, T.; Carozzi, F.G.; Poggi, C. Diagonal shear behavior of historic walls strengthened with composite reinforced mortar (CRM). Mater. Struct. 2019, 52, 114. [Google Scholar] [CrossRef]
- ASTM E519/E519M-21; Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. ASTM: West Conshohocken, PA, USA, 2021.
- Rilem, T.C. (Ed.) LUM B6 Diagonal tensile strength tests of small wall specimens. In RILEM Recommendations for the Testing and Use of Constructions Materials; E & FN SPON: New York, NY, USA, 1994; pp. 488–489. [Google Scholar]
- Babaeidarabad, S.; De Caso, F.; Nanni, A. URM Walls Strengthened with Fabric-Reinforced Cementitious Matrix Composite Subjected to Diagonal Compression. J. Compos. Constr. 2014, 18, 04013045. [Google Scholar] [CrossRef]
- Menna, C.; Asprone, D.; Durante, M.; Zinno, A.; Balsamo, A.; Prota, A. Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid. Constr. Build. Mater. 2015, 100, 111–121. [Google Scholar] [CrossRef]
- Gattesco, N.; Boem, I.; Dudine, A. Diagonal compression tests on masonry walls strengthened with a GFRP mesh reinforced mortar coating. Bull. Earthq. Eng. 2015, 13, 1703–1726. [Google Scholar] [CrossRef]
- Gattesco, N.; Boem, I. Experimental and analytical study to evaluate the effectiveness of an in-plane reinforcement for masonry walls using GFRP meshes. Constr. Build. Mater. 2015, 88, 94–104. [Google Scholar] [CrossRef]
- Garcia-Ramonda, L.; Pelá, L.; Roca, P.; Camata, G. In-plane shear behaviour by diagonal compression testing of brick masonry walls strengthened with basalt and steel textile reinforced mortars. Constr. Build. Mater. 2020, 240, 117905. [Google Scholar] [CrossRef]
- Del Zoppo, M.; Di Ludovico, M.; Balsamo, A.; Prota, A. In-plane shear capacity of tuff masonry walls with traditional and innovative Composite Reinforced Mortars (CRM). Constr. Build. Mater. 2019, 210, 289–300. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; Sisti, R.; Buratti, C.; Belloni, E.; Moretti, E. Masonry wall panels retrofitted with thermal-insulating GFRP-reinforced jacketing. Mater. Struct. 2016, 49, 3957–3968. [Google Scholar] [CrossRef]
- Carozzi, F.G.; D’Antino, T.; Poggi, C. In-situ experimental tests on masonry panels strengthened with Textile Reinforced Mortar composites. Procedia Struct. Integr. 2018, 11, 355–362. [Google Scholar] [CrossRef]
- Angiolilli, M.; Gregori, A.; Cattari, S. Performance of Fiber Reinforced Mortar coating for irregular stone masonry: Experimental and analytical investigations. Constr. Build. Mater. 2021, 294, 123508. [Google Scholar] [CrossRef]
- D’Ambrisi, A.; Mezzi, M.; Caporale, A. Experimental investigation on polymeric net-RCM reinforced masonry panels. Compos. Struct. 2013, 105, 207–215. [Google Scholar] [CrossRef]
- Prota, A.; Marcari, G.; Fabbrocino, G.; Manfredi, G.; Aldea, C. Experimental In-Plane Behavior of Tuff Masonry Strengthened with Cementitious Matrix–Grid Composites. J. Compos. Constr. 2006, 10, 223–233. [Google Scholar] [CrossRef]
- Marcari, G.; Basili, M.; Vestroni, F. Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar. Compos. B Eng. 2017, 108, 131–142. [Google Scholar] [CrossRef]
- Basili, M.; Vestroni, F.; Marcari, G. Brick masonry panels strengthened with textile reinforced mortar: Experimentation and numerical analysis. Constr. Build. Mater. 2019, 227, 117061. [Google Scholar] [CrossRef]
