Parametric Stock Flow Modelling of Historical Building Typologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Static Material-Flow Analysis
2.2. Parametric Material Flow Analysis
- Generate a complete 3D model of essential building elements through the 11 steps shown in Figure 1; foundations, load-bearing walls, load-bearing decks and roof structures for a given typology based on definitions and rules defined by Engelmark and input from BBR implemented with the least amount of free parameters.
- Calculate volume of generated building elements. Each element is assigned with material id based on [49] and amounts are calculated based on generic densities. For known parameters, each parameter is chosen by the state given the dataset BBR for that particular building in question. For unknown parameters (not present in BBR), each parameter includes variance and boundaries for the Monte Carlo simulation approach. The variances in our test case are derived from a small test/training set of carefully measured building material compositions.
- The results of the building material composition generated from a building is recorded in two formats, one for human inspection (for visual inspection, 3D models, and 2D renders), for comparison with photos; the output, in this case, shows the most likely (summarized median) of all possible parameter states. The second forma is a machine-readable file format for further processing and boundary checks with pre-modeled sets of buildings with a given typology.
- While the algorithm used to generate the 3D model is implemented to present the most probable constructions and materials (based on its available data set), it is possible to adjust the settings for the algorithms. Based on human inspection for comparison with land sat photo material (Google maps), changes to the fixed and free parameters are modified (see Figure 2), thus generating a new model through step 13 in Figure 1. This process can be repeated until the user’s visual inspection has been satisfied.
3. Results and Discussions
3.1. Accuracy of the Static Stock Flow Model
3.2. Factorial Dependencies of the Static Stock-Flow Model
3.3. Accuracy of the Parametric Stock-Flow Model
3.4. Factorial Dependencies in the Parametric Stock-Flow Model
3.5. Predictive Capabilities of the Pre-Audit Model and the Generative Parametric Model
- Demolition waste system factors associated with the method of measuring construction demolition waste made by the waste-handling facility.
- Demolition waste factors associated with the specific waste-handling facility.
- Audit system factors associated with an established building audit system.
- Auditor factors associated with the specific auditor.
- Typological factors associated with historical and cultural factors.
- Model-centric factors associated with the method of modelling.
3.6. Implications for Future Predictions of Material Composition and Registration of Waste Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Wit, M.; Ramkumar, J.H.S.; Douma, H.F.A. The Circularity Gap Report. An Analysis of the Circular State of the Global Economy. Circle Economy: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Wilson, D.; Rodic-Wiersma, L.; Modak, P.; Soós, R.; Rogero, A.; Velis, C.; Iyer, M.; Simonett, O. Global Waste Management Outlook, United Nations Environment Programme (UNEP) and International Solid Waste Association (ISWA). United Nations Environment Programme (UNEP): Nairobi, Kenya, 2015; ISBN 978-92-807-3479-9. [Google Scholar]
- UNEP. 2019 Global Status Report for Buildings and Construction Towards a Zero-Emissions, Efficient and Resilient Buildings and Construction Sector. United Nations Environment Programme (UNEP): Nairobi, Kenya, 2019. [Google Scholar]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular Economy-from Review of Theories and Practices to Development of Implementation Tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Gálvez-Martos, J.L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. Construction and Demolition Waste Best Management Practice in Europe. Resour. Conserv. Recycl. 2018, 136, 166–178. [Google Scholar] [CrossRef]
