Assessment of Existing Masonry Resistance Using Partial Factors Approaches and Field Measurements
Abstract
:1. Introduction
2. Input Data and Methods
2.1. Structural Reliability Methods
2.2. Procedures in the Assessment of Existing Masonry Structures and Target Reliability Levels
2.3. DVM and APFM
2.3.1. Design Value Method (DVM)
2.3.2. Adjusted Partial Factor Method (APFM)
2.4. Failure Modes of URM According to the Current and New Proposal of EN 1998-3
3. Case Study
3.1. Case Study Information
3.2. Results and Discussion
4. Conclusions
- Considering that the results of the mechanical properties vary considerably in relation to the recommended values, in situ testing is desirable for all structures, especially for more important structures such as critical infrastructure and cultural heritage, for which testing should be mandatory;
- The calculated resistances increase with the increasing complexity of the methods used;
- The observed differences in the results for the resistance of analyzed masonry wall obtained with different methods can vary from 48% to 161% depending on the failure mode;
- Methods such as DVM and APFM can contribute to a more efficient and high-quality renovation of numerous existing masonry structures in earthquake-affected areas without unreasonably greater design efforts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gu, J.-B.; Tao, Y.; Xin, R.; Yang, Z.; Shi, Q.-X. Seismic Performance of Multistorey Masonry Structure with Openings Repaired with CFRP Grid. Adv. Civ. Eng. 2018, 2018, 4374876. [Google Scholar] [CrossRef]
- Canditone, C.; Diana, L.; Formisano, A.; Rodrigues, H.; Vicente, R. Failure Mechanisms and Behaviour of Adobe Masonry Buildings: A Case Study. Eng. Fail. Anal. 2023, 150, 107343. [Google Scholar] [CrossRef]
- Bernardo, V.; Sousa, R.; Candeias, P.; Costa, A.; Campos Costa, A. Historic Appraisal Review and Geometric Characterization of Old Masonry Buildings in Lisbon for Seismic Risk Assessment. Int. J. Archit. Herit. 2022, 16, 1921–1941. [Google Scholar] [CrossRef]
- Blagojević, P.; Brzev, S.; Cvetković, R. Seismic Retrofitting of Mid-Rise Unreinforced Masonry Residential Buildings after the 2010 Kraljevo, Serbia Earthquake: A Case Study. Buildings 2023, 13, 597. [Google Scholar] [CrossRef]
- Bilgin, H.; Leti, M.; Shehu, R.; Özmen, H.B.; Deringol, A.H.; Ormeni, R. Reflections from the 2019 Durrës Earthquakes: An Earthquake Engineering Evaluation for Masonry Typologies. Buildings 2023, 13, 2227. [Google Scholar] [CrossRef]
- Kržan, M.; Bosiljkov, V. Compression and In-Plane Seismic Behaviour of Ashlar Three-Leaf Stone Masonry Walls. Int. J. Archit. Herit. 2023, 17, 829–845. [Google Scholar] [CrossRef]
- Šipoš, T.K.; Hadzima-Nyarko, M. Seismic Risk of Croatian Cities Based on Building’s Vulnerability. Teh. Vjesn. 2018, 25, 1088–1094. [Google Scholar] [CrossRef]
- Kišiček, T.; Stepinac, M.; Renić, T.; Hafner, I.; Lulić, L. Strengthening of Masonry Walls with FRP or TRM. Gradjevinar 2020, 72, 937–953. [Google Scholar]
- Wilson, R.; Szabó, S.; Funari, M.F.; Pulatsu, B.; Lourenço, P.B. A Comparative Computational Investigation on the In-Plane Behavior and Capacity of Dry-Joint URM Walls. Int. J. Archit. Herit. 2023, 2023, 2209776. [Google Scholar] [CrossRef]
- Tomić, I.; Penna, A.; DeJong, M.; Butenweg, C.; Correia, A.A.; Candeias, P.X.; Senaldi, I.; Guerrini, G.; Malomo, D.; Wilding, B.; et al. Shake-Table Testing of a Stone Masonry Building Aggregate: Overview of Blind Prediction Study. Bull. Earthq. Eng. 2023, 1–43. [Google Scholar] [CrossRef]
- EMS Comision Sismologica Europea. Escala Macro Sísmica Europea EMS-98; European Seismological Commission: Luxembourg, 1998; Volume 15. [Google Scholar]