- Benedetti, A. In Plane Behaviour of Masonry Walls Reinforced with Mortar Coatings and Fibre Meshes. Int. J. Archit. 2019, 13, 1029–1041. [Google Scholar] [CrossRef]
- Wang, X.; Lam, C.C.; Iu, V.P. Comparison of different types of TRM composites for strengthening masonry panels. Constr. Build. Mater. 2019, 219, 184–194. [Google Scholar] [CrossRef]
- Crisci, G.; Ceroni, F.; Lignola, G.P. Comparison between Design Formulations and Numerical Results for In-Plane FRCM-Strengthened Masonry Walls. Appl. Sci. 2020, 10, 4998. [Google Scholar] [CrossRef]
- Donnini, J.; Maracchini, G.; Lenci, S.; Corinaldesi, V.; Quagliarini, E. TRM reinforced tuff and fired clay brick masonry: Experimental and analytical investigation on their in-plane and out-of-plane behavior. Constr. Build. Mater. 2021, 272, 121643. [Google Scholar] [CrossRef]
- Oskouei, A.V.; Jafari, A.; Bazli, M.; Ghahri, R. Effect of different retrofitting techniques on in-plane behavior of masonry wallettes. Constr. Build. Mater. 2018, 169, 578–590. [Google Scholar] [CrossRef]
- Yardim, Y.; Lalaj, O. Shear strengthening of unreinforced masonry wall with different fiber reinforced mortar jacketing. Constr. Build. Mater. 2016, 102, 149–154. [Google Scholar] [CrossRef]
- Casacci, S.; Gentilini, C.; Di Tommaso, A.; Oliveira, D.V. Shear strengthening of masonry wallettes resorting to structural repointing and FRCM composites. Constr. Build. Mater. 2019, 206, 19–34. [Google Scholar] [CrossRef]
- Papanicolaou, C.G.; Triantafillou, T.C.; Karlos, K.; Papathanasiou, M. Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls: In-plane cyclic loading. Mater. Struct. 2007, 40, 1081–1097. [Google Scholar] [CrossRef]
- Papanicolaou, C.G.; Triantafillou, T.C.; Lekka, M. Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Constr. Build. Mater. 2011, 25, 504–514. [Google Scholar] [CrossRef]
- Boem, I.; Gattesco, N. Rehabilitation of masonry buildings with Fibre Reinforced Mortar: Practical design considerations concerning seismic resistance. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2021; Volume 898, pp. 1–7. [Google Scholar]
- Corradi, M.; Borri, A.; Poverello, E.; Castori, G. The use of transverse connectors as reinforcement of multi-leaf walls. Mater. Struct. 2017, 50, 114. [Google Scholar] [CrossRef]
- Cascardi, A.; Leone, M.; Aiello, M.A. Transversal joining of multi-leaf masonry through different types of connector: Experimental and theoretical investigation. Constr. Build. Mater. 2020, 265, 120733. [Google Scholar] [CrossRef]
- Gattesco, N.; Amadio, C.; Bedon, C. Experimental and numerical study on the shear behavior of stone masonry walls strengthened with GFRP reinforced mortar coating and steel-cord reinforced repointing. Eng. Struct. 2015, 90, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Mercedes, L.; Bernat-Maso, E.; Gil, L. In-plane cyclic loading of masonry walls strengthened by vegetal-fabric-reinforced cementitious matrix (FRCM) composites. Eng. Struct. 2020, 221, 111097. [Google Scholar] [CrossRef]
- Garcia-Ramonda, L.; Pelà, L.; Roca, P.; Camata, G. Cyclic shear-compression testing of brick masonry walls repaired and retrofitted with basalt textile reinforced mortar. Compos. Struct. 2021, 283, 115068. [Google Scholar] [CrossRef]