- European Commission Directive. 98/EC on Waste Waste Framework Directive. European Commission Directive: Maastricht, The Netherlands, 2008. [Google Scholar]
- Wu, Z.; Yu, A.T.W.; Shen, L.; Liu, G. Quantifying Construction and Demolition Waste: An Analytical Review. Waste Manag. 2014, 34, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Koutamanis, A.; van Reijn, B.; van Bueren, E. Urban Mining and Buildings: A Review of Possibilities and Limitations. Resour. Conserv. Recycl. 2018, 138, 32–39. [Google Scholar] [CrossRef]
- Müller, E.; Hilty, L.M.; Widmer, R.; Schluep, M.; Faulstich, M. Modeling Metal Stocks and Flows: A Review of Dynamic Material Flow Analysis Methods. Environ. Sci. Technol. 2014, 48, 2102–2113. [Google Scholar] [CrossRef]
- Cheng, K.L.; Hsu, S.C.; Li, W.M.; Ma, H.W. Quantifying Potential Anthropogenic Resources of Buildings through Hot Spot Analysis. Resour. Conserv. Recycl. 2018, 133, 10–20. [Google Scholar] [CrossRef]
- Fishman, T.; Schandl, H.; Tanikawa, H. The Socio-Economic Drivers of Material Stock Accumulation in Japan’s Prefectures. Ecol. Econ. 2015, 113, 76–84. [Google Scholar] [CrossRef]
- Tanikawa, H.; Hashimoto, S. Urban Stock over Time: Spatial Material Stock Analysis Using 4d-GIS. Build. Res. Inf. 2009, 37, 483–502. [Google Scholar] [CrossRef]
- Tanikawa, H.; Fishman, T.; Okuoka, K.; Sugimoto, K. The Weight of Society over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010. J. Ind. Ecol. 2015, 19, 778–791. [Google Scholar] [CrossRef]
- Hashimoto, S.; Tanikawa, H.; Moriguchi, Y. Framework for Estimating Potential Wastes and Secondary Resources Accumulated within an Economy-a Case Study of Construction Minerals in Japan. Waste Manag. 2009, 29, 2859–2866. [Google Scholar] [CrossRef]
- Kleemann, F.; Lederer, J.; Rechberger, H.; Fellner, J. GIS-Based Analysis of Vienna’s Material Stock in Buildings. J. Ind. Ecol. 2017, 21, 368–380. [Google Scholar] [CrossRef]
- Kleemann, F.; Lehner, H.; Szczypińska, A.; Lederer, J.; Fellner, J. Using Change Detection Data to Assess Amount and Composition of Demolition Waste from Buildings in Vienna. Resour. Conserv. Recycl. 2017, 123, 37–46. [Google Scholar] [CrossRef]
- Arora, M.; Raspall, F.; Cheah, L.; Silva, A. Buildings and the Circular Economy: Estimating Urban Mining, Recovery and Reuse Potential of Building Components. Resour. Conserv. Recycl. 2020, 154, 104581. [Google Scholar] [CrossRef]
- Arceo, A.; Tham, M.; Guven, G.; MacLean, H.L.; Saxe, S. Capturing Variability in Material Intensity of Single-Family Dwellings: A Case Study of Toronto, Canada. Resour. Conserv. Recycl. 2021, 175, 105885. [Google Scholar] [CrossRef]
- Kohler, N.; Yang, W. Long-Term Management of Building Stocks. Build. Res. Inf. 2007, 35, 351–362. [Google Scholar] [CrossRef]
- Yang, W.; Kohler, N. Simulation of the Evolution of the Chinese Building and Infrastructure Stock. Build. Res. Inf. 2008, 36, 1–19. [Google Scholar] [CrossRef]
- Hashimoto, S.; Tanikawa, H.; Moriguchi, Y. Where Will Large Amounts of Materials Accumulated within the Economy Go?-A Material Flow Analysis of Construction Minerals for Japan. Waste Manag. 2007, 27, 1725–1738. [Google Scholar] [CrossRef]
- Schiller, G. Urban Infrastructure: Challenges for Resource Efficiency in the Building Stock. Build. Res. Inf. 2007, 35, 399–411. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Steinberger, J.K.; Eisenmenger, N.; Haas, W. Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25. J. Ind. Ecol. 2015, 19, 538–551. [Google Scholar] [CrossRef]
- Stephan, A.; Athanassiadis, A. Towards a More Circular Construction Sector: Estimating and Spatialising Current and Future Non-Structural Material Replacement Flows to Maintain Urban Building Stocks. Resour. Conserv. Recycl. 2018, 129, 248–262. [Google Scholar] [CrossRef]
- Marinova, S.; Deetman, S.; van der Voet, E.; Daioglou, V. Global Construction Materials Database and Stock Analysis of Residential Buildings between 1970-2050. J. Clean. Prod. 2019, 247, 119146. [Google Scholar] [CrossRef]
