Comprehensive Review of Direct and Indirect Pozzolanic Reactivity Testing Methods
Abstract
:1. Introduction
2. Research Significance
3. Direct Methods
3.1. The Frattini Chemical Titration Method
3.2. X-ray Diffraction Spectroscopy
3.3. Thermogravimetric and Differential Thermal Analyses
- I.
- Evaporable water decomposition is related to the loss of free water between 25 °C and 105 °C.
- II.
- Dehydroxylation of portlandite between 400 °C and 500 °C.
- III.
- Decarbonation corresponds to calcite (CaCO3) decomposition between 600 °C and 800 °C [54].
4. Indirect Methods
4.1. Isothermal Calorimetry
- Stage I involves rapid dissolution and the early reaction period. Rapid and overall exothermic dissolution of free lime, alkalis, gypsum, ferrite, and brownmillerite with some alites occurs in this stage, which lasts only a few minutes. Ions such as Ca2+, SO42−, Al(OH)4, SiO44−, K+, Na+, and are released into the solution.
- Stage II is an induction period that happens after the initial highly exothermic reactions. This stage is a period of deceleration of cement hydration, in which heat evolution is relatively low.
- Stage III is an acceleration period that is due to nucleation and growth of the C–S–H.
- Stage IV is a deceleration period with a slow and continued reaction. This is a result of diffusion control and space-filling. Diffusion control is a mechanism in which a thick layer of C–S–H slows the diffusion of water ions, resulting in a slower reaction. Also, space-filling occurs when there is a reduction in the available surface area and pore volume to produce C–S–H [61].
4.2. Strength Activity Index
4.3. Electrical Conductivity and pH
4.4. Scanning Electron Microscopy–Energy Dispersive X-ray Spectrometry
4.5. Ultrasonic Pulse Velocity Index (UPVI)
5. R3 Method
6. Summary and Statistical Evaluation
7. Conclusions
- It is important to assess pozzolanic reaction by a combination of direct and indirect methods to evaluate the effect of pozzolanic reaction in concrete both physically and chemically to find a potential SCM for cement in concrete.
- The Frattini test is a commonly used direct method to quantify portlandite’s consumption due to pozzolanic reaction. However, this method is based on titration on a liquid suspension and cannot be used to determine the consumption of calcium hydroxide in the hardened paste.
- It is possible to estimate the relative amount of consumed portlandite using XRD through the identification of proper peaks associated with the portlandite remaining in the hydrated pozzolan-cement sample.
- Indirect methods (e.g., SAI) are less conclusive, considering the potential of misidentifying the pozzolanic materials due to the filler effect instead of the pozzolanic effect.
- Test methods such as TGA, Frattini, and SAI may not be suitable for the evaluation of low levels of pozzolanic reactivity at early ages of hydration (e.g., seven days).
- SEM/EDS provides reliable visual and elemental composition evidence of the formation of C–S–H due to pozzolanic reactivity in the hydrated pozzolan-cement samples.
- Calorimetry, electrical conductivity, and pH methods provide rapid assessments of pozzolans.
- UPV provides an evaluation of the mechanical performance of hardened concrete samples containing a pozzolan. In a similar manner to SAI, this review suggests using UPVI instead of UPV for evaluating the relative effects of pozzolan on the physical characteristics of the test sample.
- The R3 method provides good correlation with the strength test and can evaluate the reactivity of pozzolans in 3 and 7 days. On the other hand, it may be useful to also conduct an additional test, such as a direct method, to differentiate pozzolanic materials from latent hydraulic materials as suggested in previous studies. A direct method would involve measuring the amount of portlandite consumed by each pozzolan during the hydration process. The additional information would provide an accurate assessment of the pozzolanic materials’ behavior and allow for better selection, classification, and use of pozzolans in concrete mixtures.
8. Future Perspectives and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robalo, K.; Costa, H.; do Carmo, R.; Júlio, E. Enhanced Mechanical and Durability Performances of Low Cement Concrete with Natural Pozzolan Addition. J. Adv. Concr. Technol. 2021, 19, 519–535. [Google Scholar] [CrossRef]
- Suraneni, P.; Weiss, J. Examining the Pozzolanicity of Supplementary Cementitious Materials Using Isothermal Calorimetry and Thermogravimetric Analysis. Cem. Concr. Compos. 2017, 83, 273–278. [Google Scholar] [CrossRef]
- Ramanathan, S.; Kasaniya, M.; Tuen, M.; Thomas, M.D.A.; Suraneni, P. Linking Reactivity Test Outputs to Properties of Cementitious Pastes Made with Supplementary Cementitious Materials. Cem. Concr. Compos. 2020, 114, 103742. [Google Scholar] [CrossRef]
- ASTM C618-19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- Mendoza, O.; Tobón, J.I. An Alternative Thermal Method for Identification of Pozzolanic Activity in Ca(OH)2/Pozzolan Pastes. J. Therm. Anal. Calorim. 2013, 114, 589–596. [Google Scholar] [CrossRef]
- Barman, D.; Dash, S.K. Stabilization of Expansive Soils Using Chemical Additives: A Review. J. Rock Mech. Geotech. Eng. 2022, 14, 1319–1342. [Google Scholar] [CrossRef]
