The ANN Architecture Analysis: A Case Study on Daylight, Visual, and Outdoor Thermal Metrics of Residential Buildings in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data Collection
2.2. Output Data Collection
2.3. Development of ANN Models
2.3.1. Number of Output Variables
2.3.2. Number of Training Samples
2.3.3. Number of Hidden Layer Neurons
2.3.4. Normalized or Original Datasets
2.4. Performance Evaluation
3. Results
3.1. The Results of the Four Developed ANN Models
3.1.1. Number of Input and Output Variables’ Results
3.1.2. Number of Training Samples’ Results
3.1.3. Number of Hidden Layer Neurons’ Results
3.1.4. Normalized Dataset Results
3.2. Test Results Analysis
4. Discussion
5. Conclusions
- (1)
- The ideal method to build an ANN model that has the same input variables was to see if combining the performance metrics as the output variables demonstrated better prediction accuracy than modeling the ANN separately with each output variable. However, the performance indices depended on the statistical properties of the data due to the research limitations.
- (2)
- The number of samples of input variables was sensitive to the accuracy performance of the ANN models. This relationship between the number of input variables and the number of training datasets was not linear. There existed a point where the linear curve line plateaued. The study found that two times the number of input variables in the quantity of training datasets can lead to a high accuracy of prediction.
- (3)
- Increasing the number of hidden neurons usually led to the decreasing accuracy performance of the ANN models. However, too many hidden neurons did not further improve accuracy and even reduced it. The ideal number of neurons in the hidden layer was approximately 1.5 times the number of input variables based on the training models of R.
- (4)
- The normalization of the input and output variables did not show a significant improvement in accuracy from the test.
- (5)
- From Figure 16, test 2 showed the best R value. Therefore, it is possible to give an order of priority in building an ANN model. Firstly, it is possible to increase the number of dataset samples. Secondly, it is advised to increase the number of hidden neurons, and normalization is the last step to improving accuracy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Trials | 20 | 30 | 40 | 52 | 70 | 108 |
---|---|---|---|---|---|---|
1 | 0.0188 | 0.1855 | 0.1972 | 0.1470 | 0.8788 | 0.9026 |
2 | 0.1395 | 0.3126 | 0.3501 | 0.1614 | 0.8060 | 0.8550 |
3 | 0.3096 | 0.2885 | 0.2271 | 0.2711 | 0.6647 | 0.8821 |
4 | 0.0504 | 0.2291 | 0.3155 | 0.2328 | 0.7604 | 0.8856 |
5 | 0.2988 | 0.1632 | 0.2287 | 0.2238 | 0.7900 | 0.8736 |
6 | 0.1329 | 0.2202 | 0.1982 | 0.2461 | 0.8295 | 0.8544 |
7 | 0.2111 | 0.2573 | 0.2573 | 0.1762 | 0.7708 | 0.8631 |
8 | 0.0899 | 0.2218 | 0.3230 | 0.1848 | 0.8042 | 0.8236 |
9 | 0.3336 | 0.0183 | 0.1749 | 0.3535 | 0.8357 | 0.7970 |
10 | 0.1870 | 0.2392 | 0.2530 | 0.3126 | 0.8932 | 0.8800 |
11 | 0.3035 | 0.2583 | 0.2398 | 0.1075 | 0.7762 | 0.8373 |
12 | 0.2975 | 0.1596 | 0.2800 | 0.2128 | 0.7623 | 0.8351 |
13 | 0.0466 | 0.2958 | 0.1407 | 0.3411 | 0.8230 | 0.9303 |
14 | 0.3366 | 0.1636 | 0.2354 | 0.1093 | 0.8211 | 0.8775 |
15 | 0.2978 | 0.1069 | 0.2487 | 0.3191 | 0.7416 | 0.9318 |
16 | 0.2223 | 0.1867 | 0.2056 | 0.2129 | 0.8206 | 0.8824 |
17 | 0.3950 | 0.1952 | 0.3609 | 0.2893 | 0.7800 | 0.9153 |
