Demand Response in Buildings: A Comprehensive Overview of Current Trends, Approaches, and Strategies
Abstract
:1. Introduction
2. Fundamental Concepts Related to Demand Response (Dr)
2.1. DR Modeling Approaches
2.2. DR Management Strategies
3. Literature Review
3.1. Key Findings
3.2. Distribution of Papers Based on Building Types and Sample Size
3.3. Distribution of Papers Based on DR Modeling Approaches
3.4. Distribution of Papers Based on DR Management Strategies
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fallahi, Z.; Henze, G.P. Interactive Buildings: A Review. Sustainability 2019, 11, 3988. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Gu, J.; Schmidt, F.; Li, W. Measures to improve energy demand flexibility in buildings for demand response (DR): A review. Energy Build. 2018, 177, 125–139. Available online: https://www.semanticscholar.org/paper/Measures-to-improve-energy-demand-flexibility-in-A-Chen-Xu/598f4b308b56da9b3ff97d1ff7823da7d12d95e8 (accessed on 3 April 2023). [CrossRef]
- Tang, H.; Wang, S.; Li, H. Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective. Energy 2020, 219, 119598. [Google Scholar] [CrossRef]
- Salah, F.; Ilg, J.P.; Flath, C.M.; Basse, H.; van Dinther, C. Impact of electric vehicles on distribution substations: A Swiss case study. Appl. Energy 2015, 137, 88–96. [Google Scholar] [CrossRef]
- Lund, P.D.; Lindgren, J.; Mikkola, J.; Salpakari, J. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 2015, 45, 785–807. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Chu, Y.; Li, W.; Wu, Y.; Ni, L.; Bao, Y.; Wang, K. Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 2017, 195, 659–670. [Google Scholar] [CrossRef]
- Federal Energy Regulation Commission. 2010 Assessment of Demand Response and Advanced Metering; United States Department of Energy: Washington, DC, USA, 2011. [Google Scholar]
- Gils, H.C. Assessment of the theoretical demand response potential in Europe. Energy 2014, 67, 1–18. [Google Scholar] [CrossRef]
- Policy Brief Energy Efficiency Trends in Buildings. 2018. Available online: https://www.odysseemure.eu/publications/policy-brief/buildings-energy-efficiency-trends.pdf (accessed on 10 April 2023).
- Ma, K.; Yu, Y.; Yang, B.; Yang, J. Demand-Side Energy Management Considering Price Oscillations for Residential Building Heating and Ventilation Systems. IEEE Trans. Ind. Inform. 2019, 15, 4742–4752. Available online: https://www.semanticscholar.org/paper/Demand-Side-Energy-Management-Considering-Price-for-Ma-Yu/83de37a2541ddbd069a6efe269093ff18aa253f5 (accessed on 15 April 2023). [CrossRef]
- Luo, Z.; Peng, J.; Cao, J.; Yin, R.; Zou, B.; Tan, Y.; Yan, J. Demand Flexibility of Residential Buildings: Definitions, Flexible Loads, and Quantification Methods. Engineering 2022, 16, 123–140. [Google Scholar] [CrossRef]
- Du, J.; Yu, C.; Pan, W. Multiple influencing factors analysis of household energy consumption in high-rise residential buildings: Evidence from Hong Kong. Build. Simul. 2020, 13, 753–769. [Google Scholar] [CrossRef]
- ScienceDirect.com|Science, Health and Medical Journals, Full-Text Articles and Books. (n.d.-b). Available online: https://www.sciencedirect.com/ (accessed on 26 June 2023).