- Guerreiro, J.; Proença, J.; Ferreira, J.G.; Gago, A. Experimental characterization of in-plane behaviour of old masonry walls strengthened through the addition of CFRP reinforced render. Compos. B Eng. 2018, 148, 14–26. [Google Scholar] [CrossRef]
- Tomaževič, M. Earthquake-Resistant Design of Masonry Buildings, Series on Innovation in Structures and Construction; Imperial College Press: London, UK, 1999. [Google Scholar]
- Hračov, S.; Pospíšil, S.; Garofano, A.; Urushadze, S. In-plane cyclic behaviour of unfired clay and earth brick walls in both unstrengthened and strengthened conditions. Mater. Struct. 2016, 49, 3293–3308. [Google Scholar] [CrossRef]
- Tomaževič, M.; Gams, M.; Berset, T. Strengthening of stone masonry walls with composite reinforced coatings. Bull. Earthq. Eng. 2015, 13, 2003–2027. [Google Scholar] [CrossRef]
- Gams, M.; Tomaževič, M.; Berset, T. Seismic strengthening of brick masonry by composite coatings: An experimental study. Bull. Earthq. Eng. 2017, 15, 4269–4298. [Google Scholar] [CrossRef]
- Türkmen, Ö.S.; De Vries, B.T.; Wijte, S.N.M.; Vermeltfoort, A.T. Quasi-static cyclic in-plane testing of masonry walls strengthened with a single-sided fabric-reinforced cementitious matrix overlay and flexible anchorage. J. Build. Rehabil. 2019, 4, 8. [Google Scholar] [CrossRef]
- Torres, B.; Ivorra, S.; Javier Baeza, F.; Estevan, L.; Varona, B. Textile reinforced mortars (TRM) for repairing and retrofitting masonry walls subjected to in-plane cyclic loads. An experimental approach. Eng. Struct. 2021, 231, 111742. [Google Scholar] [CrossRef]
- Messali, F.; Metelli, G.; Plizzari, G. Experimental results on the retrofitting of hollow brick masonry walls with reinforced high performance mortar coatings. Constr. Build. Mater. 2017, 141, 619–630. [Google Scholar] [CrossRef]
- Augenti, N.; Parisi, F.; Prota, A.; Manfredi, G. In-Plane Lateral Response of a Full-Scale Masonry Subassemblage with and without an Inorganic Matrix-Grid Strengthening System. J. Compos. Constr. 2011, 15, 578–590. [Google Scholar] [CrossRef]
- Gams, M.; Farič, M.; Pučnik, V. Eksperimentalne raziskave utrjenih prekladnih delov kamnitih zidov [Experimental research of strengthened stone masonry spandrels. In Proceedings of the 42nd Assembly of Building Constructors of Slovenia, SDGK—Slovenian Society of building constructors, Ljubljana, Slovenia, 7 October 2021. (In Slovenian). [Google Scholar]
- Dazio, A. The effect of the boundary conditions on the out-of-plane behavior of un-reinforced masonry walls. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Papanicolaou, C.G.; Triantafillou, T.C.; Papathanasiou, M.; Karlos, K. Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: Out-of-plane cyclic loading. Mater. Struct. 2007, 41, 143–157. [Google Scholar] [CrossRef]
- Bernat-Maso, E.; Escrig, C.; Aranha, C.A.; Gil, L. Experimental assessment of Textile Reinforced Sprayed Mortar strengthening system for brickwork wallettes. Constr. Build. Mater. 2014, 50, 226–236. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Garbin, E.; Panizza, M. Out-of-plane behaviour of infill masonry panels strengthened with composite materials. Mater. Struct. 2014, 47, 2131–2145. [Google Scholar] [CrossRef]