- Tognonvi, M.T.; Tagnit-Hamou, A.; Konan, L.K.; Zidol, A.; N’Cho, W.C. Reactivity of Recycled Glass Powder in a Cementitious Medium. New J. Glass Ceram. 2020, 10, 29. [Google Scholar] [CrossRef]
- Wang, Y.; Suraneni, P. Experimental Methods to Determine the Feasibility of Steel Slags as Supplementary Cementitious Materials. Constr. Build. Mater. 2019, 204, 458–467. [Google Scholar] [CrossRef]
- Borges, A.L.; Soares, S.M.; Freitas, T.O.G.; de Oliveira Júnior, A.; Ferreira, E.B.; Ferreira, F.G. da S. Evaluation of the Pozzolanic Activity of Glass Powder in Three Maximum Grain Sizes. Mater. Res. 2021, 24. [Google Scholar] [CrossRef]
- Kramar, S.; Ducman, V. Evaluation of Ash Pozzolanic Activity by Means of the Strength Activity Index Test, Frattini Test and DTA/TG Analysis. Teh. Vjesn.-Tech. Gaz. 2018, 25, 1746–1752. [Google Scholar] [CrossRef]
- Donatello, S.; Tyrer, M.; Cheeseman, C.R. Comparison of Test Methods to Assess Pozzolanic Activity. Cem. Concr. Compos. 2010, 32, 121–127. [Google Scholar] [CrossRef]
- Jurić, K.K.; Carević, I.; Serdar, M.; Štirmer, N. Feasibility of Using Pozzolanicity Tests to Assess Reactivity of Wood Biomass Fly Ashes. J. Croat. Assoc. Civ. Eng. 2021, 72, 1145–1153. [Google Scholar] [CrossRef]
- Lima, S.C.L.; Costa, L.C.B.; Defáveri, K.C.S.; de Carvalho, J.M.F.; Peixoto, R.A.F.; Brigolini, G.J. Study on Assessment of Pozzolanic Activity: Slate Cutting Waste. ACI Mater. J. 2020, 117, 3–10. [Google Scholar]
- Martins Torres, S.; Estolano de Lima, V.; de Azevedo Basto, P.; de Araújo Júnior, N.T.; de Melo Neto, A.A. Assessing the Pozzolanic Activity of Sugarcane Bagasse Ash Using X-ray Diffraction. Constr. Build. Mater. 2020, 264, 120684. [Google Scholar] [CrossRef]
- Suraneni, P.; Fu, T.; Jafari Azad, V.; Isgor, O.B.; Weiss, J. Pozzolanicity of Finely Ground Lightweight Aggregates. Cem. Concr. Compos. 2018, 88, 115–120. [Google Scholar] [CrossRef]
- Seraj, S. Evaluating Natural Pozzolans for Use as Alternative Supplementary Cementitious Materials in Concrete. Available online: https://repositories.lib.utexas.edu/handle/2152/28052 (accessed on 7 February 2023).
- Snellings, R.; Kazemi-Kamyab, H.; Nielsen, P.; van den Abeele, L. Classification and Milling Increase Fly Ash Pozzolanic Reactivity. Front. Built Environ. 2021, 7, 670996. [Google Scholar] [CrossRef]
- Li, X.; Snellings, R.; Antoni, M.; Alderete, N.M.; ben Haha, M.; Bishnoi, S.; Cizer, Ö.; Cyr, M.; de Weerdt, K.; Dhandapani, Y.; et al. Reactivity Tests for Supplementary Cementitious Materials: RILEM TC 267-TRM Phase 1. Mater. Struct. 2018, 51, 151. [Google Scholar] [CrossRef]
- Siad, H.; Lachemi, M.; Sahmaran, M.; Hossain, K.M.A. Effect of Glass Powder on Sulfuric Acid Resistance of Cementitious Materials. Constr. Build. Mater. 2016, 113, 163–173. [Google Scholar] [CrossRef]
- Sargam, Y.; Wang, K. Quantifying Dispersion of Nanosilica in Hardened Cement Matrix Using a Novel SEM-EDS and Image Analysis-Based Methodology. Cem. Concr. Res. 2021, 147, 106524. [Google Scholar] [CrossRef]
- De Weerdt, K.; Ben Haha, M.; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B. Hydration Mechanisms of Ternary Portland Cements Containing Limestone Powder and Fly Ash. Cem. Concr. Res. 2011, 41, 279–291. [Google Scholar] [CrossRef]
- de Azevedo Basto, P.; Savastano Junior, H.; de Melo Neto, A.A. Characterization and Pozzolanic Properties of Sewage Sludge Ashes (SSA) by Electrical Conductivity. Cem. Concr. Compos. 2019, 104, 103410. [Google Scholar] [CrossRef]
- Velázquez, S.; Monzó, J.; Borrachero, M.; Payá, J. Assessment of Pozzolanic Activity Using Methods Based on the Measurement of Electrical Conductivity of Suspensions of Portland Cement and Pozzolan. Materials 2014, 7, 7533–7547. [Google Scholar] [CrossRef] [PubMed]
- Tashima, M.M.; Soriano, L.; Monzó, J.; Borrachero, M.v.; Akasaki, J.L.; Payá, J. New Method to Assess the Pozzolanic Reactivity of Mineral Admixtures by Means of PH and Electrical Conductivity Measurements in Lime: Pozzolan Suspensions. Mater. Construcc. 2014, 64, e032. [Google Scholar] [CrossRef]
- Shooshpasha, I.; Hasanzadeh, A.; Kharun, M. Effect of Silica Fume on the Ultrasonic Pulse Velocity of Cemented Sand. Proc. J. Phys. Conf. Ser. 2020, 1687, 012017. [Google Scholar] [CrossRef]
- Ashraf, M.; Naeem Khan, A.; Ali, Q.; Mirza, J.; Goyal, A.; Anwar, A.M. Physico-Chemical, Morphological and Thermal Analysis for the Combined Pozzolanic Activities of Minerals Additives. Constr. Build. Mater. 2009, 23, 2207–2213. [Google Scholar] [CrossRef]
- Althoey, F.; El-Aal, A.K.A.; Shoukry, H.; Hakeem, I. Performance of Cement Mortars Containing Clay Exposed to High Temperature. Arab. J. Sci. Eng. 2022, 47, 591–599. [Google Scholar] [CrossRef]
- Bui, P.-T.; Huynh, T.-P. Performance and Microstructural Evaluation of Rice Husk Ash-Ground Granulated Blast Furnace Slag-CFBC Fly Ash Mixtures Produced as an Eco-Cement. J. Mater. Civ. Eng. 2022, 34, 04021485. [Google Scholar] [CrossRef]
- Elyasigorji, F. Reactivity Assessment of Pozzolanic Materials for Partial Replacement of Cement in Concrete. Available online: https://www.proquest.com/docview/2820202545/7B3FD5A4E17E461FPQ/1?accountid=15078 (accessed on 30 May 2023).