- Hogan, L.S.; Giongo, I.; Walsh, K.Q.; Ingham, J.M.; Dizhur, D. Full-Scale Experimental Pushover Testing of an Existing URM Building. Structures 2018, 15, 66–81. [Google Scholar] [CrossRef]
- Xu, J.; Feng, D.; Mangalathu, S.; Jeon, J. Data-driven Rapid Damage Evaluation for Life-cycle Seismic Assessment of Regional Reinforced Concrete Bridges. Earthq. Eng. Struct. Dyn. 2022, 51, 2730–2751. [Google Scholar] [CrossRef]
- Krolo, J.; Damjanović, D.; Duvnjak, I.; Smrkić, M.F.; Bartolac, M.; Košćak, J. Methods for Determining Mechanical Properties of Walls. Gradjevinar 2021, 73, 127–140. [Google Scholar] [CrossRef]
- Ortega, J.; Stepinac, M.; Lulić, L.; García, M.N.; Saloustros, S.; Aranha, C.; Greco, F. Correlation between Sonic Pulse Velocity and Flat-Jack Tests for the Estimation of the Elastic Properties of Unreinforced Brick Masonry: Case Studies from Croatia. Case Stud. Constr. Mater. 2023, 19, e02467. [Google Scholar] [CrossRef]
- Tomazevic, M. Earthquake-Resistant Design of Masonry Buildings; Imperial College Press: London, UK, 1999; Volume 1, ISBN 978-1-86094-066-8. [Google Scholar]
- Albanesi, L.; Morandi, P. Lateral Resistance of Brick Masonry Walls: A Rational Application of Different Strength Criteria Based on In-Plane Test Results. Int. J. Archit. Herit. 2023, 17, 846–867. [Google Scholar] [CrossRef]
- Romão, X.; Bertolin, C. Risk Protection for Cultural Heritage and Historic Centres: Current Knowledge and Further Research Needs. Int. J. Disaster Risk Reduct. 2022, 67, 102652. [Google Scholar] [CrossRef]
- D’Ayala, D.; Speranza, E. Definition of Collapse Mechanisms and Seismic Vulnerability of Historic Masonry Buildings. Earthq. Spectra 2003, 19, 479–509. [Google Scholar] [CrossRef]
- Khafizova, A. Vernacular Architectural Preservation of Material and Spiritual Interconnected Cultural Heritage. J. Contemp. Urban Aff. 2018, 2, 10–19. [Google Scholar] [CrossRef]
- Ramírez Eudave, R.; Ferreira, T.M.; Vicente, R.; Lourenco, P.B.; Peña, F. Parametric and Machine Learning-Based Analysis of the Seismic Vulnerability of Adobe Historical Buildings Damaged After the September 2017 Mexico Earthquakes. Int. J. Archit. Herit. 2023, 2023, 2200739. [Google Scholar] [CrossRef]
- Vrouwenvelder, T.; Scholten, N. Assessment Criteria for Existing Structures. Struct. Eng. Int. 2010, 20, 62–65. [Google Scholar] [CrossRef]
- Szabó, S.; Funari, M.F.; Lourenço, P.B. Masonry Patterns’ Influence on the Damage Assessment of URM Walls: Current and Future Trends. Dev. Built Environ. 2023, 13, 100119. [Google Scholar] [CrossRef]
- Caspeele, R.; Sykora, M.; Allaix, D.L.; Steenbergen, R. The Design Value Method and Adjusted Partial Factor Approach for Existing Structures. Struct. Eng. Int. 2013, 23, 386–393. [Google Scholar] [CrossRef]
- Fib. Bulletin 80: Partial Factor Methods for Existing Concrete Structures; Recommendation Task Group 3.1; Fib: Lausanne, Switzerland, 2016. [Google Scholar]
- Sousa, H.; Sørensen, J.; Kirkegaard, P. Reliability Analysis of Timber Structures through NDT Data Upgrading Short Term Scientific Mission, COST E55 Action; Aalborg University: Aalborg, Denmark, 2010. [Google Scholar]
- Mohsenian, V.; Padashpour, S.; Hajirasouliha, I. Seismic Reliability Analysis and Estimation of Multilevel Response Modification Factor for Steel Diagrid Structural Systems. J. Build. Eng. 2020, 29, 101168. [Google Scholar] [CrossRef]
- Androić, B.; Dujmović, D.; Lukačević, I. Razlike u Procjeni Pouzdanosti Uobičajenih i Iznimnih Konstrukcija. J. Croat. Assoc. Civ. Eng. 2009, 61, 943–953. [Google Scholar]
