A Study on Multi-Objective Optimization of Large Deformable Elastic Plates
Abstract
:1. Introduction
2. Features of LDEPs and LDEBs
3. Formulations
3.1. Topology Formulation of LDEPs with Rough Rectangular Element Shapes
3.2. Inverse Fourier Formulation
3.3. Four-Column Formulation
3.4. Multi-Objective Optimization Problem Based on Four-Column Formulation
4. Numerical Results
5. Experimental Tensile Tests of the Two Optimized Specimens
6. Relationship between Yielding Deformation and Yielding Load of LDEPs
7. Conclusions
- (1)
- A distinct trade-off relationship was obtained between tensile yielding deformation and tensile yielding load through muti-objective optimizations using the four-column formulation.
- (2)
- The Pareto fronts using the inverse Fourier formulation and the four-column formulation are almost identical based on optimum computation.
- (3)
- While the test results of yielding tensile load are overestimated by the 10 mm rough grid elements, the test results almost correspond to reanalysis results with the 2.5 mm fine grid elements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. (Revised from [16,17])
References
- Kishizoe, M.; Sawada, K. Seismic responses of steel frames with large deformable elastic devises as braces. Steel Constr. Eng. 2020, 27, 53–59. (In Japanese) [Google Scholar]
- Skinner, R.I.; Kelly, J.M.; Heine, A.J. Hysteretic dampers for earthquake-resistant structures. Earthq. Eng. Struct. Dyn. 1974, 3, 287–296. [Google Scholar] [CrossRef]
- Whittaker, A.S.; Bertero, V.V.; Thompson, C.L.; Alonso, L.J. Seismic Testing of Steel Plate Energy Dissipation Devices. Earthq. Spectra 1991, 7, 563–604. [Google Scholar] [CrossRef]
- Tamai, H.; Kondoh, K.; Hanai, M. On Low-Cycle Fatigue Characteristics of Hysteretic Damper and Its Fatigue Life Prediction under Severe Earthquake Ground Motion. J. Struct. Constr. Eng. (Trans. AIJ) 1994, 59, 141–150. (In Japanese) [Google Scholar] [CrossRef]
- Chan, R.; Albermani, F. Experimental study of steel slit damper for passive energy dissipation. Eng. Struct. 2008, 30, 1058–1066. [Google Scholar] [CrossRef]
- Bagheri, S.; Barghian, M.; Saieri, F.; Farzinfar, A. U-shaped metallic-yielding damper in building structures: Seismic behavior and comparison with a friction damper. Structures 2015, 3, 163–171. [Google Scholar] [CrossRef]
- Black, C.J.; Makris, N.; Aiken, I.D. Component Testing, Seismic Evaluation and Characterization of Buckling-Restrained Braces. J. Struct. Eng. 2004, 130, 880–894. [Google Scholar] [CrossRef]
- Hoveidae, N.; Rafezy, B. Overall buckling behavior of all-steel buckling restrained braces. J. Constr. Steel Res. 2012, 79, 151–158. [Google Scholar] [CrossRef]
- Tamai, H.; Takamatsu, T. Cyclic loading tests on a non-compression brace considering performance-based seismic design. J. Constr. Steel Res. 2005, 61, 1301–1317. [Google Scholar] [CrossRef]
- Komatsu, S.; Takamatsu, T.; Tamai, H.; Yamanishi, T. Study on Seismic Response Reduction of SingleStory Anti-Symmetric Z-Type NC Braced Frame. J. Struct. Constr. Eng. (Trans. AIJ) 2014, 79, 1677–1685. (In Japanese) [Google Scholar] [CrossRef]
- Murakami, Y.; Noshi, K.; Fujita, K.; Tsuji, M.; Takewaki, I. Simultaneous optimal damper placement using oil, hysteretic and inertial mass dampers. Earthq. Struct. 2013, 5, 261–276. [Google Scholar] [CrossRef]
- Symans, M.D.; Constantinou, M.C. Semi-active control systems for seismic protection of structures: A state-of-the-art review. Eng. Struct. 1999, 21, 469–487. [Google Scholar] [CrossRef]
- Parulekar, Y.M.; Reddy, G.R. Passive response control systems for seismic response reduction: A state-of-the-art review. Int. J. Struct. Stab. Dyn. 2009, 9, 151–177. [Google Scholar] [CrossRef]
- Nakamura, Y.; Okada, K. Review on seismic isolation and response control methods of buildings in Japan. Geoenviro. Disasters 2019, 6, 2. [Google Scholar] [CrossRef]
- Nakamura, K.; Nishida, G.; Sawada, K. Seismic response of portal steel frames with large deformable elastic members. Proc. Constr. Steel 2016, 24, 476–482. (In Japanese) [Google Scholar]
- Sawada, K. Seismic response analyses of rc portal frames with large deformable elastic braces. Int. J. Comput. Methods Exp. Meas. 2017, 6, 880–886. [Google Scholar] [CrossRef]
- Sawada, K. Topology optimization of large deformable elastic plates. J. Struct. Constr. Eng. 2020, 85, 683–692. (In Japanese) [Google Scholar] [CrossRef]
- Inoue, K.; Kuwahara, S. Optimum strength ratio of hysteretic damper. Earthq. Eng. Struct. Dyn. 1998, 27, 577–588. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Mortazavi, S.J.; Farzampour, A.; Hu, J.-W.; Mansouri, I.; Awoyera, P.O. Optimization of the Curved Metal Damper to Improve Structural Energy Dissipation Capacity. Buildings 2022, 12, 67. [Google Scholar] [CrossRef]
- Getting Started—Platypus Documentation. Available online: https://platypus.readthedocs.io/en/latest/getting-started.html (accessed on 10 January 2022).