18 | 0.3583 | 0.3000 | 0.2720 | 0.3134 | 0.6747 | 0.8164 |
19 | 0.4499 | 0.2178 | 0.1180 | 0.1595 | 0.9013 | 0.9083 |
20 | 0.2205 | 0.1789 | 0.2236 | 0.2884 | 0.6889 | 0.8185 |
21 | 0.1894 | 0.2580 | 0.2945 | 0.1288 | 0.7355 | 0.7946 |
22 | 0.2422 | 0.1877 | 0.3235 | 0.2373 | 0.7078 | 0.8788 |
23 | 0.1129 | 0.1660 | 0.1250 | 0.2627 | 0.7393 | 0.9054 |
24 | 0.2602 | 0.1059 | 0.2336 | 0.2262 | 0.8353 | 0.6396 |
25 | 0.2425 | 0.3335 | 0.2706 | 0.1976 | 0.8357 | 0.8043 |
26 | 0.4117 | 0.1720 | 0.2597 | 0.3191 | 0.8560 | 0.8957 |
27 | 0.2458 | 0.2519 | 0.1160 | 0.1396 | 0.7926 | 0.8464 |
28 | 0.1131 | 0.2542 | 0.1359 | 0.2765 | 0.7989 | 0.8921 |
29 | 0.2161 | 0.1640 | 0.1690 | 0.1284 | 0.8427 | 0.7878 |
30 | 0.2138 | 0.3077 | 0.1737 | 0.1947 | 0.7900 | 0.9262 |
Avg | 0.2231 | 0.2101 | 0.2337 | 0.2269 | 0.7920 | 0.8557 |
Trials | 20 | 30 | 40 | 52 | 70 | 108 |
---|---|---|---|---|---|---|
1 | 0.4219 | 0.3951 | 0.4614 | 0.5178 | 0.8168 | 0.7242 |
2 | 0.4056 | 0.3727 | 0.4309 | 0.5081 | 0.7738 | 0.8423 |
3 | 0.3731 | 0.3685 | 0.3934 | 0.5177 | 0.8037 | 0.7921 |
4 | 0.4845 | 0.5412 | 0.4426 | 0.5327 | 0.7843 | 0.7808 |
5 | 0.3736 | 0.4413 | 0.4347 | 0.5751 | 0.7794 | 0.7690 |
6 | 0.4378 | 0.4723 | 0.4369 | 0.5342 | 0.8806 | 0.7667 |
7 | 0.3951 | 0.3269 | 0.4419 | 0.4949 | 0.8055 | 0.8032 |
8 | 0.4363 | 0.5038 | 0.4639 | 0.4915 | 0.6429 | 0.8173 |
9 | 0.4178 | 0.3715 | 0.4672 | 0.5124 | 0.7195 | 0.7900 |
10 | 0.5499 | 0.3883 | 0.4843 | 0.5571 | 0.7774 | 0.5913 |
11 | 0.3938 | 0.4564 | 0.4720 | 0.3734 | 0.8290 | 0.7203 |
12 | 0.5078 | 0.4399 | 0.4112 | 0.4914 | 0.6024 | 0.8688 |
13 | 0.2033 | 0.5138 | 0.4205 | 0.5279 | 0.8485 | 0.8387 |
14 | 0.4194 | 0.4746 | 0.3403 | 0.4819 | 0.8588 | 0.7497 |
15 | 0.3526 | 0.4044 | 0.5141 | 0.5254 | 0.8030 | 0.6779 |
16 | 0.4173 | 0.4742 | 0.4832 | 0.5841 | 0.7287 | 0.7045 |
17 | 0.0435 | 0.3582 | 0.3802 | 0.4996 | 0.8337 | 0.8388 |
18 | 0.4505 | 0.4089 | 0.5396 | 0.4942 | 0.9035 | 0.8438 |
19 | 0.4690 | 0.3479 | 0.4590 | 0.4898 | 0.6988 | 0.7519 |
20 | 0.2469 | 0.4397 | 0.3885 | 0.5797 | 0.8411 | 0.6340 |
21 | 0.3673 | 0.4159 | 0.4245 | 0.5355 | 0.8180 | 0.8026 |
22 | 0.3026 | 0.3706 | 0.4517 | 0.5610 | 0.7827 | 0.7578 |
23 | 0.3901 | 0.4811 | 0.4718 | 0.5297 | 0.7716 | 0.8409 |
24 | 0.3645 | 0.3303 | 0.4143 | 0.5384 | 0.8054 | 0.7319 |
25 | 0.3618 | 0.4387 | 0.5004 | 0.4865 | 0.7997 | 0.8194 |
26 | 0.4432 | 0.3225 | 0.5099 | 0.5354 | 0.8465 | 0.5977 |
27 | 0.4954 | 0.3786 | 0.4901 | 0.4215 | 0.7762 | 0.8180 |
28 | 0.3415 | 0.4011 | 0.4600 | 0.5000 | 0.7455 | 0.7523 |
29 | 0.3862 | 0.3456 | 0.4900 | 0.5831 | 0.6845 | 0.5786 |
30 | 0.3300 | 0.3500 | 0.3900 | 0.5452 | 0.8554 | 0.7891 |
Avg | 0.3861 | 0.4111 | 0.4489 | 0.5175 | 0.7885 | 0.7652 |
Trials | 20 | 30 | 40 | 52 | 70 | 108 |
---|---|---|---|---|---|---|
1 | 0.4755 | 0.5120 | 0.4793 | 0.6293 | 0.9064 | 0.8744 |
2 | 0.4890 | 0.4836 | 0.5928 | 0.5755 | 0.8433 | 0.8789 |
3 | 0.4566 | 0.5513 | 0.5163 | 0.6167 | 0.8734 | 0.8440 |
4 | 0.4350 | 0.5416 | 0.5844 | 0.6298 | 0.8571 | 0.8900 |
5 | 0.5001 | 0.4687 | 0.5214 | 0.6430 | 0.9039 | 0.9134 |
6 | 0.3520 | 0.4925 | 0.5805 | 0.6461 | 0.8389 | 0.8991 |
7 | 0.4722 | 0.4404 | 0.6001 | 0.5954 | 0.8208 | 0.8754 |
8 | 0.4037 | 0.5347 | 0.4707 | 0.6292 | 0.8486 | 0.8875 |
9 | 0.4323 | 0.5003 | 0.5723 | 0.5568 | 0.8548 | 0.9149 |
10 | 0.4305 | 0.4690 | 0.5692 | 0.6548 | 0.8606 | 0.9181 |
11 | 0.4429 | 0.4893 | 0.6102 | 0.6149 | 0.8939 | 0.8947 |
12 | 0.5389 | 0.5064 | 0.5628 | 0.6283 | 0.8002 | 0.8751 |