- Kariou, F.A.; Triantafyllou, S.P.; Bournas, D.A.; Koutas, L.N. Out-of-plane response of masonry walls strengthened using textile-mortar system. Constr. Build. Mater. 2018, 165, 769–781. [Google Scholar] [CrossRef]
- Harajli, M.; ElKhatib, H.; San-Jose, J.T. Static and Cyclic Out-of-Plane Response of Masonry Walls Strengthened Using Textile-Mortar System. J. Mater. Civ. Eng. 2010, 22, 1171–1180. [Google Scholar] [CrossRef]
- Martins, A.; Vasconcelos, G.; Fangueiro, R.; Cunha, F. Experimental assessment of an innovative strengthening material for brick masonry infills. Compos. B Eng. 2015, 80, 328–342. [Google Scholar] [CrossRef]
- Gattesco, N.; Boem, I. Out-of-plane behavior of reinforced masonry walls: Experimental and numerical study. Compos. B Eng. 2017, 128, 39–52. [Google Scholar] [CrossRef]
- Sagar, S.L.; Singhal, V.; Rai, D.C.; Gudur, P. Diagonal shear and out-of-plane flexural strength of Fabric-Reinforced Cementitious Matrix–strengthened masonry wallets. J. Compos. Constr. 2017, 21, 04017016. [Google Scholar] [CrossRef]
- Padalu, P.K.V.R.; Singh, Y.; Das, S. Efficacy of basalt fibre reinforced cement mortar composite for out-of-plane strengthening of unreinforced masonry. Constr. Build. Mater. 2018, 191, 1172–1190. [Google Scholar] [CrossRef]
- Babaeidarabad, S.; Caso, F.D.; Nanni, A. Out-of-Plane behavior of URM walls strengthened with Fabric-Reinforced Cementitious Matrix composite. J. Compos. Constr. 2014, 18, 04013057. [Google Scholar] [CrossRef]
- Bellini, A.; Incerti, A.; Bovo, M.; Mazzotti, C. Effectiveness of FRCM reinforcement applied to masonry walls subject to axial force and out-of-plane loads evaluated by experimental and numerical studies. Int. J. Archit. 2018, 12, 376–394. [Google Scholar] [CrossRef]
- Cevallos, O.A.; Olivito, R.S.; Codispoti, R.; Ombres, L. Flax and polyparaphenylene benzobisoxazole cementitious composites for the strengthening of masonry elements subjected to eccentric loading. Compos. B Eng. 2015, 71, 82–95. [Google Scholar] [CrossRef]
- D’Ambra, C.; Lignola, G.P.; Prota, A.; Sacco, E.; Fabbrocino, F. Experimental performance of FRCM retrofit on out-of-plane behaviour of clay brick walls. Compos. B Eng. 2018, 148, 198–206. [Google Scholar] [CrossRef]
- De Santis, S.; De Canio, G.; de Felice, G.; Meriggi, P.; Roselli, I. Out-of-plane seismic retrofitting of masonry walls with Textile Reinforced Mortar composites. Bull. Earthq. Eng. 2019, 17, 6265–6300. [Google Scholar] [CrossRef]
- Del Zoppo, M.; Di Ludovico, M.; Prota, A. Analysis of FRCM and CRM parameters for the in-plane shear strengthening of different URM types. Compos. B Eng. 2019, 171, 20–33. [Google Scholar] [CrossRef]
- AC434. Acceptance Criteria for Masonry and Concrete Strengthening Using Fiber-Reinforced Cementitious Matrix (FRCM) Composite Cystems; ICC Evaluation Service, LLC.: Brea, CA, USA, 2011. [Google Scholar]
- CNR-DT 215/2018. Guide for the Design and Construction of Externally Bonded Fibre Reinforced Inorganic Matrix Systems for Strengthening Sxisting Structure; IRIS: Salerno, Italy, 2018. [Google Scholar]
- ACI 549.6R-20; Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) and Steel-Reinforced Grout (SRG) Systems. American Concrete Institute: Farmington Hills, MI, USA, 2020.