- Avet, F.; Snellings, R.; Alujas Diaz, A.; Ben Haha, M.; Scrivener, K. Development of a New Rapid, Relevant and Reliable (R3) Test Method to Evaluate the Pozzolanic Reactivity of Calcined Kaolinitic Clays. Cem. Concr. Res. 2016, 85, 1–11. [Google Scholar] [CrossRef]
- Yoon, J.; Jafari, K.; Tokpatayeva, R.; Peethamparan, S.; Olek, J.; Rajabipour, F. Characterization and Quantification of the Pozzolanic Reactivity of Natural and Non-Conventional Pozzolans. Cem. Concr. Compos. 2022, 133, 104708. [Google Scholar] [CrossRef]
- ASTM C1897; Standard Test Methods for Measuring the Reactivity of Supplementary Cementitious Materials by Isothermal Calorimetry and Bound Water Measurements. ASTM International: West Conshohocken, PA, USA, 2020.
- Alayish, O.; Çelik, T. Extending Disposal Route of Dewatered Sewage Sludge Produced from the New Wastewater Treatment Plant in Nicosia toward Sustainable Building Materials. Environ. Earth Sci. 2021, 80, 146. [Google Scholar] [CrossRef]
- Trusilewicz, L.; Fernández-Martínez, F.; Rahhal, V.; Talero, R. TEM and SAED Characterization of Metakaolin. Pozzolanic Activity. J. Am. Ceram. Soc. 2012, 95, 2989–2996. [Google Scholar] [CrossRef]
- Standrads, E. Methods of Testing Cement-Part 5: Pozzolanicity Test for Pozzolanic Cements; NSAI: Dublin Ireland, 2011; pp. 195–196. [Google Scholar]
- Sanou, I.; Seynou, M.; Zerbo, L.; Millogo, Y.; Ouedraogo, R.; Sana, A. Evaluation of Pozzolanic Activity of Illitic and Lateritic Raw Materials from Burkina Faso. Chem. Sci. Int. J. 2017, 18, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S. Processing, Effect and Reactivity Assessment of Artificial Pozzolans Obtained from Clays and Clay Wastes: A Review. Constr. Build. Mater. 2017, 140, 10–19. [Google Scholar] [CrossRef]
- Torres Agredo, J.; Mejía de Gutiérrez, R.; Escandón Giraldo, C.E.; González Salcedo, L.O. Characterization of Sugar Cane Bagasse Ash as Supplementary Material for Portland Cement. Ing. Investig. 2014, 34, 5–10. [Google Scholar] [CrossRef]
- Baki, V.A.; Nayır, S.; Erdoğdu, Ş.; Ustabaş, İ. Determination of the Pozzolanic Activities of Trachyte and Rhyolite and Comparison of the Test Methods Implemented. Int. J. Civ. Eng. 2020, 18, 1053–1066. [Google Scholar] [CrossRef]
- Faleschini, F.; Toska, K.; Zanini, M.A.; Andreose, F.; Settimi, A.G.; Brunelli, K.; Pellegrino, C. Assessment of a Municipal Solid Waste Incinerator Bottom Ash as a Candidate Pozzolanic Material: Comparison of Test Methods. Sustainability 2021, 13, 8998. [Google Scholar] [CrossRef]
- Rahhal, V.F.; Trezza, M.A.; Tironi, A.; Castellano, C.C.; Pavlíková, M.; Pokorný, J.; Irassar, E.F.; Jankovský, O.; Pavlík, Z. Complex Characterization and Behavior of Waste Fired Brick Powder-Portland Cement System. Materials 2019, 12, 1650. [Google Scholar] [CrossRef]
- Lavat, A.E.; Trezza, M.A.; Poggi, M. Characterization of Ceramic Roof Tile Wastes as Pozzolanic Admixture. Waste Manag. 2009, 29, 1666–1674. [Google Scholar] [CrossRef]
- Pourkhorshidi, A.R.; Najimi, M.; Parhizkar, T.; Jafarpour, F.; Hillemeier, B. Applicability of the Standard Specifications of ASTM C618 for Evaluation of Natural Pozzolans. Cem. Concr. Compos. 2010, 32, 794–800. [Google Scholar] [CrossRef]
- Antiohos, S.K.; Papadakis, V.G.; Tsimas, S. Rice Husk Ash (RHA) Effectiveness in Cement and Concrete as a Function of Reactive Silica and Fineness. Cem. Concr. Res. 2014, 61–62, 20–27. [Google Scholar] [CrossRef]
- Caputo, D.; Liguori, B.; Colella, C. Some Advances in Understanding the Pozzolanic Activity of Zeolites: The Effect of Zeolite Structure. Cem. Concr. Compos. 2008, 30, 455–462. [Google Scholar] [CrossRef]
- Reddy, K.C.; Subramaniam, K.V.L. X-ray Diffraction-Based Quantification of Amorphous Phase in Alkali-Activated Blast Furnace Slag. Adv. Civ. Eng. Mater. 2021, 10, 20200167. [Google Scholar] [CrossRef]
- de Belie, N.; Scrivener, K.; Lothenbach, B.; Gruyaert, E.; Skibsted, J.; Snellings, R.; Vollpracht, A.; Villagrán, Y. Determination of the Degree of Reaction of Fly Ash in Blended Cement Pastes. In Proceedings of the 14th International Congress on the Chemistry of Cement (ICCC2015), Beijing, China, 13 October 2015; pp. 1–12. [Google Scholar]
- Du, H.; Tan, K.H. Waste Glass Powder as Cement Replacement in Concrete. J. Adv. Concr. Technol. 2014, 12, 468–477. [Google Scholar] [CrossRef]
- Tavares, L.R.C.; Junior, J.F.T.; Costa, L.M.; da Silva Bezerra, A.C.; Cetlin, P.R.; Aguilar, M.T.P. Influence of Quartz Powder and Silica Fume on the Performance of Portland Cement. Sci. Rep. 2020, 10, 21461. [Google Scholar] [CrossRef] [PubMed]