- Fishman, T.; Schandl, H.; Tanikawa, H.; Walker, P.; Krausmann, F. Accounting for the Material Stock of Nations. J. Ind. Ecol. 2014, 18, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Lederer, J.; Gassner, A.; Keringer, F.; Mollay, U.; Schremmer, C.; Fellner, J. Material Flows and Stocks in the Urban Building Sector: A Case Study from Vienna for the Years 1990–2015. Sustainability 2020, 12, 300. [Google Scholar] [CrossRef]
- Augiseau, V.; Barles, S. Studying Construction Materials Flows and Stock: A Review. Resour. Conserv. Recycl. 2017, 123, 153–164. [Google Scholar] [CrossRef]
- Gontia, P.; Nägeli, C.; Rosado, L.; Kalmykova, Y.; Österbring, M. Material-Intensity Database of Residential Buildings: A Case-Study of Sweden in the International Context. Resour. Conserv. Recycl. 2018, 130, 228–239. [Google Scholar] [CrossRef]
- Cheng, J.C.P.; Ma, L.Y.H. A BIM-Based System for Demolition and Renovation Waste Estimation and Planning. Waste Manag. 2013, 33, 1539–1551. [Google Scholar] [CrossRef]
- Akanbi, L.A.; Oyedele, L.O.; Akinade, O.O.; Ajayi, A.O.; Davila Delgado, M.; Bilal, M.; Bello, S.A. Salvaging Building Materials in a Circular Economy: A BIM-Based Whole-Life Performance Estimator. Resour. Conserv. Recycl. 2018, 129, 175–186. [Google Scholar] [CrossRef]
- Xue, K.; Uzzal Hossain, M.; Liu, M.; Ma, M.; Zhang, Y.; Hu, M.; Chen, X.; Cao, G. Bim Integrated Lca for Promoting Circular Economy towards Sustainable Construction: An Analytical Review. Sustainability 2021, 13, 1310. [Google Scholar] [CrossRef]
- Ortlepp, R.; Gruhler, K.; Schiller, G. Material Stocks in Germany’s Non-Domestic Buildings: A New Quantification Method. Build. Res. Inf. 2016, 44, 840–862. [Google Scholar] [CrossRef]
- Davis, D. Quantitatively Analysing Parametric Models. Int. J. Archit. Comput. 2014, 12, 307–319. [Google Scholar] [CrossRef]
- Brown, N.C.; Mueller, C.T. Design Variable Analysis and Generation for Performance-Based Parametric Modeling in Architecture. Int. J. Archit. Comput. 2019, 17, 36–52. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Alecrim, I.; Bragança, L.; Mateus, R. Integrating BIM-Based LCA and Building Sustainability Assessment. Sustainability 2020, 12, 7468. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Almeida, M.; Bragança, L.; Mateus, R. Bim-Based Energy Analysis and Sustainability Assessment—Application to Portuguese Buildings. Buildings 2021, 11, 246. [Google Scholar] [CrossRef]
- Radanovic, M.; Khoshelham, K.; Fraser, C. Geometric Accuracy and Semantic Richness in Heritage BIM: A Review. Digit. Appl. Archaeol. Cult. Herit. 2020, 19, e00166. [Google Scholar] [CrossRef]
- Denis, F.; Vandervaeren, C.; Temmerman, N. De Using Network Analysis and BIM to Quantify the Impact of Design for Disassembly. Buildings 2018, 8, 113. [Google Scholar] [CrossRef]
- Jayasinghe, L.B.; Waldmann, D. Development of a Bim-Based Web Tool as a Material and Component Bank for a Sustainable Construction Industry. Sustainability 2020, 12, 1766. [Google Scholar] [CrossRef]
- Sattineni, A.; Bradford, R.H. Estimating with BIM: A Survey of US Construction Companies. In Proceedings of the 28th International Symposium on Automation and Robotics in Construction ISARC, Seoul, Korea, 29 June–2 July 2011; pp. 564–569. [Google Scholar] [CrossRef]
- Shen, Z.; Issa, R.R.A. Quantitative Evaluation of the BIM-Assisted Construction Detailed Cost Estimates. Electron. J. Inf. Technol. Constr. 2010, 15, 234–257. [Google Scholar]
- Patel, D.; Nanyam, V.P.S.N. Benefits of BIM in Reducing Errors in Indian Construction Projects. Springer: Singapore, 2022; Volume 172, ISBN 9789811643958. [Google Scholar]
- Maliha, M.N.; Tayeh, B.A.; Abu Aisheh, Y.I. Building Information Modeling (BIM) in Enhancing the Applying of Knowledge Areas in the Architecture, Engineering and Construction (AEC) Industry. Open Civ. Eng. J. 2021, 14, 388–401. [Google Scholar] [CrossRef]
- Bergsdal, H.; Bohne, R.A.; Brattebø, H. Projection of Construction and Demolition Waste in Norway. J. Ind. Ecol. 2007, 11, 27–39. [Google Scholar] [CrossRef]
- Allesch, A.; Brunner, P.H. Material Flow Analysis as a Tool to Improve Waste Management Systems: The Case of Austria. Environ. Sci. Technol. 2017, 51, 540–551. [Google Scholar] [CrossRef]
- Danish Ministry of Environment Affaldsbekendtgørelsen. Available online: https://www.retsinformation.dk/eli/lta/2019/224 (accessed on 24 June 2021).