13 | 0.4161 | 0.4635 | 0.6139 | 0.6104 | 0.8003 | 0.9000 |
14 | 0.5540 | 0.5458 | 0.5070 | 0.6341 | 0.8603 | 0.8965 |
15 | 0.5140 | 0.5130 | 0.5859 | 0.6211 | 0.8495 | 0.8612 |
16 | 0.4570 | 0.4443 | 0.5870 | 0.6022 | 0.8827 | 0.8997 |
17 | 0.5665 | 0.5193 | 0.4885 | 0.6420 | 0.8361 | 0.8898 |
18 | 0.4908 | 0.4647 | 0.5343 | 0.6350 | 0.8673 | 0.9154 |
19 | 0.3855 | 0.4356 | 0.5163 | 0.6171 | 0.8908 | 0.8814 |
20 | 0.4789 | 0.5009 | 0.5561 | 0.6545 | 0.8526 | 0.8728 |
21 | 0.5081 | 0.5160 | 0.5910 | 0.6492 | 0.8298 | 0.8766 |
22 | 0.4559 | 0.5785 | 0.5638 | 0.6192 | 0.8032 | 0.9085 |
23 | 0.4142 | 0.5241 | 0.5667 | 0.5926 | 0.8325 | 0.9317 |
24 | 0.4533 | 0.4956 | 0.5829 | 0.6346 | 0.8715 | 0.8853 |
25 | 0.4782 | 0.5704 | 0.5633 | 0.5997 | 0.8227 | 0.8539 |
26 | 0.5211 | 0.5348 | 0.5790 | 0.5974 | 0.8372 | 0.8725 |
27 | 0.5110 | 0.4500 | 0.5413 | 0.6024 | 0.8593 | 0.8666 |
28 | 0.3814 | 0.4858 | 0.5462 | 0.6436 | 0.9181 | 0.8680 |
29 | 0.5231 | 0.4711 | 0.5579 | 0.6793 | 0.8460 | 0.9044 |
30 | 0.4467 | 0.5096 | 0.5542 | 0.6378 | 0.8674 | 0.8902 |
Avg | 0.4661 | 0.5004 | 0.5565 | 0.6231 | 0.8539 | 0.8880 |
Trials | 36 | 54 | 72 | 90 | 108 | 144 |
---|---|---|---|---|---|---|
1 | 0.4660 | 0.3207 | 0.3681 | 0.2689 | 0.1470 | 0.1692 |
2 | 0.4153 | 0.4513 | 0.3673 | 0.1800 | 0.1614 | 0.2436 |
3 | 0.4182 | 0.3186 | 0.3221 | 0.2213 | 0.2711 | 0.1005 |
4 | 0.4389 | 0.3856 | 0.3353 | 0.2470 | 0.2328 | 0.2664 |
5 | 0.4064 | 0.1944 | 0.2849 | 0.2488 | 0.2238 | 0.3255 |
6 | 0.4251 | 0.3873 | 0.3623 | 0.3336 | 0.2461 | 0.2925 |
7 | 0.4029 | 0.3085 | 0.3644 | 0.3187 | 0.1762 | 0.3704 |
8 | 0.4969 | 0.3823 | 0.3225 | 0.2691 | 0.1848 | 0.2535 |
9 | 0.2224 | 0.2535 | 0.3677 | 0.2403 | 0.3535 | 0.2692 |
10 | 0.4076 | 0.2655 | 0.3574 | 0.2614 | 0.3126 | 0.2716 |
11 | 0.3072 | 0.3824 | 0.3291 | 0.1806 | 0.1075 | 0.2995 |
12 | 0.4436 | 0.5089 | 0.1687 | 0.1571 | 0.2128 | 0.3308 |
13 | 0.4030 | 0.2725 | 0.2577 | 0.2349 | 0.3411 | 0.3387 |
14 | 0.4745 | 0.3053 | 0.3325 | 0.2423 | 0.1093 | 0.2002 |
15 | 0.4322 | 0.4010 | 0.2322 | 0.2710 | 0.3191 | 0.2089 |
16 | 0.3562 | 0.4450 | 0.3426 | 0.3727 | 0.2129 | 0.2270 |
17 | 0.3780 | 0.3800 | 0.3757 | 0.0901 | 0.2893 | 0.2866 |
18 | 0.4266 | 0.3930 | 0.2298 | 0.3055 | 0.3134 | 0.2121 |
19 | 0.4716 | 0.3427 | 0.2259 | 0.2607 | 0.1595 | 0.3176 |
20 | 0.4444 | 0.4076 | 0.2944 | 0.2604 | 0.2884 | 0.2253 |
21 | 0.3587 | 0.4088 | 0.3346 | 0.3300 | 0.1288 | 0.3124 |
22 | 0.4450 | 0.3225 | 0.3080 | 0.2913 | 0.2373 | 0.2175 |
23 | 0.3015 | 0.4189 | 0.3436 | 0.2960 | 0.2627 | 0.2246 |
24 | 0.5069 | 0.3557 | 0.2334 | 0.2213 | 0.2262 | 0.2381 |
25 | 0.4425 | 0.2728 | 0.2705 | 0.2758 | 0.1976 | 0.2670 |
26 | 0.4732 | 0.4288 | 0.3502 | 0.2399 | 0.3191 | 0.1298 |
27 | 0.3735 | 0.2223 | 0.3195 | 0.2430 | 0.1396 | 0.2456 |
28 | 0.3005 | 0.3079 | 0.3001 | 0.2677 | 0.2765 | 0.3566 |
29 | 0.4296 | 0.4152 | 0.2944 | 0.2706 | 0.1284 | 0.2991 |
30 | 0.4329 | 0.3685 | 0.8698 | 0.2605 | 0.1947 | 0.2591 |
Avg | 0.4093 | 0.3538 | 0.3107 | 0.2553 | 0.2258 | 0.2586 |
Trials | 36 | 54 | 72 | 90 | 108 | 144 |
---|---|---|---|---|---|---|
1 | 0.7527 | 0.7276 | 0.5908 | 0.5733 | 0.5178 | 0.4628 |
2 | 0.7024 | 0.5618 | 0.6045 | 0.6409 | 0.5081 | 0.4541 |
3 | 0.6667 | 0.6455 | 0.5968 | 0.5973 | 0.5177 | 0.4511 |
4 | 0.6254 | 0.6695 | 0.5865 | 0.4684 | 0.5327 | 0.3933 |
5 | 0.7287 | 0.6849 | 0.6308 | 0.5621 | 0.5751 | 0.5361 |
6 | 0.6190 | 0.6235 | 0.6076 | 0.5174 | 0.5342 | 0.4677 |