- Uzal, B.; Turanlı, L.; Yücel, H.; Göncüoğlu, M.C.; Çulfaz, A. Pozzolanic Activity of Clinoptilolite: A Comparative Study with Silica Fume, Fly Ash and a Non-Zeolitic Natural Pozzolan. Cem. Concr. Res. 2010, 40, 398–404. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Zhang, P.; Ma, Y. Effective Utilization of Waste Glass as Cementitious Powder and Construction Sand in Mortar. Materials 2020, 13, 707. [Google Scholar] [CrossRef] [PubMed]
- Moropoulou, A.; Bakolas, A.; Aggelakopoulou, E. Evaluation of Pozzolanic Activity of Natural and Artificial Pozzolans by Thermal Analysis. Thermochim. Acta 2004, 420, 135–140. [Google Scholar] [CrossRef]
- Suraneni, P.; Azad, V.J.; Isgor, B.O.; Weiss, W.J. Calcium Oxychloride Formation in Pastes Containing Supplementary Cementitious Materials: Thoughts on the Role of Cement and Supplementary Cementitious Materials Reactivity. RILEM Tech. Lett. 2016, 1, 24–30. [Google Scholar] [CrossRef]
- Deboucha, W.; Leklou, N.; Khelidj, A.; Oudjit, M.N. Hydration Development of Mineral Additives Blended Cement Using Thermogravimetric Analysis (TGA): Methodology of Calculating the Degree of Hydration. Constr. Build. Mater. 2017, 146, 687–701. [Google Scholar] [CrossRef]
- Kim, T.; Olek, J. Effects of Sample Preparation and Interpretation of Thermogravimetric Curves on Calcium Hydroxide in Hydrated Pastes and Mortars. Transp. Res. Rec. 2012, 2290, 10–18. [Google Scholar] [CrossRef]
- Pacewska, B.; Blonkowski, G.; Wilińska, I. Studies on the Pozzolanic and Hydraulic Properties of Fly Ashes in Model Systems. J. Therm. Anal. Calorim. 2008, 94, 469–476. [Google Scholar] [CrossRef]
- Oey, T.; Kumar, A.; Bullard, J.W.; Neithalath, N.; Sant, G. The Filler Effect: The Influence of Filler Content and Surface Area on Cementitious Reaction Rates. J. Am. Ceram. Soc. 2013, 96, 1978–1990. [Google Scholar] [CrossRef]
- Diaz-Loya, I.; Juenger, M.; Seraj, S.; Minkara, R. Extending Supplementary Cementitious Material Resources: Reclaimed and Remediated Fly Ash and Natural Pozzolans. Cem. Concr. Compos. 2019, 101, 44–51. [Google Scholar] [CrossRef]
- Matysík, M.; Vymazal, T.; Plšková, I. Effect of Superplasticizers on the Cement Hydration Process. Adv. Mat. Res. 2015, 1100, 3–6. [Google Scholar]
- Phung, Q.T.; Ferreira, E.; Seetharam, S.; Nguyen, V.T.; Govaerts, J.; Valcke, E. Understanding Hydration Heat of Mortars Containing Supplementary Cementitious Materials with Potential to Immobilize Heavy Metal Containing Waste. Cem. Concr. Compos. 2021, 115, 103859. [Google Scholar] [CrossRef]
- Pandel, B. Understanding the Retardation of Cement Hydration Caused by Zinc. Master’s Thesis, University of Illinois at Urbana, Champaign, IL, USA, 2018. [Google Scholar]
- Mostafa, N.Y.; Brown, P.W. Heat of Hydration of High Reactive Pozzolans in Blended Cements: Isothermal Conduction Calorimetry. Thermochim. Acta 2005, 435, 162–167. [Google Scholar] [CrossRef]
- Bobrowicz, J.; Chyliński, F. Comparison of Pozzolanic Activity of Ilmenite MUD Waste to Other Pozzolans Used as an Additive for Concrete Production. J. Therm. Anal. Calorim. 2021, 143, 2901–2909. [Google Scholar] [CrossRef]
- Siler, P.; Kratky, J.; de Belie, N. Isothermal and Solution Calorimetry to Assess the Effect of Superplasticizers and Mineral Admixtures on Cement Hydration. J. Therm. Anal. Calorim. 2012, 107, 313–320. [Google Scholar] [CrossRef]
- Jang, H.; Lim, Y.-T.; Kang, J.-H.; So, S.; So, H. Influence of Calcination and Cooling Conditions on Pozzolanic Reactivity of Paper Mill Sludge. Constr. Build. Mater. 2018, 166, 257–270. [Google Scholar] [CrossRef]
- Black, L. Low Clinker Cement as a Sustainable Construction Material. In Sustainability of Construction Materials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 415–457. [Google Scholar]
- Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F. Assessment of Pozzolanic Activity of Different Calcined Clays. Cem. Concr. Compos. 2013, 37, 319–327. [Google Scholar] [CrossRef]
- Mardani-Aghabaglou, A.; İnan Sezer, G.; Ramyar, K. Comparison of Fly Ash, Silica Fume and Metakaolin from Mechanical Properties and Durability Performance of Mortar Mixtures View Point. Constr. Build. Mater. 2014, 70, 17–25. [Google Scholar] [CrossRef]
- Thorstensen, R.T.; Fidjestol, P. Inconsistencies in the Pozzolanic Strength Activity Index (SAI) for Silica Fume According to EN and ASTM. Mater. Struct. 2015, 48, 3979–3990. [Google Scholar] [CrossRef]
- ASTM C311-18 C311/C311M-18; Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2018.