- Parisi, F.; Lignola, G.P.; Augenti, N.; Prota, A.; Manfredi, G. Nonlinear behavior of a masonry subassemblage before and after strengthening with Inorganic Matrix-Grid composites. J. Compos. Constr. 2011, 15, 821–832. [Google Scholar] [CrossRef]
- Tripathy, D.; Meghwal, P.; Singhal, V. Strengthening of Lime Mortar Masonry Wallettes Using Fiber-Reinforced Cementitious Matrix. J. Compos. Constr. 2020, 24, 04020075. [Google Scholar] [CrossRef]
- D’Antino, T.; Carozzi, F.G.; Colombi, P.; Poggi, C. Out-of-plane maximum resisting bending moment of masonry walls strengthened with FRCM composites. Compos. Struct. 2018, 202, 881–896. [Google Scholar] [CrossRef]
- Padalu, P.K.V.R.; Singh, Y.; Das, S. Out-of-plane flexural behaviour of masonry wallettes strengthened using FRP composites and externally bonded grids: Comparative study. Compos. B Eng. 2019, 176, 107302. [Google Scholar] [CrossRef]
- Belliazzi, S.; Ramaglia, G.; Lignola, G.P.; Prota, A. Out-of-plane retrofit of masonry with Fiber-Reinforced Polymer and Fiber-Reinforced Cementitious Matrix systems: Normalized interaction diagrams and effects on mechanisms activation. J. Compos. Constr. 2021, 25, 04020081. [Google Scholar] [CrossRef]
- EN 1992-1-1:2004; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. CEN: Bruxelles, Belgium, 2004.
- Meriggi, P.; de Felice, G.; Santis, S. Design of the out-of-plane strengthening of masonry walls with fabric reinforced cementitious matrix composites. Constr. Build. Mater. 2020, 240, 117946. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Rots, J.G. Multisurface Interface Model for Analysis of Masonry Structures. J. Eng. Mech. 1997, 123, 660–668. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Rots, J.G.; Blaauwendraad, J. Continuum model for masonry: Parameter estimation and validation. J. Struct. Eng. 1998, 124, 642–652. [Google Scholar] [CrossRef]
- Bui, T.T.; Limam, A.; Sarhosis, V.; Hjiajd, M. Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions. Eng. Struct. 2017, 136, 277–294. [Google Scholar] [CrossRef]
- Bora Pulatsu, E.; Bretas, E.M.; Lourenco, P.B. Discrete element modeling of masonry structures: Validation and application. Earthq. Struct. 2016, 11, 563–582. [Google Scholar] [CrossRef]
- Baraldi, D.; Reccia, E.; Cecchi, A. In plane loaded masonry walls: DEM and FEM/DEM models—A critical review. Meccanica 2018, 53, 1613–1628. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Chan, A.H.C.; Agrawal, A.K. Dynamic failure of dry-joint masonry arch structures modelled with the combined finite–discrete element method. Comput. Part. Mech. 2020, 7, 1017–1028. [Google Scholar] [CrossRef]
- Asteris, P.G.; Mohebkhah, A.; Plevris, V.; Papaloizou, L.; Komodromos, P.; Lemos, J.V. Chapter 7: Numerical modeling of historic masonry structures. In Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures: Advances in Civil and Industrial Engineering; Asteris, P.G., Plevris, V., Eds.; IGI Global: Hershey, PA, USA, 2015; pp. 213–256. [Google Scholar]
- Gobbin, F.; de Felice, G.; Lemos, J.V. A Discrete Element Model for Masonry Vaults Strengthened with Externally Bonded Reinforcement. Int. J. Archit. Herit. 2020, 15, 1959–1972. [Google Scholar] [CrossRef]