7 | 0.7408 | 0.6642 | 0.6103 | 0.5971 | 0.4949 | 0.5404 |
8 | 0.7323 | 0.5689 | 0.5734 | 0.6133 | 0.4915 | 0.5287 |
9 | 0.7964 | 0.6905 | 0.6201 | 0.5803 | 0.5124 | 0.4713 |
10 | 0.6083 | 0.6884 | 0.6275 | 0.5982 | 0.5571 | 0.3499 |
11 | 0.7103 | 0.6760 | 0.5564 | 0.5144 | 0.3734 | 0.3986 |
12 | 0.6586 | 0.6526 | 0.5500 | 0.5645 | 0.4914 | 0.5046 |
13 | 0.7169 | 0.6835 | 0.5529 | 0.5500 | 0.5279 | 0.4789 |
14 | 0.7460 | 0.7313 | 0.5963 | 0.5304 | 0.4819 | 0.4776 |
15 | 0.7451 | 0.6831 | 0.6464 | 0.5729 | 0.5254 | 0.4924 |
16 | 0.7484 | 0.6410 | 0.6741 | 0.5998 | 0.5841 | 0.4482 |
17 | 0.7434 | 0.6258 | 0.6300 | 0.4867 | 0.4996 | 0.4654 |
18 | 0.7255 | 0.6384 | 0.5047 | 0.5658 | 0.4942 | 0.4902 |
19 | 0.6989 | 0.6312 | 0.5353 | 0.5461 | 0.4898 | 0.5080 |
20 | 0.7342 | 0.6478 | 0.6538 | 0.5276 | 0.5797 | 0.4931 |
21 | 0.7208 | 0.6063 | 0.6129 | 0.5375 | 0.5355 | 0.3973 |
22 | 0.7558 | 0.7317 | 0.6072 | 0.5653 | 0.5610 | 0.3710 |
23 | 0.7324 | 0.6627 | 0.6248 | 0.5762 | 0.5297 | 0.4733 |
24 | 0.7990 | 0.6443 | 0.5788 | 0.5696 | 0.5384 | 0.5477 |
25 | 0.6501 | 0.6232 | 0.6539 | 0.5399 | 0.4865 | 0.3436 |
26 | 0.740 8 | 0.7129 | 0.6839 | 0.6473 | 0.5354 | 0.5031 |
27 | 0.7854 | 0.6125 | 0.6159 | 0.5757 | 0.4215 | 0.4274 |
28 | 0.7328 | 0.6472 | 0.5886 | 0.4934 | 0.5000 | 0.4736 |
29 | 0.6917 | 0.7033 | 0.6990 | 0.5355 | 0.5831 | 0.4549 |
30 | 0.7156 | 0.6755 | 0.5887 | 0.5834 | 0.5452 | 0.4803 |
Avg | 0.7175 | 0.6585 | 0.6073 | 0.5636 | 0.5175 | 0.4622 |
Trials | 36 | 54 | 72 | 90 | 108 | 144 |
---|---|---|---|---|---|---|
1 | 0.7670 | 0.7690 | 0.7290 | 0.6327 | 0.6293 | 0.5265 |
2 | 0.7017 | 0.7633 | 0.7353 | 0.6569 | 0.5755 | 0.5470 |
3 | 0.7274 | 0.7245 | 0.6967 | 0.6320 | 0.6167 | 0.5986 |
4 | 0.7358 | 0.7513 | 0.6593 | 0.6382 | 0.6298 | 0.5421 |
5 | 0.8041 | 0.7478 | 0.6855 | 0.5963 | 0.6430 | 0.5871 |
6 | 0.7565 | 0.7530 | 0.7260 | 0.6642 | 0.6461 | 0.5780 |
7 | 0.7407 | 0.7534 | 0.6795 | 0.6589 | 0.5954 | 0.5613 |
8 | 0.7808 | 0.7364 | 0.6706 | 0.6928 | 0.6292 | 0.5489 |
9 | 0.7932 | 0.7825 | 0.7287 | 0.6210 | 0.5568 | 0.5149 |
10 | 0.6418 | 0.7661 | 0.7202 | 0.6928 | 0.6548 | 0.5944 |
11 | 0.7736 | 0.7751 | 0.7083 | 0.6409 | 0.6149 | 0.5195 |
12 | 0.7686 | 0.7710 | 0.7131 | 0.6457 | 0.6283 | 0.5926 |
13 | 0.7227 | 0.7836 | 0.7186 | 0.6887 | 0.6104 | 0.5148 |
14 | 0.7536 | 0.7759 | 0.7089 | 0.6588 | 0.6341 | 0.5176 |
15 | 0.6542 | 0.7107 | 0.6705 | 0.6977 | 0.6211 | 0.5131 |
16 | 0.7913 | 0.7403 | 0.6842 | 0.6618 | 0.6022 | 0.5546 |
17 | 0.7840 | 0.7566 | 0.6919 | 0.6321 | 0.6420 | 0.5773 |
18 | 0.6381 | 0.7504 | 0.6900 | 0.6905 | 0.6350 | 0.5062 |
19 | 0.6574 | 0.7643 | 0.7025 | 0.6079 | 0.6171 | 0.5461 |
20 | 0.6402 | 0.7659 | 0.7342 | 0.6882 | 0.6545 | 0.5202 |
21 | 0.7780 | 0.7694 | 0.6938 | 0.5584 | 0.6492 | 0.5667 |
22 | 0.7887 | 0.7773 | 0.6782 | 0.6764 | 0.6192 | 0.6235 |
23 | 0.6744 | 0.7609 | 0.7252 | 0.6789 | 0.5926 | 0.5231 |
24 | 0.7875 | 0.6325 | 0.7342 | 0.6364 | 0.6346 | 0.5537 |
25 | 0.6422 | 0.7772 | 0.6976 | 0.6395 | 0.5997 | 0.5554 |
26 | 0.6304 | 0.7685 | 0.6859 | 0.6600 | 0.5974 | 0.5402 |
27 | 0.7283 | 0.7476 | 0.7528 | 0.6274 | 0.6024 | 0.5522 |
28 | 0.7586 | 0.7565 | 0.7328 | 0.6619 | 0.6436 | 0.5210 |
29 | 0.6799 | 0.7742 | 0.6937 | 0.6575 | 0.6793 | 0.6023 |
30 | 0.7564 | 0.7633 | 0.6725 | 0.6705 | 0.6378 | 0.5723 |
Avg | 0.7286 | 0.7556 | 0.7040 | 0.6522 | 0.6231 | 0.5524 |
References