- Goy, S.; Finn, D. Estimating Demand Response Potential in Building Clusters. Energy Procedia 2015, 78, 3391–3396. [Google Scholar] [CrossRef]
- Sehar, F.; Pipattanasomporn, M.; Rahman, S. An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings. Appl. Energy 2016, 173, 406–417. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Larsen, K.G.; Jensen, P.G.; Hasrat, I.R. Optimization of power-to-heat flexibility for residential buildings in response to day-ahead electricity price. Energy Build. 2020, 232, 110665. [Google Scholar] [CrossRef]
- Zhang, K.; Kummert, M. Evaluating the impact of thermostat control strategies on the energy flexibility of residential buildings for space heating. Build. Simul. 2021, 14, 1439–1452. [Google Scholar] [CrossRef]
- Nazerfard, E.; Abedi, M.; Asadi, S.; Jebelli, H.; Sadat-Mohammadi, M.; Nazari-Heris, M. Intelligent approach for residential load scheduling. IET Gener. Transm. Distrib. 2020, 14, 4738–4745. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xu, P.; Li, W.; Sha, H.; Yang, Z.; Li, G.; Hu, C. Quantification of electricity flexibility in demand response: Office building case study. Energy 2019, 188, 116054. [Google Scholar] [CrossRef]
- Costanzo, G.T.; Gehrke, O.; Bondy, D.E.M.; Sossan, F.; Bindner, H.; Parvizi, J.; Madsen, H. A coordination scheme for distributed model predictive control: Integration of flexible DERs. In Proceedings of the 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), Lyngby, Denmark, 6–9 October 2013; pp. 1–5. [Google Scholar]
- Ma, L.; Liu, N.; Wang, L.; Zhang, J.; Lei, J.; Zeng, Z.; Wang, C.; Cheng, M. Multi-party energy management for smart building cluster with PV systems using automatic demand response. Energy Build. 2016, 121, 11–21. [Google Scholar] [CrossRef]
- Alstone, P.; Potter, J.; Piette, M.A.; Schwartz, P.; Berger, M.A.; Dunn, L.N.; Smith, S.J.; Sohn, M.D.; Aghajanzadeh, A.; Stensson, S.; et al. Interim Report on Phase 1 Results, 2015 California Demand Response Potential Study—Charting California’s Demand Response Future: Interim Report on Phase 1 Results; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2016. [Google Scholar]
- Alstone, P.; Potter, J.; Piette, M.A.; Schwartz, P.; Berger, M.A.; Dunn, L.N.; Smith, S.J.; Sohn, M.D.; Aghajanzadeh, A.; Stensson, S.; et al. 2025 California Demand Response Potential Study—Charting California’s Demand Response Future: Final Report on Phase 2 Results; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2017. [Google Scholar]
- Gerke, B.F.; Gallo, G.; Smith, S.J.; Liu, J.; Alstone, P.; Raghavan, S.; Schwartz, P.; Piette, M.A.; Yin, R.; Stensson, S. The California Demand Response Potential Study, Phase 3: Final Report on the Shift Resource through 2030; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2020. [Google Scholar]
- Li, H.; Wang, Z.; Hong, T.; Piette, M.A. Energy flexibility of residential buildings: A systematic review of characterization and quantification methods and applications. Adv. Appl. Energy 2021, 3, 100054. [Google Scholar] [CrossRef]
- Naderi, S.; Pignatta, G.; Heslop, S.; MacGill, I.; Chen, D. Demand response via pre-cooling and solar pre-cooling: A review. Energy Build. 2022, 272, 112340. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, Z.; Chen, Q.; Song, C.; Shang, W.; Yuan, M.; Zhang, H. A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives. Energy 2023, 263, 126082. [Google Scholar] [CrossRef]
- Boodi, A.; Beddiar, K.; Amirat, Y.; Benbouzid, M. Building thermal-network models: A comparative analysis, recommendations, and perspectives. Energies 2022, 15, 1328. [Google Scholar] [CrossRef]