- Angiolilli, M.; Gregori, A.; Cusatis, G. Simulating the Nonlinear Mechanical Behavior of FRCM-strengthened Irregular Stone Masonry Walls. Int. J. Archit. Herit. 2021, 16, 1–7. [Google Scholar] [CrossRef]
- Basili, M.; Marcari, G.; Vestroni, F. Nonlinear analysis of masonry panels strengthened with textile reinforced mortar. Eng. Struct. 2016, 113, 245–258. [Google Scholar] [CrossRef]
- Garofano, A.; Ceroni, F.; Pecce, M. Modelling of the in-plane behaviour of masonry walls strengthened with polymeric grids embedded in cementitious mortar layers. Compos. B Eng. 2016, 85, 243–258. [Google Scholar] [CrossRef]
- Wang, X.; Ghiassi, B.; Oliveira, D.V.; Lam, C.C. Modelling the nonlinear behaviour of masonry walls strengthened with textile reinforced mortars. Eng. Struct. 2017, 134, 11–24. [Google Scholar] [CrossRef]
- Corradi, M.; Borri, A.; Castori, G.; Sisti, R. Shear strengthening of wall panels through jacketing with cement mortar reinforced by GFRP grids. Compos. B Eng. 2014, 64, 33–42. [Google Scholar] [CrossRef]
- Gattesco, N.; Gubana, A.; Melotto, M. GFRP to strengthen masonry walls: Numerical analysis and evaluation of the different mechanical parameters role. In Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls; Van Balen, K., Verstrynge, E., Eds.; CRC Press: Boka Raton, FL, USA, 2016. [Google Scholar]
- Castori, G.; Corradi, M.; Sperazini, E. Full size testing and detailed micro-modeling of the in-plane behavior of FRCM–reinforced masonry. Constr. Build. Mater. 2021, 299, 124276. [Google Scholar] [CrossRef]
- Lignola, G.P.; Bilotta, A.; Ceroni, F. Assessment of the effect of FRCM materials on the behaviour of masonry walls by means of FE models. Eng. Struct. 2019, 184, 145–157. [Google Scholar] [CrossRef]
- Ungureanu, D.; Țăranu, N.; Ghiga, D.A.; Isopescu, D.N.; Mihai, P.; Cozmanciuc, R. Diagonal Tensile Test on Masonry Panels Strengthened with Textile-Reinforced Mortar. Materials 2021, 14, 7021. [Google Scholar] [CrossRef]
- Murgo, F.S.; Ferretti, F.; Mazzotti, C. A discrete-cracking numerical model for the in-plane behavior of FRCM strengthened masonry panels. Bull. Earthq. Eng. 2021, 19, 4471–4502. [Google Scholar] [CrossRef]
- Bertolesi, E.; Carozzi, F.G.; Milani, G.; Poggi, C. Numerical modeling of Fabric Reinforce Cementitious Matrix composites (FRCM) in tension. Constr. Build. Mater. 2014, 70, 531–548. [Google Scholar] [CrossRef]
- Lignola, G.P.; Prota, A.; Manfredi, G. Nonlinear analyses of tuff masonry walls strengthened with cementitious matrix-grid composites. J. Compos. Constr. 2009, 13, 243–251. [Google Scholar] [CrossRef]
- Zizi, M.; Campitiello, F.; De Matteis, G. A retrofitting technique using steel grids for existing masonry panels: A numerical and analytical study. Bull. Earthq. Eng. 2021, 19, 1051–1077. [Google Scholar] [CrossRef]
- Colombo, M.; Valente, T.; Barros, J.A.O.; Aprile, A.; Lourenço, L. Fibre reinforced mortar application for out-of-plane strengthening of schist walls. Constr. Build. Mater. 2016, 121, 185–197. [Google Scholar] [CrossRef]