- Rahman, M.A.; Sarker, P.K.; Shaikh, F.U.A.; Saha, A.K. Soundness and Compressive Strength of Portland Cement Blended with Ground Granulated Ferronickel Slag. Constr. Build. Mater. 2017, 140, 194–202. [Google Scholar] [CrossRef]
- Chao-Lung, H.; Le Anh-Tuan, B.; Chun-Tsun, C. Effect of Rice Husk Ash on the Strength and Durability Characteristics of Concrete. Constr. Build. Mater. 2011, 25, 3768–3772. [Google Scholar] [CrossRef]
- Patil, C.; Manjunath, M.; Hosamane, S.; Bandekar, S.; Athani, R. Pozzolonic Activity and Strength Activity Index of Bagasse Ash and Fly Ash Blended Cement Mortar. Mater. Today Proc. 2021, 42, 1456–1461. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Mousavi, R.; Kalhori, M.; Sobhani, J.; Najimi, M. Micro and Macro Level Properties of Natural Zeolite Contained Concretes. Constr. Build. Mater. 2015, 101, 347–358. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Aboshama, A.Y. Utilization of Waste Glass Powder in the Production of Cement and Concrete. Constr. Build. Mater. 2016, 124, 866–877. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, H.; Duan, L.; Yang, Y.; Yan, J.; Shan, D.; Liu, X.; Pang, J.; Chen, Y.; Li, X.; et al. Effect of Nano Metakaolin on Compressive Strength of Recycled Concrete. Constr. Build. Mater. 2020, 256, 119393. [Google Scholar] [CrossRef]
- Duan, P.; Shui, Z.; Chen, W.; Shen, C. Effects of Metakaolin, Silica Fume and Slag on Pore Structure, Interfacial Transition Zone and Compressive Strength of Concrete. Constr. Build. Mater. 2013, 44, 1–6. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Argiz, C.; Gálvez, J.C.; Moragues, A. Effect of Silica Fume Fineness on the Improvement of Portland Cement Strength Performance. Constr. Build. Mater. 2015, 96, 55–64. [Google Scholar] [CrossRef]
- Kasaniya, M.; Thomas, M.D.A.; Moffatt, E.G. Pozzolanic Reactivity of Natural Pozzolans, Ground Glasses and Coal Bottom Ashes and Implication of Their Incorporation on the Chloride Permeability of Concrete. Cem. Concr. Res. 2021, 139, 106259. [Google Scholar] [CrossRef]
- Kasaniya, M.; Thomas, M.D.A.; Moffatt, E.G. Development of Rapid and Reliable Pozzolanic Reactivity Test Method. ACI Mater. J. 2019, 116, 145–154. [Google Scholar] [CrossRef]
- Kalina, R.D.; Al-Shmaisani, S.; Ferron, R.D.; Juenger, M.C.G. False Positives in ASTM C618 Specifications for Natural Pozzolans. ACI Mater. J. 2019, 116, 165–172. [Google Scholar] [CrossRef]
- Benli, A. Mechanical and Durability Properties of Self-compacting Mortars Containing Binary and Ternary Mixes of Fly Ash and Silica Fume. Struct. Concr. 2019, 20, 1096–1108. [Google Scholar] [CrossRef]
- Suraneni, P.; Burris, L.; Shearer, C.R.; Hooton, R.D. ASTM C618 Fly Ash Specification: Comparison with Other Specifications, Shortcomings, and Solutions. ACI Mater. J. 2021, 118, 157–167. [Google Scholar]
- Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. Pozzolanic Activity and Filler Effect of Sugar Cane Bagasse Ash in Portland Cement and Lime Mortars. Cem. Concr. Compos. 2008, 30, 410–418. [Google Scholar] [CrossRef]
- Deschner, F.; Winnefeld, F.; Lothenbach, B.; Seufert, S.; Schwesig, P.; Dittrich, S.; Goetz-Neunhoeffer, F.; Neubauer, J. Hydration of Portland Cement with High Replacement by Siliceous Fly Ash. Cem. Concr. Res. 2012, 42, 1389–1400. [Google Scholar] [CrossRef]
- Shi, C.; Grattan-Bellew, P.E.; Stegemann, J.A. Conversion of a Waste Mud into a Pozzolanic Material. Constr. Build. Mater. 1999, 13, 279–284. [Google Scholar] [CrossRef]
- Tseng, Y.-S.; Huang, C.-L.; Hsu, K.-C. The Pozzolanic Activity of a Calcined Waste FCC Catalyst and Its Effect on the Compressive Strength of Cementitious Materials. Cem. Concr. Res. 2005, 35, 782–787. [Google Scholar] [CrossRef]
- Carneiro, L.R.S.; Garcia, D.C.S.; Costa, M.C.F.; Houmard, M.; Figueiredo, R.B. Evaluation of the Pozzolanicity of Nanostructured Sol-Gel Silica and Silica Fume by Electrical Conductivity Measurement. Constr. Build. Mater. 2018, 160, 252–257. [Google Scholar] [CrossRef]
- Luxán, M.P.; Madruga, F.; Saavedra, J. Rapid Evaluation of Pozzolanic Activity of Natural Products by Conductivity Measurement. Cem. Concr. Res. 1989, 19, 63–68. [Google Scholar] [CrossRef]
- Amar, M.; Benzerzour, M.; Abriak, N.-E.; Mamindy-Pajany, Y. Study of the Pozzolanic Activity of a Dredged Sediment from Dunkirk Harbour. Powder Technol. 2017, 320, 748–764. [Google Scholar] [CrossRef]
- Payá, J.; Borrachero, M.V.; Monzó, J.; Peris-Mora, E.; Amahjour, F. Enhanced Conductivity Measurement Techniques for Evaluation of Fly Ash Pozzolanic Activity. Cem. Concr. Res. 2001, 31, 41–49. [Google Scholar] [CrossRef]
- Sinthaworn, S.; Nimityongskul, P. Effects of Temperature and Alkaline Solution on Electrical Conductivity Measurements of Pozzolanic Activity. Cem. Concr. Compos. 2011, 33, 622–627. [Google Scholar] [CrossRef]