- Li, X.; Wen, J. Review of building energy modeling for control and operation. Renew. Sustain. Energy Rev. 2014, 37, 517–537. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, M.; Lv, Y.; Yang, Y.; Liang, Y.; Yin, R.; Yang, Y.; Jia, X.; Wang, X.; Zeng, F.; et al. Building energy simulation and its application for building performance optimization: A review of methods, tools, and case studies. Adv. Appl. Energy 2023, 10, 100135. [Google Scholar] [CrossRef]
- EMD University of Wisconsin. TRNSYS. In Thermal Energy System Specialists; Engineering Mechanical Department, University of Wisconsin: Madison, WI, USA, 2013. [Google Scholar]
- Crawley, D.B.; Lawrie, L.K.; Winkelmann, F.C.; Buhl, W.; Huang, Y.; Pedersen, C.O.; Strand, R.K.; Liesen, R.J.; Fisher, D.E.; Witte, M.J.; et al. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- Ogunsola, O.T.; Song, L.; Tang, C.Y. Minimization of electricity demand and cost for multi-zone buildings: Part I—Modeling and validation. Sci. Technol. Built Environ. 2017, 23, 998–1012. [Google Scholar] [CrossRef]
- Zhao, H.-X.; Magoulès, F. A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 2012, 16, 3586–3592. [Google Scholar] [CrossRef]
- Foucquier, A.; Robert, S.; Suard, F.; Stéphan, L.; Jay, A. State of the art in building modelling and energy performances prediction: A review. Renew. Sustain. Energy Rev. 2013, 23, 272–288. [Google Scholar] [CrossRef]
- Pallonetto, F.; De Rosa, M.; D’Ettorre, F.; Finn, D.P. On the assessment and control optimisation of demand response programs in residential buildings. Renew. Sustain. Energy Rev. 2020, 127, 109861. [Google Scholar] [CrossRef]
- Xu, P.; Haves, P.; Piette, M.; Zagreus, L. Demand Shifting with Thermal Mass in Large Commercial Buildings: Field Tests, Simulations and Audits; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2006. Available online: https://eta-publications.lbl.gov/sites/default/files/cec-500-2006-009.pdf (accessed on 20 April 2023).
- Nyholm, E.; Puranik, S.; Mata, É.; Odenberger, M.; Johnsson, F. Demand response potential of electrical space heating in Swedish single-family dwellings. J. Affect. Disord. 2016, 96, 270–282. [Google Scholar] [CrossRef]
- Reynders, G.; Diriken, J.; Saelens, D. Quality of grey-box models and identified parameters as function of the accuracy of input and observation signals. Energy Build. 2014, 82, 263–274. Available online: https://www.semanticscholar.org/paper/Quality-of-grey-box-models-and-identified-as-of-the-Reynders-Diriken/c284d003c472ce34b1eb4076fdcd3a6991ba68f9 (accessed on 22 April 2023). [CrossRef]
- Neukomm, M.; Nubbe, V.; Fares, R. Grid-Interactive Efficient Buildings (DOE/EE-1968); U.S. Dept. of Energy (USDOE): Washington, DC, USA; Navigant Consulting, Inc.: Chicago, IL, USA, 2019. [Google Scholar] [CrossRef]
- Sørensen, Å.L.; Lindberg, K.; Sartori, I.; Andresen, I. Analysis of residential EV energy flexibility potential based on real-world charging reports and smart meter data. Energy Build. 2021, 241, 110923. [Google Scholar] [CrossRef]
- MacDonald, J.; Kiliccote, S. Commercial Building Loads Providing Ancillary Services in PJM. In Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 17–22 August 2014. [Google Scholar]
- Satchwell, A.; Piette, M.A.; Khandekar, A.; Granderson, J.; Frick, N.M.; Hledik, R.; Faruqui, A.; Lam, L.; Ross, S.; Cohen, J.; et al. A National Roadmap for Grid-Interactive Efficient Buildings. 2021. Available online: https://escholarship.org/uc/item/78k303s5 (accessed on 15 May 2023).