- D’Ambra, C.; Lignola, G.P.; Prota, A.; Fabbrocino, F.; Sacco, E. FRCM strengthening of clay brick walls for out of plane loads. Compos. B Eng. 2019, 174, 107050. [Google Scholar] [CrossRef]
- Scacco, J.; Ghiassi, B.; Milani, G.; Lourenço, P.B. A fast modeling approach for numerical analysis of unreinforced and FRCM reinforced masonry walls under out-of-plane loading. Compos. B Eng. 2020, 180, 107553. [Google Scholar] [CrossRef]
- Noor-E-Khuda, S.; Dhanasekar, M.; Thambiratnam, D.P. Out-of-plane deformation and failure of masonry walls with various forms of reinforcement. Compos. Struct. 2016, 140, 262–277. [Google Scholar] [CrossRef] [Green Version]
Reference | Masonry Type | Pier dim. TxWxL [mm] | Axial Stress [MPa] | TRM Side | Mortar fc1[MPa] | Thick [mm] | Embedded Grid | Load Scheme | ||
---|---|---|---|---|---|---|---|---|---|---|
Cyclic tests on masonry piers | ||||||||||
D’Ambrisi et al., 2013 [31] | Clay solid bricks | 220 | 1200 | 1200 | 0.5, 0.75 | 2 | 7 | 20 | Polymeric | Shear-type |
Papanicolau et al., 2007 [42] | Clay hollow bricks | 85 | 800 | 1300 | 0.05, 0.2 | 2 | 31 | 4, 6 | Carbon | Cantilever |
Papanicolau et al., 2011 [43] | Stones | 85 | 800 | 1300 | 0.34–1.4 | 2 | 3.8, 20 | 4 | Basalt | Cantilever |
Gattesco et al., 2015 [47] | Rubble stone | 350 | 1500 | 2000 | 0.9 | 1/2 | 19 | 30 | Glass | Shear-type |
Mercedes et al., 2020 [48] | Clay solid bricks | 128 | 900 | 1000 | 0.22 | 2 | 39 | 10 | Glass/Hemp/Cotton | Shear-type |
Garcia-Ramonda et al., 2021 [49] | Clay solid bricks | 310 | 1270 | 1270 | 0.3 | 2 | 13 | 10 | Basalt | Shear-type |
Guerreiro et al., 2018 [50] | Rubble stone 2 | 400 | 1250 | 1560 | 0.2–0.4 | 2 | 4.8 | Carbon | Cantilever/Shear-type | |
Hračov et al., 2016 [52] | Adobe/Unfired clay solid bricks | 240 | 1050 | 1367 | 0.32 | 2 | 3.2 | 0, 20 | PET/PP | Cantilever |
Tomaževič et al., 2015 [53] | Rubble stone | 500 | 1000 | 1500 | 0.32 | 1/2 | 22 | 20 | Glass | Cantilever |
Gams et al., 2017 [54] | Clay solid bricks | 250 | 1000 | 1500 | 1.23 | 1/2 | 22 | 5, 15 | Glass/Carbon | Cantilever |
Türkmen et al., 2019 [55] | Clay solid bricks | 100 | 1000 2000 4000 | 2450 | 0.15–0.5 | 1 | 63 | 15 | Carbon | Cantilever |
Torres et al., 2021 [56] | Clay solid bricks | 230 | 3000 | 2000 | 0.22 | 2 | 19 | 15 | Glass | Cantilever |
Messali et al., 2017 [57] | Clay hollow bricks | 245 | 1310 2900 | 1310 1970 | 0.18 0.1 | 2 | 45 | 25 | Steel | Cantilever/Reversed T |
Cyclic tests on masonry spandrels | Spandrel dim. | |||||||||
Augenti et al., 2011 [58] | Tuff solid blocks | 310 | 1700 | 1000 | 0.38 | 2 | 16 | 10 | Glass | TT-shape |
Ismail and Ingham, 2016 [9] | Clay solid bricks | 220 | 1230 | 940 | 0.17 | 1 | 1.2, 2 | 6 | Aramid/Glass | TT-shape |
Gams et al. [59] | Rubble stone | 350 | 1050 | 1120 | 0.3 | 1/2 | 23 | 30 | Glass | H-shape |
Reference | Masonry Type | Sample dim. TxWxL [mm] | TRM Side | Mortar fc 1 [MPa] | Thick [mm] | Embedded Grid | Sample Position 2 | Load Scheme | Load Rate | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Ismail and Ingham, 2016 [9] | Clay solid bricks | 220 | 1200 | 3670 | 1 | 1.2, 2 | 6 | Aramid/Glass | V, O | Airbag | Cyclic |