- Shao, J.; Gao, J.; Zhao, Y.; Chen, X. Study on the Pozzolanic Reaction of Clay Brick Powder in Blended Cement Pastes. Constr. Build. Mater. 2019, 213, 209–215. [Google Scholar] [CrossRef]
- Cuesta, A.; Santacruz, I.; De la Torre, A.G.; Dapiaggi, M.; Zea-Garcia, J.D.; Aranda, M.A.G. Local Structure and Ca/Si Ratio in C-S-H Gels from Hydration of Blends of Tricalcium Silicate and Silica Fume. Cem. Concr. Res. 2021, 143, 106405. [Google Scholar] [CrossRef]
- Wang, T.; Ishida, T.; Gu, R.; Luan, Y. Experimental Investigation of Pozzolanic Reaction and Curing Temperature-Dependence of Low-Calcium Fly Ash in Cement System and Ca-Si-Al Element Distribution of Fly Ash-Blended Cement Paste. Constr. Build. Mater. 2021, 267, 121012. [Google Scholar] [CrossRef]
- Kim, S.K.; Kang, S.T.; Kim, J.K.; Jang, I.Y. Effects of Particle Size and Cement Replacement of LCD Glass Powder in Concrete. Adv. Mater. Sci. Eng. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Dadsetan, S.; Bai, J. Mechanical and Microstructural Properties of Self-Compacting Concrete Blended with Metakaolin, Ground Granulated Blast-Furnace Slag and Fly Ash. Constr. Build. Mater. 2017, 146, 658–667. [Google Scholar] [CrossRef]
- Newbury, D.E.; Ritchie, N.W.M. Is Scanning Electron Microscopy/Energy Dispersive X-Ray Spectrometry (SEM/EDS) Quantitative? Scanning 2013, 35, 141–168. [Google Scholar] [CrossRef]
- Nasrazadani, S.; Hassani, S. Modern Analytical Techniques in Failure Analysis of Aerospace, Chemical, and Oil and Gas Industries. In Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry; Elsevier: Amsterdam, The Netherlands, 2016; pp. 39–54. [Google Scholar]
- Wolfgong, W.J. Chemical Analysis Techniques for Failure Analysis. In Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries; Elsevier: Amsterdam, The Netherlands, 2016; pp. 279–307. [Google Scholar]
- Maraghechi, H.; Maraghechi, M.; Rajabipour, F.; Pantano, C.G. Pozzolanic Reactivity of Recycled Glass Powder at Elevated Temperatures: Reaction Stoichiometry, Reaction Products and Effect of Alkali Activation. Cem. Concr. Compos. 2014, 53, 105–114. [Google Scholar] [CrossRef]
- Belfiore, C.M.; Fichera, G.V.; Ortolano, G.; Pezzino, A.; Visalli, R.; Zappalà, L. Image Processing of the Pozzolanic Reactions in Roman Mortars via X-Ray Map Analyser. Microchem. J. 2016, 125, 242–253. [Google Scholar] [CrossRef]
- Durdziński, P.T.; Dunant, C.F.; Ben Haha, M.; Scrivener, K.L. A New Quantification Method Based on SEM-EDS to Assess Fly Ash Composition and Study the Reaction of Its Individual Components in Hydrating Cement Paste. Cem. Concr. Res. 2015, 73, 111–122. [Google Scholar] [CrossRef]
- Wilson, W.; Rivera-Torres, J.M.; Sorelli, L.; Durán-Herrera, A.; Tagnit-Hamou, A. The Micromechanical Signature of High-Volume Natural Pozzolan Concrete by Combined Statistical Nanoindentation and SEM-EDS Analyses. Cem. Concr. Res. 2017, 91, 1–12. [Google Scholar] [CrossRef]
- Taylor, H.F.W.; Mohan, K.; Moir, G.K. Analytical Study of Pure and Extended Portland Cement Pastes: II, Fly Ash- and Slag-Cement Pastes. J. Am. Ceram. Soc. 1985, 68, 685–690. [Google Scholar] [CrossRef]
- Amin, M.N.; Hissan, S.; Shahzada, K.; Khan, K.; Bibi, T. Pozzolanic Reactivity and the Influence of Rice Husk Ash on Early-Age Autogenous Shrinkage of Concrete. Front. Mater. 2019, 6, 150. [Google Scholar] [CrossRef]
- Reimer, L. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Second Edition. Meas. Sci. Technol. 2000, 11, 1826. [Google Scholar] [CrossRef]
- Chihaoui, R.; Siad, H.; Senhadji, Y.; Mouli, M.; Nefoussi, A.M.; Lachemi, M. Efficiency of Natural Pozzolan and Natural Perlite in Controlling the Alkali-Silica Reaction of Cementitious Materials. Case Stud. Constr. Mater. 2022, 17, e01246. [Google Scholar] [CrossRef]
- Figueiredo, R.L.; Pavía, S. A Study of the Parameters That Determine the Reactivity of Sugarcane Bagasse Ashes (SCBA) for Use as a Binder in Construction. SN Appl. Sci. 2020, 2, 1515. [Google Scholar] [CrossRef]
- Rossen, J.E.; Scrivener, K.L. Optimization of SEM-EDS to Determine the C–A–S–H Composition in Matured Cement Paste Samples. Mater. Charact. 2017, 123, 294–306. [Google Scholar] [CrossRef]
- Brown, P.W. Early-Age Cement Hydration Reactions. Transp. Res. Rec. 1990, 53–59. [Google Scholar]
- Liao, W.; Sun, X.; Kumar, A.; Sun, H.; Ma, H. Hydration of Binary Portland Cement Blends Containing Silica Fume: A Decoupling Method to Estimate Degrees of Hydration and Pozzolanic Reaction. Front. Mater. 2019, 6, 78. [Google Scholar] [CrossRef]
- ASTM, C.-16 597-16; Standard Test Method for Pulse Velocity through Concrete. Annual Book of ASTM Standards. ASTM International: West Conshohocken, PA, USA, 2016.