- Turhan, C.; Kazanasmaz, T.; Uygun, I.E.; Ekmen, K.E.; Akkurt, G.G. Comparative study of a building energy performance software (KEP-IYTE-ESS) and ANN-based building heat load estimation. Energy Build. 2014, 85, 115–125. [Google Scholar] [CrossRef]
- Chokwitthaya, C.; Zhu, Y.; Mukhopadhyay, S.; Collier, E. Augmenting building performance predictions during design using generative adversarial networks and immersive virtual environments. Autom. Constr. 2020, 119, 103350. [Google Scholar] [CrossRef]
- Ibrahim, S.; Choong, C.E.; El-Shafie, A. Sensitivity analysis of artificial neural networks for just-suspension speed prediction in solid-liquid mixing systems: Performance comparison of MLPNN and RBFNN. Adv. Eng. Inform. 2019, 39, 278–291. [Google Scholar] [CrossRef]
- Roman, N.D.; Bre, F.; Fachinotti, V.D.; Lamberts, R. Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review. Energy Build. 2020, 217, 109972. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, X. A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis. Energy Build. 2018, 174, 293–308. [Google Scholar] [CrossRef]
- Moon, J.W. Performance of ANN-based predictive and adaptive thermal-control methods for disturbances in and around residential buildings. Build. Environ. 2012, 48, 15–26. [Google Scholar] [CrossRef]
- Bui, D.K.; Nguyen, T.N.; Ngo, T.D.; Nguyen-Xuan, H. An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings. Energy 2020, 190, 116370. [Google Scholar] [CrossRef]
- Li, Y.; Nord, N.; Zhang, N.; Zhou, C. An ANN-based optimization approach of building energy systems: Case study of swimming pool. J. Clean. Prod. 2020, 277, 124029. [Google Scholar] [CrossRef]
- Sharif, S.A.; Hammad, A. Developing surrogate ANN for selecting near-optimal building energy renovation methods considering energy consumption, LCC and LCA. J. Build. Eng. 2019, 25, 100790. [Google Scholar] [CrossRef]
- Luo, X.J.; Oyedele, L.O.; Ajayi, A.O.; Akinade, O.O. Comparative study of machine learning-based multi-objective prediction framework for multiple building energy loads. Sustain. Cities Soc. 2020, 61, 102283. [Google Scholar] [CrossRef]
- Elbayoumi, M.; Ramli, N.A.; Yusof, N.F.F.M. Development and comparison of regression models and feedforward backpropagation neural network models to predict seasonal indoor PM2.5–10 and PM2.5 concentrations in naturally ventilated schools. Atmos. Pollut. Res. 2015, 6, 1013–1023. [Google Scholar] [CrossRef]
- Kim, H.; Yi, Y.K. QuVue implementation for decisions related to high-rise residential building layouts. Build. Environ. 2019, 148, 116–127. [Google Scholar] [CrossRef]
- Wang, L.; Kubichek, R.; Zhou, X. Adaptive learning based data-driven models for predicting hourly building energy use. Energy Build. 2018, 159, 454–461. [Google Scholar] [CrossRef]
- Wong, S.L.; Wan, K.K.W.; Lam, T.N.T. Artificial neural networks for energy analysis of office buildings with daylighting. Appl. Energy 2010, 87, 551–557. [Google Scholar] [CrossRef]
- Ye, Z.; Kim, M.K. Predicting electricity consumption in a building using an optimized back-propagation and Levenberg–Marquardt back-propagation neural network: Case study of a shopping mall in China. Sustain. Cities Soc. 2018, 42, 176–183. [Google Scholar] [CrossRef]
- Walker, S.; Khan, W.; Katic, K.; Maassen, W.; Zeiler, W. Accuracy of different machine learning algorithms and added-value of predicting aggregated-level energy performance of commercial buildings. Energy Build. 2020, 209, 109705. [Google Scholar] [CrossRef]