- de Chalendar, J.A.; McMahon, C.; Valenzuela, L.F.; Glynn, P.W.; Benson, S.M. Unlocking demand response in commercial buildings: Empirical response of commercial buildings to daily cooling set point adjustments. Energy Build. 2023, 278, 112599. [Google Scholar] [CrossRef]
- Jang, D.; Spangher, L.; Nadarajah, S.; Spanos, C. Deep reinforcement learning with planning guardrails for building energy demand response. Energy AI 2023, 11. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, X.; Li, Y.; Strbac, G. Values of coordinated residential space heating in demand response provision. Appl. Energy 2023, 330, 100204. [Google Scholar] [CrossRef]
- Amato, V.; Knudsen, M.D.; Petersen, S. Dual-zone economic model predictive control of residential space heating for demand response using a single heat meter. Energy Build. 2023, 281, 112759. [Google Scholar] [CrossRef]
- Bianco, G.; Delfino, F.; Ferro, G.; Robba, M.; Rossi, M. A hierarchical Building Management System for temperature’s optimal control and electric vehicles’ integration. Energy Convers. Manag. X 2023, 17, 100339. [Google Scholar] [CrossRef]
- Ibrahim, O.; Bakare, M.S.; Amosa, T.I.; Otuoze, A.O.; Owonikoko, W.O.; Ali, E.M.; Adesina, L.M.; Ogunbiyi, O. Development of fuzzy logic-based demand-side energy management system for hybrid energy sources. Energy Convers. Manag. X 2023, 18, 100354. [Google Scholar] [CrossRef]
- Khatibi, M.; Rahnama, S.; Vogler-Finck, P.; Bendtsen, J.D.; Afshari, A. Towards designing an aggregator to activate the energy flexibility of multi-zone buildings using a hierarchical model-based scheme. Appl. Energy 2023, 333, 120562. [Google Scholar] [CrossRef]
- Cibin, N.; Tibo, A.; Golmohamadi, H.; Skou, A.; Albano, M. Machine learning-based algorithms to estimate thermal dynamics of residential buildings with energy flexibility. J. Build. Eng. 2023, 65, 105683. [Google Scholar] [CrossRef]
- Chung, W.J.; Khattak, S.H.; Cecinati, F.; Jeong, S.-G.; Kershaw, T.; Allen, S.; Park, C.-S.; Coley, D.; Natarajan, S. Resistive and capacitive technology recipes for peak cooling load reductions in the global south. J. Build. Eng. 2023, 67, 105900. [Google Scholar] [CrossRef]
- Vindel, E.; Bergés, M.; Akinci, B.; Kavvada, O.; Gavan, V. AlphaShed: A scalable load flexibility model for shedding potential in commercial HVAC systems. Energy Build. 2023, 279, 112686. [Google Scholar] [CrossRef]
- Lizana, J.; Halloran, C.E.; Wheeler, S.; Amghar, N.; Renaldi, R.; Killendahl, M.; Perez-Maqueda, L.A.; McCulloch, M.; Chacartegui, R. A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification. Energy 2023, 262, 125298. [Google Scholar] [CrossRef]
- Amato, V.; Hedegaard, R.; Knudsen, M.D.; Petersen, S. Room-level load shifting of space heating in a single-family house—A field experiment. Energy Build. 2023, 281, 112750. [Google Scholar] [CrossRef]
- Wei, Z.; Calautit, J. Predictive control of low-temperature heating system with passive thermal mass energy storage and photovoltaic system: Impact of occupancy patterns and climate change. Energy 2023, 269, 126791. [Google Scholar] [CrossRef]
- Baumann, C.; Huber, G.; Alavanja, J.; Preißinger, M.; Kepplinger, P. Experimental validation of a state-of-the-art model predictive control approach for demand side management with a hot water heat pump. Energy Build. 2023, 285, 112923. [Google Scholar] [CrossRef]
- Watson, S.; Crawley, J.; Lomas, K.; Buswell, R. Predicting future GB heat pump electricity demand. Energy Build. 2023, 286, 112917. [Google Scholar] [CrossRef]