- Kamath, M.; Prashant, S.; Kumar, M. Micro-Characterisation of Alkali Activated Paste with Fly Ash-GGBS-Metakaolin Binder System with Ambient Setting Characteristics. Constr. Build. Mater. 2021, 277, 122323. [Google Scholar] [CrossRef]
- Hong, G.; Oh, S.; Choi, S.; Chin, W.-J.; Kim, Y.-J.; Song, C. Correlation between the Compressive Strength and Ultrasonic Pulse Velocity of Cement Mortars Blended with Silica Fume: An Analysis of Microstructure and Hydration Kinetics. Materials 2021, 14, 2476. [Google Scholar] [CrossRef] [PubMed]
- Madandoust, R.; Mousavi, S.Y. Fresh and Hardened Properties of Self-Compacting Concrete Containing Metakaolin. Constr. Build. Mater. 2012, 35, 752–760. [Google Scholar] [CrossRef]
- Durgun, M.Y.; Sevinç, A.H. High Temperature Resistance of Concretes with GGBFS, Waste Glass Powder, and Colemanite Ore Wastes after Different Cooling Conditions. Constr. Build. Mater. 2019, 196, 66–81. [Google Scholar] [CrossRef]
- Khatib, J.M. Performance of Self-Compacting Concrete Containing Fly Ash. Constr. Build. Mater. 2008, 22, 1963–1971. [Google Scholar] [CrossRef]
- Demirboğa, R.; Türkmen, İ.; Karakoç, M.B. Relationship between Ultrasonic Velocity and Compressive Strength for High-Volume Mineral-Admixtured Concrete. Cem. Concr. Res. 2004, 34, 2329–2336. [Google Scholar] [CrossRef]
- Ulucan, Z.Ç.; Türk, K.; Karataş, M. Effect of Mineral Admixtures on the Correlation between Ultrasonic Velocity and Compressive Strength for Self-Compacting Concrete. Russ. J. Nondestruct. Test. 2008, 44, 367–374. [Google Scholar] [CrossRef]
- Chandak, M.A.; Pawade, P. Compressive Strength and Ultrasonic Pulse Velocity of Concrete with Metakaolin. Civ. Eng. Arch. 2020, 8, 1277–1282. [Google Scholar] [CrossRef]
- Sasanipour, H.; Aslani, F. Effect of Specimen Shape, Silica Fume, and Curing Age on Durability Properties of Self-Compacting Concrete Incorporating Coarse Recycled Concrete Aggregates. Constr. Build. Mater. 2019, 228, 117054. [Google Scholar] [CrossRef]
- Özkan, İ.; Yayla, Z. Evaluation of Correlation between Physical Properties and Ultrasonic Pulse Velocity of Fired Clay Samples. Ultrasonics 2016, 66, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Demirel, B.; Keleştemur, O. Effect of Elevated Temperature on the Mechanical Properties of Concrete Produced with Finely Ground Pumice and Silica Fume. Fire Saf. J. 2010, 45, 385–391. [Google Scholar] [CrossRef]
- Jiang, H.; Yi, H.; Yilmaz, E.; Liu, S.; Qiu, J. Ultrasonic Evaluation of Strength Properties of Cemented Paste Backfill: Effects of Mineral Admixture and Curing Temperature. Ultrasonics 2020, 100, 105983. [Google Scholar] [CrossRef]
- Khalaf, M.A.; Ban, C.C.; Ramli, M. The Constituents, Properties and Application of Heavyweight Concrete: A Review. Constr. Build. Mater. 2019, 215, 73–89. [Google Scholar] [CrossRef]
- Pinheiro, V.D.; Alexandre, J.; Xavier, G.d.C.; Marvila, M.T.; Monteiro, S.N.; Azevedo, A.R.G. de Methods for Evaluating Pozzolanic Reactivity in Calcined Clays: A Review. Materials 2023, 16, 4778. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Bharadwaj, K.; Ghantous, R.M.; Isgor, O.B.; Weiss, W.J. Pozzolanic Reactivity Test of Supplementary Cementitious Materials. ACI Mater. J. 2022, 119, 255–268. [Google Scholar]
- Suraneni, P.; Hajibabaee, A.; Ramanathan, S.; Wang, Y.; Weiss, J. New Insights from Reactivity Testing of Supplementary Cementitious Materials. Cem. Concr. Compos. 2019, 103, 331–338. [Google Scholar] [CrossRef]
- Snellings, R.; Li, X.; Avet, F.; Scrivener, K. Rapid, Robust, and Relevant (R3) Reactivity Test for Supplementary Cementitious Materials. Mater. J. 2019, 116, 155–162. [Google Scholar] [CrossRef]
- Avet, F.; Li, X.; Ben Haha, M.; Bernal, S.A.; Bishnoi, S.; Cizer, Ö.; Cyr, M.; Dolenec, S.; Durdzinski, P.; Haufe, J.; et al. Report of RILEM TC 267-TRM Phase 2: Optimization and Testing of the Robustness of the R3 Reactivity Tests for Supplementary Cementitious Materials. Mater. Struct. 2022, 55, 92. [Google Scholar] [CrossRef]
Assessed Pozzolans | Mixture | w/b or l/s * | Age | Results | Reference |
---|---|---|---|---|---|
Five types of fly ash | 30% ash + 70% lime | 0.5, 0.41, 0.35, 0.60, and 0.81 | 7, 28, and 90 days | Two ash types with a high surface area showed considerable consumption of portlandite | [10] |
Earth of Milos (a natural pozzolan) ceramic powder from handmade ground brick, metakaolin | Lime/pozzolan with ratios of 1/0.5, 1/1, 1/2, 1/3, 1/2 | 0.54–1 | 0, 3, 7, 14, and 28 days | Lime/metakaolin pastes presented the highest activity with higher portlandite consumption. | [52] |
Reclaimed fly ash types and natural pozzolan | 20% fly ash + 80% portland cement type I | 0.40 | 7, 28, and 90 | All pozzolans showed a reduction in portlandite | [58] |
Waste glass powder (WGP) | 30% glass powder + 70% portland cement type I | 0.4 | 3 and 28 | The total molar amount of portlandite decreased from 3 to 28 days because of active silicas in WGP mortars | [51] |
Slate-cutting waste (SCW) | 25% SCW + 75% portland cement type III | 0.55 | 28 and 56 | The total molar amount of portlandite was not significantly reduced through partial replacement of SCW | [13] |
Four types of fly ashes, four slags, two calcined clays, two silica fumes, a quartz, a limestone | Calcium hydroxide and SCMs in a mass ratio of 3:1 + 0.5 M potassium hydroxide | 0.9 | 240 h | The order of calcium hydroxide consumption from the greatest to the lowest: silica fume > calcined clay > fly ash > quartz > slag > limestone | [2] |
Waste glass powder | Glass powder with 30% and 60% replacement of ordinary portland cement type I | 0.485 | 7, 28, and 91 days | The content of consumed Ca(OH)2 decreased through increasing glass powder content and curing age. | [48] |