- Domański, T.; Matysek, P. The Reliability of Masonry Structures—Evaluation Methods for Historical Buildings. Tech. Trans. 2018, 115, 91–108. [Google Scholar] [CrossRef]
- Schueremans, L.; Van Gemert, D. Reliability Analysis in Structural Masonry Engineering. In Proceedings of the IABSE Colloquium—Saving Buildings in Central and Eastern Europe, Berlin, Germany, 4–5 June 1998. [Google Scholar]
- Sykora, M.; Holicky, M. Probabilistic Model for Masonry Strength of Existing Structures. Eng. Mech. 2010, 17, 61–70. [Google Scholar]
- Skrzypczak, I.; Kujda, J.; Buda-Ożóg, L. The Use of Probabilistic Methods in Assessing the Reliability of Masonry Structures. Procedia Eng. 2017, 193, 160–167. [Google Scholar] [CrossRef]
- Lara, C.; Tanner, P.; Zanuy, C.; Hingorani, R. Reliability Verification of Existing RC Structures Using Partial Factor Approaches and Site-Specific Data. Appl. Sci. 2021, 11, 1653. [Google Scholar] [CrossRef]
- Holický, M.; Jung, K. Reliability Verification of an Existing Reinforced Concrete Slab. TCES 2019, 18, 11–14. [Google Scholar] [CrossRef]
- Grubišić, M.; Ivošević, J.; Grubišić, A. Reliability Analysis of Reinforced Concrete Frame by Finite Element Method with Implicit Limit State Functions. Buildings 2019, 9, 119. [Google Scholar] [CrossRef]
- Skejić, D.; Dokšanović, T.; Čudina, I.; Mazzolani, F.M. The Basis for Reliability-Based Mechanical Properties of Structural Aluminium Alloys. Appl. Sci. 2021, 11, 4485. [Google Scholar] [CrossRef]
- Rücker, D.W.; Hille, D.-I.F.; Rohrmann, D.-I.R. F08a Guideline for the Assessment of Existing Structures; Federal Institute of Materials Research and Testing (BAM): Berlin, Germany, 2006. [Google Scholar]
- EN 1990; Eurocode—Basis of Structural Design. European Committee for Standardization: Brussels, Belgium, 2002.
- Dujmović, D.; Lukačević, I.; Androić, B. Design of Structures According to EN 1990: Theory and Worked Examples; IA Projektiranje: Zagreb, Croatia, 2020. [Google Scholar]
- Diamantidis, D. Reliability Assessment of Existing Structures. Eng. Struct. 1987, 9, 177–182. [Google Scholar] [CrossRef]
- Tanner, P.; Lara, C.; Bellod, J.L.; Sanz, D. “The Plastic Cathedral”: Innovation to Extend the Service Life of a Heritage Structure. Struct. Concr. 2020, 21, 1425–1440. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; Castori, G.; De Maria, A. A Method for the Analysis and Classification of Historic Masonry. Bull. Earthq. Eng. 2015, 13, 2647–2665. [Google Scholar] [CrossRef]
- Croatian Parliment. Law on the Reconstruction of Earthquake-Damaged Buildings in the City of Zagreb, Krapina-Zagorje County and Zagreb County (NN 102/2020); Croatian Parliament: Zagreb, Croatia, 2020.
- ISO 13822; Bases for Design of Structures—Assessment of Existing Structures. ISO: Geneva, Switzerland, 2010.
- ISO 2394; General Principles on Reliability for Structures. ISO: Geneva, Switzerland, 2015.
- CEN/TS 17440:2020; Assessment and Retrofitting of Existing Structures. CEN: Brussels, Belgium, 2020.
- Diamantidis, D. JCSS: Probabilistic Assessment of Existing Structures; RILEM: Paris, France, 2001. [Google Scholar]
- EN 1990-2 CEN/TC 250/SC 10; “EN 1990-2 Basis of Structural and Geotechnical Assessment of Existing Structures” Working Draft. CEN: Brussels, Belgium, 2022.
- Konig, G.; Hosser, D. The Simplified Level II Method and Its Application on the Derivation of Safety Elements for Level I, CEB, Bulletin No. 147; Fib: Lausanne, Switzerland, 1982. [Google Scholar]
- HRN EN 1998-3:2011; Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings (EN 1998-3:2005+AC:2010). NSAI: Dublin, Ireland, 2005.
- EN 1998; CEN/TC 250/SC 8, Final Document EN1998-3 NEN SC8 PT3, Working Draft. European Committee for Standardization: Brussels, Belgium, 2018.