- Kwok, S.S.K.; Yuen, R.K.K.; Lee, E.W.M. An intelligent approach to assessing the effect of building occupancy on building cooling load prediction. Build. Environ. 2011, 46, 1681–1690. [Google Scholar] [CrossRef]
- Mustafaraj, G.; Lowry, G.; Chen, J. Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office. Energy Build. 2011, 43, 1452–1460. [Google Scholar] [CrossRef]
- Jovanović, R.Ž.; Sretenović, A.A.; Živković, B.D. Ensemble of various neural networks for prediction of heating energy consumption. Energy Build. 2015, 94, 189–199. [Google Scholar] [CrossRef]
- Buratti, C.; Vergoni, M.; Palladino, D. Thermal Comfort Evaluation within Non-residential Environments: Development of Artificial Neural Network by Using the Adaptive Approach Data. Energy Procedia 2015, 78, 2875–2880. [Google Scholar] [CrossRef]
- Deng, Z.; Chen, Q. Artificial neural network models using thermal sensations and occupants’ behavior for predicting thermal comfort. Energy Build. 2018, 174, 587–602. [Google Scholar] [CrossRef]
- Yokoyama, R.; Wakui, T.; Satake, R. Prediction of energy demands using neural network with model identification by global optimization. Energy Convers. Manag. 2009, 50, 319–327. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Hu, E. A neural network-based multi-zone modelling approach for predictive control system design in commercial buildings. Energy Build. 2015, 97, 86–97. [Google Scholar] [CrossRef]
- Escandón, R.; Ascione, F.; Bianco, N.; Mauro, G.M.; Suárez, R.; Sendra, J.J. Thermal comfort prediction in a building category: Artificial neural network generation from calibrated models for a social housing stock in southern Europe. Appl. Therm. Eng. 2019, 150, 492–505. [Google Scholar] [CrossRef]
- Talib, A.; Park, S.; Im, P.; Joe, J. Grey-box and ANN-based building models for multistep-ahead prediction of indoor temperature to implement model predictive control. Eng. Appl. Artif. Intell. 2023, 126, 107115. [Google Scholar] [CrossRef]
- Kumar, S.; Dutta, S.C.; Goswami, K.; Mandal, P. Vulnerability assessment of building structures due to underground blasts using ANN and non-linear dynamic analysis. J. Build. Eng. 2021, 44, 102674. [Google Scholar] [CrossRef]
- Kim, J.; Kwak, Y.; Mun, S.H.; Huh, J.H. Electric energy consumption predictions for residential buildings: Impact of data-driven model and temporal resolution on prediction accuracy. J. Build. Eng. 2022, 62, 105361. [Google Scholar] [CrossRef]
- Nutakki, M.; Mandava, S. Review on optimization techniques and role of Artificial Intelligence in home energy management systems. Eng. Appl. Artif. Intell. 2023, 119, 105721. [Google Scholar] [CrossRef]
- GB/T50378-2019; Assessment Standard for Green Building. China Architecture & Building Press: Beijing, China, 2019. (In Chinese)
- T/ASC 02-2021; Assessment Standard for Healthy Building. Architectural Society of China: Beijing, China, 2021. (In Chinese)
- Wang, S.; Yi, Y.K.; Liu, N. Multi-objective optimization (MOO) for high-rise residential buildings’ layout centered on daylight, visual, and outdoor thermal metrics in China. Build. Environ. 2021, 205, 108263. [Google Scholar] [CrossRef]
- GB50180-2018; Standard for Urban Residential Area Planning and Design. Ministry of Housing and Urban-Rural Development: Beijing, China, 2018. (In Chinese)
- GB50016-2014; High-Rise Building Code for The Fire Protection Design of Buildings (2018 Version). Ministry of Housing and Urban-Rural Development: Beijing, China, 2018. (In Chinese)