- Danish Ministry of Environment Affaldsbekendtgørelsen. Available online: https://www.retsinformation.dk/eli/lta/2018/1759 (accessed on 24 June 2021).
- Wittchen, K.B.; Kragh, J. Danish Building Typologies; SBi, Statens Byggeforskningsinstitut: Hørsholm, Denmark, 2012. [Google Scholar]
- BYG-ERFA Dansk Byggeskik. Available online: https://danskbyggeskik.dk/ (accessed on 5 July 2021).
- Engelmark, J. Københavnsk Etageboligbyggeri 1850–1900: En Byggeteknisk Undersøgelse. Statens Byggeforskningsinstitut: Hørsholm, Denmark, 1983; ISBN 8756304978. [Google Scholar]
- Engelmark, J. Dansk Byggeskik-Etagebyggeriet Gennem 150 År. Realdania Byg: Odense, Denmark, 2013; ISBN 9788799324903. [Google Scholar]
- Danish Ministry of Taxation Bekendtgørelse Af Lov Om Bygnings-Og Boligregistrering. Available online: https://www.retsinformation.dk/eli/lta/2019/797 (accessed on 5 March 2021).
- Gomes, V.M.; Saraiva, J.P.; Lima, B.S.; Flores, P.H.R.; Assis, A.O.; Gomes, F.A.; Magalhães, A.S.; Bulhões, J.S.; Matias, C.A.; Wainer, G.A.; et al. Analytical Method for Calculating the Sensitivity Index of System Parameters. In Proceedings of the 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Pucon, Chile, 18–20 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- European Union. Official Journal of the European Union-L 156. European Union: Strasbourg, France, 2018; Volume 61. [Google Scholar]
- The Danish Energy Agency. Status for Energimærkningsordning for Bygninger. The Danish Energy Agency: Copenhagen, Denmark, 2020. [Google Scholar]
- Müller, D.B. Stock Dynamics for Forecasting Material Flows-Case Study for Housing in The Netherlands Dynamic Modelling Prospects for Resource Demand Waste Management Vintage Effects Diffusion Processes. Ecol. Econ. 2005, 9, 142–156. [Google Scholar] [CrossRef]
- Danish Ministry of Environment Affaldsbekendtgørelsen. Available online: https://www.retsinformation.dk/eli/lta/2020/2159 (accessed on 8 March 2021).
Audit System Factors, fsa | Auditor Factors, fa |
---|---|
|
|
|
|
|
|
|
|
Demolition waste system factors, fsCD | Demolition waste factors, fCD |
|
|
|
|
|
|
| |
Typological factors ftype | Model-centric factors, ffit |
|
|
|
|
|
|
|
|
|
|
Construction Period | Changes in Typology | Typical Materials | Typology Categories |
---|---|---|---|
Before 1850 | Shift in building tradition | Masonry, Thatched, Wood beams | 1 |
1851–1930 | Shift in building tradition | Masonry, Tiles, Wood beams | 2 Case study 3 & 4 (parametric MFA) |
1931–1950 | Cavity walls introduced | Masonry, Tiles, Wood beams | 3 |
1951–1960 | Insulated cavity walls introduced | Masonry, Eternit, Wood beams | 4 |
1961–1972 | First energy requirements in BR1961 | Masonry, Concrete bricks, Tiles, Eternit, Wood beams | 5 |
1973–1978 | Tightened energy requirements in BR1972 | Masonry, Concrete backwall, Eternit, Tiles, Wood beams | 6 Case study 2 (static MFA) |
1979–1998 | Tightened energy requirements in BR1978 | Masonry, Tiles, Concrete backwall, Eternit, Wood and Concrete beams | 7 |
1999–2007 | Tightened energy requirements in BR1998 | Masonry, Tiles, Concrete backwall, roof, Wood, Steel and Concrete beams | 8 Case study 1 (static MFA) |
2007–2011 | Tightened energy requirements in BR2006/2008 | Masonry, Tiles, Concrete backwall and roof, Wood, Steel and Concrete beams | 9 |