- Banaei, M.; D’ettorre, F.; Ebrahimy, R.; Pourmousavi, S.A.; Blomgren, E.M.; Madsen, H. A stochastic methodology to exploit maximum flexibility of swimming pool heating systems. Int. J. Electr. Power Energy Syst. 2023, 145, 108643. [Google Scholar] [CrossRef]
- Pallonetto, F.; Jin, C.; Mangina, E. Forecast electricity demand in commercial building with machine learning models to enable demand response programs. Energy AI 2021, 7, 100121. [Google Scholar] [CrossRef]
- Liu, J.; Yin, R.; Yu, L.; Piette, M.A.; Pritoni, M.; Casillas, A.; Xie, J.; Hong, T.; Neukomm, M.; Schwartz, P. Defining and applying an electricity demand flexibility benchmarking metrics framework for grid-interactive efficient commercial buildings. Adv. Appl. Energy 2022, 8, 100107. [Google Scholar] [CrossRef]
- Zhang, K.; Prakash, A.; Paul, L.; Blum, D.; Alstone, P.; Zoellick, J.; Brown, R.; Pritoni, M. Model predictive control for demand flexibility: Real-world operation of a commercial building with photovoltaic and battery systems. Adv. Appl. Energy 2022, 7, 100099. [Google Scholar] [CrossRef]
- Saffari, M.; Roe, C.; Finn, D.P. Improving the building energy flexibility using PCM-enhanced envelopes. Appl. Therm. Eng. 2022, 217, 119092. [Google Scholar] [CrossRef]
- Gerke, B.F.; Zhang, C.; Murthy, S.; Satchwell, A.J.; Present, E.; Horsey, H.; Wilson, E.; Parker, A.; Speake, A.; Adhikari, R.; et al. Load-driven interactions between energy efficiency and demand response on regional grid scales. Adv. Appl. Energy 2022, 6, 100092. [Google Scholar] [CrossRef]
- Rinaldi, A.; Yilmaz, S.; Patel, M.K.; Parra, D. What adds more flexibility? An energy system analysis of storage, demand-side response, heating electrification, and distribution reinforcement. Renew. Sustain. Energy Rev. 2022, 167, 112696. [Google Scholar] [CrossRef]
- Antunes, C.H.; Alves, M.J.; Soares, I. A comprehensive and modular set of appliance operation MILP models for demand response optimization. Appl. Energy 2022, 320, 119142. [Google Scholar] [CrossRef]
- Zhou, S.; Cao, S. Energy flexibility and viability enhancement for an ocean-energy-supported zero-emission office building with respect to both existing and advanced utility business models with dynamic responsive incentives. Energy Rep. 2022, 8, 10244–10271. [Google Scholar] [CrossRef]
- Schledorn, A.; Junker, R.G.; Guericke, D.; Madsen, H.; Dominković, D.F. Frigg: Soft-linking energy system and demand response models. Appl. Energy 2022, 317, 119074. [Google Scholar] [CrossRef]
- Gupta, R.; Morey, J. Empirical evaluation of demand side response trials in UK dwellings with smart low carbon technologies. Renew. Energy 2022, 199, 993–1004. [Google Scholar] [CrossRef]
- Bahlawan, H.; Castorino, G.A.M.; Losi, E.; Manservigi, L.; Spina, P.R.; Venturini, M. Optimal management with demand response program for a multi-generation energy system. Energy Convers. Manag. X 2022, 16, 100311. [Google Scholar] [CrossRef]
- Naderi, S.; Heslop, S.; Chen, D.; MacGill, I.; Pignatta, G. Consumer cost savings, improved thermal comfort, and reduced peak air conditioning demand through pre-cooling in Australian housing. Energy Build. 2022, 271, 112172. [Google Scholar] [CrossRef]
- Hoseinpoori, P.; Olympios, A.V.; Markides, C.N.; Woods, J.; Shah, N. A whole-system approach for quantifying the value of smart electrification for decarbonising heating in buildings. Energy Convers. Manag. 2022, 268, 115952. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Larsen, K.G. Economic heat control of mixing loop for residential buildings supplied by low-temperature district heating. J. Build. Eng. 2021, 46, 103286. [Google Scholar] [CrossRef]