- Zhang, T.; You, X. Improvement of the Training and Normalization Method of Artificial Neural Network in the Prediction of Indoor Environment. Procedia Eng. 2015, 121, 1245–1251. [Google Scholar] [CrossRef]
- Choong, C.E.; Ibrahim, S.; El-Shafie, A. Artificial Neural Network (ANN) model development for predicting just suspension speed in solid-liquid mixing system. Flow Meas. Instrum. 2020, 71, 101689. [Google Scholar] [CrossRef]
- Esonye, C.; Onukwuli, O.D.; Ofoefule, A.U.; Ogah, E.O. Multi-input multi-output (MIMO) ANN and Nelder-Mead’s simplex based modeling of engine performance and combustion emission characteristics of biodiesel-diesel blend in CI diesel engine. Appl. Therm. Eng. 2019, 151, 100–114. [Google Scholar] [CrossRef]
- Ashtiani, A.; Mirzaei, P.A.; Haghighat, F. Indoor thermal condition in urban heat island: Comparison of the artificial neural network and regression methods prediction. Energy Build. 2014, 76, 597–604. [Google Scholar] [CrossRef]
- Hagan, M.T.; Demuth, H.B.; Beale, M. Neural Network Design; PWS Publishing Company: Boston, MA, USA, 1995. [Google Scholar]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Neural Network Toolbox™ Getting Started Guide; The MathWorks Inc.: Natick, MA, USA, 2018. [Google Scholar]
- Ilbeigi, M.; Ghomeishi, M.; Dehghanbanadaki, A. Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm. Sustain. Cities Soc. 2020, 61, 102325. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S.; Feng, W. A three-stage optimization methodology for envelope design of passive building considering energy demand, thermal comfort and cost. Energy 2019, 192, 116723. [Google Scholar] [CrossRef]
- Østergård, T.; Jensen, R.L.; Maagaard, S.E. A comparison of six metamodeling techniques applied to building performance simulations. Appl. Energy 2018, 211, 89e103. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; De Stasio, C.; Mauro, G.M.; Vanoli, G.P. Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach. Energy 2017, 118, 999–1017. [Google Scholar] [CrossRef]
- Bre, F.; Roman, N.; Fachinotti, V.D. An efficient metamodel-based method to carry out multi-objective building performance optimizations. Energy Build. 2020, 206, 109576. [Google Scholar] [CrossRef]
- Khoshroo, M.; Javid, A.A.; Katebi, A. Effects of micro-nano bubble water and binary mineral admixtures on the mechanical and durability properties of concrete. Constr. Build. Mater. 2018, 164, 371–385. [Google Scholar] [CrossRef]
- Sofuoglu, S.C. Application of artificial neural networks to predict prevalence of building-related symptoms in office buildings. Build. Environ. 2008, 43, 1121–1126. [Google Scholar] [CrossRef]
- Kerdan, I.G.; Gálvez, D.M. Artificial neural network structure optimization for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building. Appl. Energy 2020, 280, 115862. [Google Scholar] [CrossRef]
- Moon, J.W.; Jung, S.K. Algorithm for optimal application of the setback moment in the heating season using an artificial neural network model. Energy Build. 2016, 127, 859–869. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Shen, H.; Wang, Y.; Li, H. Energy performance prediction of vapor-injection air source heat pumps in residential buildings using a neural network model. Energy Build. 2020, 228, 110499. [Google Scholar] [CrossRef]
- Leung, M.C.; Tse, N.C.F.; Lai, L.L.; Chow, T.T. The use of occupancy space electrical power demand in building cooling load prediction. Energy Build. 2012, 55, 151–163. [Google Scholar] [CrossRef]