D’Ambrisi et al., 2013 [31] | Clay solid bricks | 220 | 800 | 1600 | 2 | 7 | 20 | Polymeric | V, O | 3-point bend. | Monotonic 3 |
Donnini et al., 2021 [38] | Tuff/Clay solid bricks | 250 | 800 | 1200 | 2 | 8.4 | 30 | Glass | V, O | 3-point bend. | Monotonic |
Papanicolau et al. 2011 [43] | Stones | 95 | 400 | 1300 | 1 | 3.8, 20 | 5 | Glass/Basalt/PES/PP | H, O | 3-point bend. | Cyclic |
Papanicolau et al., 2007 [61] | Hollow bricks | 85 | 400 | 1300 | 1/2 | 31 | 5 | Carbon | H, O/P | 3-point bend. | Cyclic |
Bednart-Maso et al., 2014 [62] | Clay solid bricks | 132 | 280 | 540 | 1 | 5–42 | 10 | Glass/Basalt/Carbon | H, O | 3-point bend. | Monotonic |
Valluzzi et al., 2014 [63] | Hollow bricks | 130 | 390 | 1310 | 1 | 35 | 5 | Basalt/Glass | H, O | 3-point bend. | Monotonic |
Kariou et al., 2018 [64] | Clay solid bricks | 103 | 440 | 1340 | 1 | 40 | 3–13 | Basalt/Carbon/Glass | H, O | 3-point bend. | Monotonic |
Haralij et al., 2010 [65] | Clay solid bricks | 55 | 200 | 2 | 5.5–36 | 8 | Glass/Basalt | H, O | 4-point bend. | Monotonic/Cyclic | |
Hollow concrete | 200 | 100 | 300 | ||||||||
Sandstones | 200 | 400 | |||||||||
Martins et al., 2015 [66] | Clay hollow bricks | 150 | 620 | 1500 | 1 | 2, 3.6 | 20 | Carbon/Glass | H, O | 4-point bend. | Monotonic/Load–unload |
Gattesco and Boem, 2017 [67] | Clay solid bricks | 250 | 1000 | 3000 | 2 | 6.3 | 30 | Glass | V, O | 4-point bend. | Monotonic |
Rubble stones | 400 | ||||||||||
Cobblestones | 400 | ||||||||||
Sagar et al., 2017 [68] | Clay solid bricks | 78 | 200 | 550 | 1 | 20 | 6 | Glass | H, O/P | 4-point bend. | Monotonic |
Padalu et al., 2018 [69] | Clay solid bricks | 230 | 480 | 1200 | 1 | 15 | 20 | Basalt | H, O/P | 4-point bend. | Monotonic |
Babaeidarabad et al., 2014 [70] | Clay solid bricks | 92 | 1220 | 1422 | 1 | 22 | 10, 20 | Carbon | V, O | Airbag | Load–unload |
Bellini et al., 2018 [71] | Clay solid bricks | 250 | 1200 | 2700 | 1 | 11, 13 | 6 | Glass | V, O | Distributed | Load–unload 4 |
Cevallos et al., 2015 [72] | Clay solid bricks | 120 250 250 | 250 510 250 | 335 660 1115 | 1 | 16.5 | 8, 10 | PBO/Flax | V, O | Eccentric | Monotonic |
D’Ambra et al., 2018 [73] | Clay solid bricks | 120 | 1515 | 1755 | 1 | 6.6 | 8 | Basalt | V | Double bend. | Monotonic |
De Santis et al., 2019 [74] | Rubble stone | 250 | 1530 | 3480 | 2 | 14.5 | 10 | Basalt | V, O | Distributed | Dynamic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boem, I. Masonry Elements Strengthened with TRM: A Review of Experimental, Design and Numerical Methods. Buildings 2022, 12, 1307. https://doi.org/10.3390/buildings12091307
Boem I. Masonry Elements Strengthened with TRM: A Review of Experimental, Design and Numerical Methods. Buildings. 2022; 12(9):1307. https://doi.org/10.3390/buildings12091307
Chicago/Turabian StyleBoem, Ingrid. 2022. "Masonry Elements Strengthened with TRM: A Review of Experimental, Design and Numerical Methods" Buildings 12, no. 9: 1307. https://doi.org/10.3390/buildings12091307
APA StyleBoem, I. (2022). Masonry Elements Strengthened with TRM: A Review of Experimental, Design and Numerical Methods. Buildings, 12(9), 1307. https://doi.org/10.3390/buildings12091307