Densified silica fume, nano silica, and metakaolin | Calcium hydroxide–pozzolan blended samples with a solid-to-water ratio of 1 | 1 | 1, 3, 7, 14, and 28 days | There was more lime fixation at the late stage. Order of reduction in calcium hydroxide from greatest to the lowest: nano silica > metakaolin > silica fume | [5] |
Specimens | Water (mL) | Portland Cement (g) | Tested Material (g) | Graded Standard Sand (g) |
---|---|---|---|---|
Control mix | 242 | 500 | 0 | 1375 |
Blended mix | Required for flow ±5 of control mix | 400 | 100 | 1375 |
Non-Pozzolanic | Variable Pozzolanic Reactivity | Good Pozzolanic Reactivity |
---|---|---|
<0.4 mS/cm | Between 0.4 and 1.2 mS/cm | >1.2 mS/cm |
Cement–Pozzolan Blended Samples | Replacement Level (%) | Testing Age (Days) | Ca/Si | Reference |
---|---|---|---|---|
Fly ash | 30 | 182 | 1.4 | [95] |
Fly ash | 35 | 140 | 1.4 | [22] |
Fly ash | 40 | 91 | 1.39 | [105] |
Waste glass powder | 10 | 3 | 0.33 | [96] |
Rice husk ash | 15 | 91 | 0.98 | [106] |
Metakaolin | 20 | 28 | 1.3 | [97] |
Nanosilica | 3 | 3 | 0.60–0.90 | [21] |
Natural pozzolan | 20 | 14 | 1.15 | [108] |
Tested Pozzolan | Cement Rep. Level (%) | w/b | Prediction Eq. | Reference | |
---|---|---|---|---|---|
Silica fume | 10 | 0.485 | 0.99 | [68] | |
Fly ash | 10 | 0.485 | 0.989 | [68] | |
Metakaolin | 10 | 0.485 | 0.976 | [68] | |
Blast furnace slag | 50, 60, 70 | 0.35 | 0.96 | [119] | |
Fly ash | 25 | 0.39 | 0.99 | [120] | |
Metakaolin | 20 | 0.38 | 0.9982 | [121] |
Pozzolanic Reactivity Test Method | Studied Pozzolans | Time for Detecting Reactivity | References |
---|---|---|---|
Frattini | Fly ash | 8 days | [11] |
TGA | Fly ash | 28 days | [10] |
XRD | Glass powder | 28 days | [48] |
SAI | Fly ash | 28 days | [11] |
Calorimetry | R-Mud | 24 h | [63] |
Electrical conductivity | Fly ash | 240 min | [50] |
pH | Silica fume | 240 min | [50] |
SEM/EDS | Metakaolin | 28 days | [97] |
UPV(I) | Silica fume | 7 days | [68] |
R3 | Calcined clays | 7 days | [131] |
Test Methods | Potential to Distinguish Pozzolanic Materials from Other SCMs | Advantages | Disadvantage | Major Equipment | Cost of Equipment |
---|---|---|---|---|---|
Frattini | High | It is a reliable way to distinguish pozzolanic and non-pozzolanic materials. | It does not provide information about the presence of portlandite in the hardened pastes (concrete). | Oven | Medium |
XRD | High | It can reliably assess the consumption of portlandite by a pozzolan in a hydrated sample. | It requires a precise selection of the peaks related to portlandite and hydrated phases in an XRD pattern. | X-ray diffractometer | High |
TG/DTA | High | It accurately measures the consumed portlandite by pozzolan. | Preparation and curing of test samples take a long time. | Thermogravemetric analyser | High |
Calorimetry | Low | It is an accurate and relatively rapid method. | It requires specific conditions and careful calibration for the different mixtures. | Calorimeter | High |
SAI | Low | It provides a comparative strength analysis of the pozzolan-cement and control (portland cement) samples. | It fails to differentiate between filler and pozzolanic reactivity effects at early ages of hydration. | Compression testing machine | Medium |
Electrical conductivity | Medium | It is a rapid and easy method. | It is influenced by temperature. | Electrical conductivity meter | Low |
pH | Medium | It is a rapid and easy method. | It is influenced by temperature. | pH meter | Low |
SEM/EDS | High | It distinguishes C–S–H gels formed during the hydration of cement and during the pozzolanic reaction. | It requires a high-resolution SEM image and a precise selection of C–S–H gel in the hydrated sample. | Scanning electron microscope with an energy-dispersive X-ray spectroscopy attachment | High |
UPV(I) | Low | It is highly correlated with compressive strength. It evaluates the durability of cement-pozzolan samples. | It is affected by the mix proportions, material properties, and pore structure. | Ultrasonic pulse velocity tester | Low |
R3 | Low | It has good correlation with compressive strength and is a less time-consuming method. | It is not capable of measuring the amount of portlandite consumed during pozzolanic reaction. It requires rigid calorimeter calibration procedures for measuring the heat of hydration. | Muffle furnace and an oven/Calorimeter | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elyasigorji, F.; Farajiani, F.; Hajipour Manjili, M.; Lin, Q.; Elyasigorji, S.; Farhangi, V.; Tabatabai, H. Comprehensive Review of Direct and Indirect Pozzolanic Reactivity Testing Methods. Buildings 2023, 13, 2789. https://doi.org/10.3390/buildings13112789
Elyasigorji F, Farajiani F, Hajipour Manjili M, Lin Q, Elyasigorji S, Farhangi V, Tabatabai H. Comprehensive Review of Direct and Indirect Pozzolanic Reactivity Testing Methods. Buildings. 2023; 13(11):2789. https://doi.org/10.3390/buildings13112789
Chicago/Turabian StyleElyasigorji, Farzaneh, Farhad Farajiani, Milad Hajipour Manjili, Qian Lin, Sina Elyasigorji, Visar Farhangi, and Habib Tabatabai. 2023. "Comprehensive Review of Direct and Indirect Pozzolanic Reactivity Testing Methods" Buildings 13, no. 11: 2789. https://doi.org/10.3390/buildings13112789
APA StyleElyasigorji, F., Farajiani, F., Hajipour Manjili, M., Lin, Q., Elyasigorji, S., Farhangi, V., & Tabatabai, H. (2023). Comprehensive Review of Direct and Indirect Pozzolanic Reactivity Testing Methods. Buildings, 13(11), 2789. https://doi.org/10.3390/buildings13112789