Case 1: Office Building | Case 2: Daycare Center | |||
---|---|---|---|---|
Actual BWCr [kg/m3] | Predicted BMCr [kg/m3] | Actual BWCr [kg/m3] | Predicted BMCr [kg/m3] | |
Minerals | 281.1 | 335.8 | 49.0 | 182.1 |
Iron and metal | 0 | 15.5 | 4.8 | 116.2 |
Wood | 3.6 | 1.2 | 3.6 | 6.7 |
Total (BWC, BMC) | 291.8 | 403.6 | 161.4 | 384.4 |
BMCtypo,1–5 | MAETypo,1–5 [ton] | MAETypo,2 Only [ton] |
---|---|---|
Natural stone, e.g., granite and flint | 4.0 | 1.1 |
Asphalt | 95.0 | 10.3 |
Concrete | 545.0 | 495.3 |
Asphalt and concrete mix | 4.0 | 0.5 |
Natural stone, unglazed tiles and concrete mix | 148.0 | 343.0 |
Gypsum | 10.0 | 1.1 |
Iron and metal | 233.0 | 45.4 |
Glass | 9.0 | 0.4 |
Unglazed brick and tiles | 147.0 | 52.6 |
Roofing felt | 2.0 | 0.7 |
Stone wool | 9.0 | 0.9 |
Wood | 11.0 | 38.5 |
PVC | 0.2 | 0.0 |
Plastic | 0.1 | 0.0 |
Cardboard | 0.03 | 0.0 |
Others | 24.0 | 4.7 |
Case 1: Mølle Alle | Case 2: Brysselgade | |||
---|---|---|---|---|
Actual BMC [kg/m3] | Predicted BMC [kg/m3] | Actual BMC [kg/m3] | Predicted BMC [kg/m3] | |
Masonry | 179.1 | 179.3 +/− 12.5 | 192.6 | 193.9 +/− 33.3 |
Concrete | 102.2 | 104.1 +/− 7.0 | 110.3 | 111.5 +/− 19.3 |
Wood | 39.0 | 39.6 +/− 2.7 | 41.9 | 42.2 +/− 7.2 |
Iron/Steel | 13.5 | 13.5 +/− 1.0 | 13.1 | 13.3 +/− 2.2 |
Total (~BMC) | 333.7 | 336.5 +/− 23.1 | 357.9 | 361.0 +/− 62.0 |
Parameter | Parameter Type | Mean State [m] | Variance, OAT [m] | Sensitivity Index, AAt [-] |
---|---|---|---|---|
Floor height, Fh | Cumulative function | 3.20 | 0.117 | 0.39 |
Window height, Wh | Uniform distribution | 1.80 | 0.274 | - |
Window width, WW | Uniform distribution | 1.40 | 0.016 | - |
Window area (derived) | Uniform distribution | - | - | 0.45 |
Basement height, BH | Cumulative function | 2.80 | 0.018 | 0.26 |
Foundation height, FH | Uniform distribution | 0.50 | 0.008 | 0.27 |
Foundation deck thickness, FDT | Uniform distribution | 0.30 | 0.528 | 0.41 |
Mural crown height, MCH | Cumulative function | 0.65 | 0.0135 | 0.12 |
Roof height, RH | Cumulative function | 2.70 | 0.0837 | 0.20 |
BMCtypo 2 | MAE (ftype) [ton] | MAE (ffit), in Model [ton] | MAE (ffit), Test Set [ton] |
---|---|---|---|
Masonry | 20.8 | 102.15 | 2.30 |
Secondary masonry | 0.0 | 11.65 | 2.00 |
Concrete | 4.0 | 55.65 | 10.75 |
Wood beams t1 | 0.0 | 1.00 | −0.03 |
Wood beams t2 | 0.0 | 9.61 | 0.04 |
Wood rafters t3 | 0.3 | 2.04 | 0.23 |
Wood roof t4 | 0.0 | 0.39 | −0.01 |
Wood laths t5 | 0.0 | 0.03 | −0.02 |
Steel profiles | 0.0 | 1.53 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negendahl, K.; Barholm-Hansen, A.; Andersen, R. Parametric Stock Flow Modelling of Historical Building Typologies. Buildings 2022, 12, 1423. https://doi.org/10.3390/buildings12091423
Negendahl K, Barholm-Hansen A, Andersen R. Parametric Stock Flow Modelling of Historical Building Typologies. Buildings. 2022; 12(9):1423. https://doi.org/10.3390/buildings12091423
Chicago/Turabian StyleNegendahl, Kristoffer, Alexander Barholm-Hansen, and Rune Andersen. 2022. "Parametric Stock Flow Modelling of Historical Building Typologies" Buildings 12, no. 9: 1423. https://doi.org/10.3390/buildings12091423
APA StyleNegendahl, K., Barholm-Hansen, A., & Andersen, R. (2022). Parametric Stock Flow Modelling of Historical Building Typologies. Buildings, 12(9), 1423. https://doi.org/10.3390/buildings12091423