- Joanna, K. Analysis of Limit State of Load Resistance and Reliability of Masonry Structures Made of AAC Blocks. MATEC Web Conf. 2019, 262, 02001. [Google Scholar] [CrossRef]
- Lulić, L.; Stepinac, M.; Bartolac, M.; Lourenço, P.B. Review of the Flat-Jack Method and Lessons from Extensive Post-Earthquake Research Campaign in Croatia. Constr. Build. Mater. 2023, 384, 131407. [Google Scholar] [CrossRef]
- Stepinac, M.; Lulić, L.; Damjanović, D.; Duvnjak, I.; Bartolac, M.; Lourenço, P.B. Experimental Evaluation of Unreinforced Brick Masonry Mechanical Properties by the Flat-Jack Method—An Extensive Campaign in Croatia. Int. J. Archit. Herit. 2023, 2023, 2208542. [Google Scholar] [CrossRef]
- HRN EN 1996-1-1:2012; Eurocode 6: Design of Masonry Structures—Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures (EN 1996-1-1:2005+A1:2012). CEN: Brussels, Belgium, 2005.
- Schueremans, L.; Van Gemert, D. Probability Density Functions for Masonry Material Parameters—A Way to Go? In Proceedings of the Structural Analysis of Historical Constructions—Possibilities of Numerical and Experimental Techniques; Lourenco, P.B., Roca, P., Modena, C., Agrawal, S., Eds.; Macmillan India Ltd.: New Delhi, India, 2006; pp. 921–928. [Google Scholar]
- Graubner, C.A.; Brehm, E. JCSS Probabilistic Model Code Part 3: Resistance Models. In Joint Committee 12th Draft on Structural Safety; JCSS: Zurich, Switzerland, 2011. [Google Scholar]
- Madrigal, J.M.P. Some Notes about Architecture, Urbanism and Economy. J. Contemp. Urban Aff. 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Churilov, S.; Dumova-Jovanoska, E. In-Plane Shear Behaviour of Unreinforced and Jacketed Brick Masonry Walls. Soil Dyn. Earthq. Eng. 2013, 50, 85–105. [Google Scholar] [CrossRef]
- Hafner, I.; Kišiček, T.; Gams, M. Review of Methods for Seismic Strengthening of Masonry Piers and Walls. Buildings 2023, 13, 1524. [Google Scholar] [CrossRef]
- Acikgoz, E.K. Catching Up With BIM: A Curriculum Re-Design Strategy. J. Contemp. Urban Aff. 2018, 2, 40–48. [Google Scholar] [CrossRef]
- Sassu, M.; Stochino, F.; Mistretta, F. Assessment Method for Combined Structural and Energy Retrofitting in Masonry Buildings. Buildings 2017, 7, 71. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Saler, E.; Vignato, A.; Salvalaggio, M.; Croatto, G.; Dorigatti, G.; Turrini, U. Nested Buildings: An Innovative Strategy for the Integrated Seismic and Energy Retrofit of Existing Masonry Buildings with CLT Panels. Sustainability 2021, 13, 1188. [Google Scholar] [CrossRef]
- D’Urso, S.; Cicero, B. From the Efficiency of Nature to Parametric Design. A Holistic Approach for Sustainable Building Renovation in Seismic Regions. Sustainability 2019, 11, 1227. [Google Scholar] [CrossRef]
- Privitera, R.; La Rosa, D. Reducing Seismic Vulnerability and Energy Demand of Cities through Green Infrastructure. Sustainability 2018, 10, 2591. [Google Scholar] [CrossRef]
Method | Approach |
---|---|
Allowable stress | Deterministic |
Plastic design | |
Partial safety factors | Semi-probabilistic |
Analytical and numerical | Probabilistic |
Simulation |
Level | Reliability Class |
---|---|
1 | only visual assessment of damage and methods like MQI [42] |
2 | simple hand calculations |
3 | simple small-scale model-based assessment with assumed mechanical properties from the literature (no in situ tests) |
4 | more detailed large-scale model-based assessment with real mechanical properties obtained through detailed in situ tests |
5 | assessment considering target reliability and modified parameters of the structure through VoI analysis or Bayesian updating |
6 | probabilistic assessment through full probabilistic analysis (in situ tests) |