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Hada, M.; Takeuchi, K.; Kitajima, K.; Nakanishi, M. Study on structural characteristics of folded brace Investigation of increase of axial yield displacement and buckling restraint effect. J. Struct. Constr. Eng. (Trans. AIJ) 2020, 85, 373–381. (In Japanese) [Google Scholar] [CrossRef]
- Chapman, C.D.; Saitou, K.; Jakiela, M.J. Genetic algorithms as an approach to configuration and topology design. J. Mech. Des. 1994, 116, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Fujii, D.; Kikuchi, N. Improvement of numerical instabilities in topology optimization using the SLP method. Struct. Multidiscip. Optim. 2000, 19, 113–121. [Google Scholar] [CrossRef]
- LISA-Free/Affordable Finite Element Analysis Software. Available online: https://lisafea.com/ (accessed on 10 January 2022).
Solution | x1 | x2 | Uy | Py |
---|---|---|---|---|
[Unit] | [-] | [-] | [mm] | [N] |
F-0 | 5 | 7 | 1.563 | 16,049 |
F-1 | 4 | 7 | 2.295 | 11,247 |
F-2 | 3 | 7 | 3.097 | 8271 |
F-3 | 2 | 7 | 4.070 | 6525 |
F-4 | 1 | 6 | 4.072 | 6482 |
F-5 | 1 | 7 | 5.246 | 5384 |
F-6 | 1 | 8 | 6.097 | 4380 |
F-7 | 0 | 7 | 6.256 | 3779 |
F-8 | 0 | 8 | 7.517 | 3341 |
Solution | γ1 | γ2 | W | Uy | Py |
---|---|---|---|---|---|
[Unit] | [-] | [-] | [N/mm] | [mm] | [N] |
I-0 | 44 | 1 | 31.5 | 1.267 | 5986 |
I-1 | 55 | 1 | 31.5 | 2.712 | 6162 |
I-2 | 66 | 1 | 31.5 | 3.514 | 6297 |
I-3 | 44 | 1 | 21 | 1.404 | 4238 |
I-4 | 55 | 1 | 21 | 3.556 | 4180 |
I-5 | 66 | 1 | 21 | 6.711 | 3981 |
I-6 | 44 | 1 | 10.5 | 1.254 | 2983 |
I-7 | 55 | 1 | 10.5 | 5.594 | 1940 |
I-8 | 66 | 1 | 10.5 | 6.158 | 2079 |
Solution | x1 | x2 | Uy | Py |
---|---|---|---|---|
[Unit] | [-] | [-] | [mm] | [N] |
F-0 | 5 | 7 | 1.103 | 7814 |
F-1 | 4 | 7 | 1.697 | 5730 |
F-2 | 3 | 7 | 2.447 | 4507 |
F-3 | 2 | 7 | 3.350 | 3708 |
F-4 | 1 | 6 | 3.334 | 3648 |
F-5 | 1 | 7 | 4.399 | 3113 |
F-6 | 1 | 8 | 5.391 | 2673 |
F-7 | 0 | 7 | 5.325 | 2200 |
F-8 | 0 | 8 | 6.416 | 1954 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawada, K.; Kajitani, K.; Uno, T.; Teramoto, J.; Komatsu, S. A Study on Multi-Objective Optimization of Large Deformable Elastic Plates. Buildings 2022, 12, 1323. https://doi.org/10.3390/buildings12091323
Sawada K, Kajitani K, Uno T, Teramoto J, Komatsu S. A Study on Multi-Objective Optimization of Large Deformable Elastic Plates. Buildings. 2022; 12(9):1323. https://doi.org/10.3390/buildings12091323
Chicago/Turabian StyleSawada, Kiichiro, Keigo Kajitani, Tatsuya Uno, Junpei Teramoto, and Shingo Komatsu. 2022. "A Study on Multi-Objective Optimization of Large Deformable Elastic Plates" Buildings 12, no. 9: 1323. https://doi.org/10.3390/buildings12091323
APA StyleSawada, K., Kajitani, K., Uno, T., Teramoto, J., & Komatsu, S. (2022). A Study on Multi-Objective Optimization of Large Deformable Elastic Plates. Buildings, 12(9), 1323. https://doi.org/10.3390/buildings12091323