- Pinto, G.; Kathirgamanathan, A.; Mangina, E.; Finn, D.P.; Capozzoli, A. Enhancing energy management in grid-interactive buildings: A comparison among cooperative and coordinated architectures. Appl. Energy 2022, 310, 118497. [Google Scholar] [CrossRef]
- Numminen, S.; Ruggiero, S.; Jalas, M. Locked in flat tariffs? An analysis of electricity retailers’ dynamic price offerings and attitudes to consumer engagement in demand response. Appl. Energy 2022, 326, 120002. [Google Scholar] [CrossRef]
- Dranka, G.G.; Ferreira, P.; Vaz, A.I.F. Co-benefits between energy efficiency and demand-response on renewable-based energy systems. Renew. Sustain. Energy Rev. 2022, 169, 112936. [Google Scholar] [CrossRef]
- Tassenoy, R.; Couvreur, K.; Beyne, W.; De Paepe, M.; Lecompte, S. Techno-economic assessment of Carnot batteries for load-shifting of solar PV production of an office building. Renew. Energy 2022, 199, 1133–1144. [Google Scholar] [CrossRef]
- Leprince, J.; Madsen, H.; Miller, C.; Real, J.P.; van der Vlist, R.; Basu, K.; Zeiler, W. Fifty shades of grey: Automated stochastic model identification of building heat dynamics. Energy Build. 2022, 266, 112095. [Google Scholar] [CrossRef]
- Dinh, H.T.; Lee, K.-H.; Kim, D. Supervised-learning-based hour-ahead demand response for a behavior-based home energy management system approximating MILP optimization. Appl. Energy 2022, 321, 119382. [Google Scholar] [CrossRef]
- Utama, C.; Troitzsch, S.; Thakur, J. Demand-side flexibility and demand-side bidding for flexible loads in air-conditioned buildings. Appl. Energy 2021, 285, 116418. [Google Scholar] [CrossRef]
- O’Connell, S.; Reynders, G.; Keane, M.M. Impact of source variability on flexibility for demand response. Energy 2021, 237, 121612. [Google Scholar] [CrossRef]
- Papachristou, C.; Hoes, P.-J.; Loomans, M.; van Goch, T.; Hensen, J. Investigating the energy flexibility of Dutch office buildings on single building level and building cluster level. J. Build. Eng. 2021, 40, 102687. [Google Scholar] [CrossRef]
- Nik, V.M.; Moazami, A. Using collective intelligence to enhance demand flexibility and climate resilience in urban areas. Appl. Energy 2020, 281, 116106. [Google Scholar] [CrossRef]
- Sæther, G.; del Granado, P.C.; Zaferanlouei, S. Peer-to-peer electricity trading in an industrial site: Value of buildings flexibility on peak load reduction. Energy Build. 2021, 236, 110737. [Google Scholar] [CrossRef]
- Kirkerud, J.; Nagel, N.; Bolkesjø, T. The role of demand response in the future renewable northern European energy system. Energy 2021, 235, 121336. [Google Scholar] [CrossRef]
- Meng, Q.; Li, Y.; Ren, X.; Xiong, C.; Wang, W.; You, J. A demand-response method to balance electric power-grids via HVAC systems using active energy-storage: Simulation and on-site experiment. Energy Rep. 2021, 7, 762–777. [Google Scholar] [CrossRef]
- Ceran, B.; Jurasz, J.; Mielcarek, A.; Campana, P.E. PV systems integrated with commercial buildings for local and national peak load shaving in Poland. J. Clean. Prod. 2021, 322, 129076. [Google Scholar] [CrossRef]
- Zhang, Y.; Johansson, P.; Kalagasidis, A.S. Techno-economic assessment of thermal energy storage technologies for demand-side management in low-temperature individual heating systems. Energy 2021, 236, 121496. [Google Scholar] [CrossRef]
- Heitkoetter, W.; Schyska, B.U.; Schmidt, D.; Medjroubi, W.; Vogt, T.; Agert, C. Assessment of the regionalised demand response potential in Germany using an open source tool and dataset. Adv. Appl. Energy 2020, 1, 100001. [Google Scholar] [CrossRef]