Service Life | β | Consequences of Failure |
---|---|---|
50 years | 2.3 | very low |
50 years | 3.1 | low |
50 years | 3.8 | medium |
50 years | 4.3 | high |
Service Life | β | Reliability Class |
---|---|---|
50 years | 3.3 | 1 |
50 years | 3.8 | 2 |
50 years | 4.3 | 3 |
EN 1998-3 [50] | New Proposal EN 1998-3 [51] | ||
---|---|---|---|
(7) | (9) | ||
(8) | |||
(10) | (13) | ||
(11) | |||
(12) | (14) | ||
(15) | (16) | ||
/ | (17) | ||
where: fv—shear strength of masonry; fv0—initial shear strength of the masonry (independent of vertical force); μ—coefficient of friction (tanφ), where φ is the angle of internal friction; σd—design vertical compressive stress; γM—partial safety factor for the material; CF—confidence factor; Lc—length of the masonry in compression; tw—wall thickness; L—wall length (total); N—vertical compressive force; h0 = h/2—the height of the inflexion point (fixed-fixed boundary conditions assumed); h—height of the wall; ν—normalized axial force; fd—design compressive strength of masonry; fm—compressive strength of masonry; ft—tensile strength of masonry; σ0—average vertical compressive stress (over the entire surface of the wall); b—geometry factor (b = h/L, but in between 1 and 1.5); γRd—partial safety factor; µj—local coefficient of friction of the joint (can be taken as 0.6); Ø—clamping coefficient. |
Assumed Properties | Measured Properties | |
---|---|---|
h [m] | 5.25 | 5.25 |
h0 [m] | 2.63 | 2.63 |
L [m] | 11 | 11 |
Lc [m] | 11 | 11 |
b [/] | 1 | 1 |
tw [m] | 0.45 | 0.45 |
N [kN] | 2200 | 2970 |
e [m] | 1.1 | 1.1 |
M [kNm] | 2420 | 3267 |
V [kN] | 920 | 1244 |
fvo [MPa] | 0.2 (0.16 *) | 0.22 |
μ [/] | 0.4 (0.5 *) | 0.45 |
σd [MPa] | 0.45 | 0.6 |
CF [/] | 1.35 | 1.0 |
γM [/] | 1.5 | 1.5 |
γRd [/] | ** | ** |
K [/] | 0.45 | 0.45 |
fb [MPa] | 10 | 11 |
fm [MPa] | 2.5 | 1.93 |
ft [MPa] | 0.15 (0.114 *) | 0.15 |
μj [/] | 0.6 | 0.45 |
Ø [/] | 1 | 1 |
Variable | Distr. | Mean | CoV | γm | γRd | γM = γm × γRd |
---|---|---|---|---|---|---|
fb [MPa] | Lognormal | 11 | 0.44 | 1.17 | 1.04 | 1.22 |
fm [MPa] | Lognormal | 1.93 | 0.16 | 1.06 | 1.04 | 1.10 |
fv0 [MPa] | Lognormal | 0.22 | 0.29 | 1.14 | 1.25 | 1.43 |
μ [/] | Lognormal | 0.45 | 0.38 | 1.11 | 1.25 | 1.39 |
Variable | Distr. | Mean | CoV | γRd(β′) | γRd(β″) | wy |
---|---|---|---|---|---|---|
fb [MPa] | Lognormal | 11 | 0.44 | 1.06 | 1.04 | 0.62 |
fm [MPa] | Lognormal | 1.93 | 0.16 | 1.06 | 1.04 | 0.83 |
fv0 [MPa] | Lognormal | 0.22 | 0.29 | 1.44 | 1.25 | 0.59 |
μ [/] | Lognormal | 0.45 | 0.38 | 1.44 | 1.25 | 0.64 |
Phase I. | EN 1998-3 [50] | New Proposal of EN 1998-3 [51] |
---|---|---|
Shear sliding | 929 kN | 1147 kN |
Bending | 3003 kN | 1822 kN |
Diagonal flat | 975 kN | 810 kN |
Diagonal stepped | / | 783 kN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lulić, L.; Lukačević, I.; Skejić, D.; Stepinac, M. Assessment of Existing Masonry Resistance Using Partial Factors Approaches and Field Measurements. Buildings 2023, 13, 2790. https://doi.org/10.3390/buildings13112790
Lulić L, Lukačević I, Skejić D, Stepinac M. Assessment of Existing Masonry Resistance Using Partial Factors Approaches and Field Measurements. Buildings. 2023; 13(11):2790. https://doi.org/10.3390/buildings13112790
Chicago/Turabian StyleLulić, Luka, Ivan Lukačević, Davor Skejić, and Mislav Stepinac. 2023. "Assessment of Existing Masonry Resistance Using Partial Factors Approaches and Field Measurements" Buildings 13, no. 11: 2790. https://doi.org/10.3390/buildings13112790
APA StyleLulić, L., Lukačević, I., Skejić, D., & Stepinac, M. (2023). Assessment of Existing Masonry Resistance Using Partial Factors Approaches and Field Measurements. Buildings, 13(11), 2790. https://doi.org/10.3390/buildings13112790