- Marszal-Pomianowska, A.; Larsen, S.P.A.K.; Gram-Hanssen, K.; Heiselberg, P. Thermal conditions in households and assessment of building’s flexibility potential. Variations in time, space and between dwellings. J. Affect. Disord. 2021, 206, 108353. [Google Scholar] [CrossRef]
- Gasser, J.; Cai, H.; Karagiannopoulos, S.; Heer, P.; Hug, G. Predictive energy management of residential buildings while self-reporting flexibility envelope. Appl. Energy 2021, 288, 116653. [Google Scholar] [CrossRef]
- Kathirgamanathan, A.; Mangina, E.; Finn, D.P. Development of a Soft Actor Critic deep reinforcement learning approach for harnessing energy flexibility in a Large Office building. Energy AI 2021, 5, 100101. [Google Scholar] [CrossRef]
- Oshiro, K.; Fujimori, S.; Ochi, Y.; Ehara, T. Enabling energy system transition toward decarbonization in Japan through energy service demand reduction. Energy 2021, 227, 120464. [Google Scholar] [CrossRef]
Model Type | White Box | Gray Box | Black Box |
---|---|---|---|
Knowledge of building physics and technical systems | Detailed understanding and explicit representation of the whole system | Limited knowledge combined with data-driven techniques | No knowledge, purely data-driven |
Data dependency | Moderate | Moderate | High |
Interpretability and explanability | High | Moderate | Low |
Computational requirements | High | Moderate | Low to moderate |
DR Strategies in Building | Characteristics | Key Features | Timeframe for Demand Reduction | Load Profile [43] |
---|---|---|---|---|
Efficiency | Improve energy efficiency through building upgrades and retrofits | Reduced energy consumption, lower carbon emissions, potential cost savings | Continuous and long-term impact | |
Load shift | Shift non-essential energy consumption activities to off-peak hours | Change in energy usage patterns, potential cost savings during off-peak periods, grid support | Immediate impact during shifted hours | |
Load shed | Temporarily reduce or interrupt non-critical energy loads during peak demand | Reduction in peak load demand, grid stability support | Immediate impact during peak demand periods | |
Load modulation | Dynamically adjust energy consumption of specific building systems or equipment. | Flexibility in response to grid signals, optimized energy usage, grid support | Real-time or near-real-time response to grid signals | |
Energy generation | Deploy on-site power generation sources | Localized energy generation, reduced reliance on the grid, grid support | Ongoing impact based on generation capacity and demand |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurjevic, R.; Zakula, T. Demand Response in Buildings: A Comprehensive Overview of Current Trends, Approaches, and Strategies. Buildings 2023, 13, 2663. https://doi.org/10.3390/buildings13102663
Jurjevic R, Zakula T. Demand Response in Buildings: A Comprehensive Overview of Current Trends, Approaches, and Strategies. Buildings. 2023; 13(10):2663. https://doi.org/10.3390/buildings13102663
Chicago/Turabian StyleJurjevic, Ruzica, and Tea Zakula. 2023. "Demand Response in Buildings: A Comprehensive Overview of Current Trends, Approaches, and Strategies" Buildings 13, no. 10: 2663. https://doi.org/10.3390/buildings13102663
APA StyleJurjevic, R., & Zakula, T. (2023). Demand Response in Buildings: A Comprehensive Overview of Current Trends, Approaches, and Strategies. Buildings, 13(10), 2663. https://doi.org/10.3390/buildings13102663