Input and Output Parameters of ANN Models | Quantity | Breakdown |
---|---|---|
Input Variables | 36 | x1, x2, x3, …, x12 |
y1, y2, y3, …, y12 | ||
z1, z2, z3, …, z12 | ||
Output Variables | 5 | Daylight factor (DF) |
Sky view ratio (QuVue) | ||
Window sunlight hours (WinH) | ||
Site sunlight hours (SiteH) | ||
Universal thermal climate index (UTCI) |
Metrics | Simulation Tools | Constant Items | Values |
---|---|---|---|
DF | Ladybug (ver. 0.061) (Radiance) | Location and weather file | Beijing |
Grid size | 1 × 1 m | ||
Distance from base surface | 0.75 m | ||
Sky | Uniform CIE sky | ||
Radiance parameters | -ps 8, -pt 0.15, -pj 0.6, -ds 0.5, -dt 0.5, -dc 0.25, -dp 64, -ab 0, -aa 0.15, -ar 32, -as 32, -lr 4, and -lw 0.05 | ||
Window width-to-height ratio | 1.2/1 | ||
WinH | Ladybug (ver. 0.061) | Date and time | Jan 21 8:00–16:00 |
Simulation time steps per hour | 1 | ||
Grid size | 3 × 3 m | ||
SiteH | Ladybug (ver. 0.061) | Site grid size (SiteH) | 2.5 × 2.5 m |
Date and time | Jan 21 8:00–16:00 | ||
Simulation times step per hour | 1 | ||
UTCI | EDDy3D (blueCFD) | Wind direction | 0, 45, 90, 135, 180, 225, 270, and 315° |
Boundary type | cylindrical domain | ||
Boundary inner rectangle | 400 m | ||
Boundary outer radius | 1000 m | ||
Boundary height | 250 m | ||
Mesh size | 357,568 | ||
Mesh type | OpenFOAM’s blockMesh and snappyHexMesh | ||
CFD turbulence model | kOmegaSST | ||
Pressure model | SIMPLE (Semi-implicit method for pressure-linked equations) | ||
Sky view ratio | QuVue | Test surface | South/east side windows |
Measuring point | Center of each window |
Variables | Average | Std. Dev | Minimum | Maximum |
---|---|---|---|---|
Inputs | ||||
(m) | 3.872 | 8.423 | −10.583 | 19.417 |
(m) | 18.532 | 12.249 | −3.400 | 39.644 |
(m) | 44.036 | 20.211 | 9.300 | 80.083 |
Outputs | ||||
SiteH (h) | 0.488 | 0.026 | 0.432 | 0.544 |
UTCI | 0.574 | 0.177 | 0.074 | 0.935 |
DF (%) | 6.615 | 12.115 | 3.359 | 72.935 |
WinH (h) | 4.789 | 0.980 | 2.667 | 6.894 |
QuVue (%) | 32.448 | 7.981 | 11.538 | 45.527 |
ANN | No. of Inputs | Number of Neurons | Layer | Training Function | Transfer Function | |
---|---|---|---|---|---|---|
Hidden Neurons | Output Neuron | |||||
36 | 108 | 3 | Levenberg–Marquardt backpropagation algorithm (trainlm) | Hyperbolic tangent function | Linear function | |
Data Division | Training: 70% of dataset | |||||
Simulation: 15% of dataset | ||||||
Validation: 15% of dataset |
Model A | Model B | Model C | ||||||
---|---|---|---|---|---|---|---|---|
DF | QuVue | WinH | SiteH | UTCI | Group 1 | Group 2 | ||
(DF, QuVue, and WinH) | (SiteH and UTCI) | |||||||
R | 0.226 | 0.518 | 0.623 | 0.323 | 0.503 | 0.605 | 0.507 | 0.621 |
Avg. R | 0.438 | 0.556 | 0.621 |
TEST | Average R Value | Ratio Compare to Base Case | |
---|---|---|---|
No. of samples (test 2) | 20 | 0.223 | −1.66% |
30 | 0.210 | −7.40% | |
40 | 0.234 | 3.02% | |
52 * | 0.227 * | 0.00% * | |
70 | 0.792 | 249.11% | |
108 | 0.856 | 277.19% | |
No. of hidden neurons (test 3) | 36 | 0.409 | 81.26% |
54 | 0.354 | 56.68% | |
72 | 0.311 | 37.62% | |
90 | 0.255 | 13.09% | |
108 * | 0.227 * | 0.00% * | |
144 | 0.259 | 14.55% | |
Dataset format (test 4) | dataset 1 | 0.247 | 9.30% |
dataset 2 * | 0.227 * | 0.00% * | |
dataset 3 | 0.228 | 1.07% | |
dataset 4 | 0.247 | 9.53% |
TEST | Average R Value | Ratio Compare to Base Case | |
---|---|---|---|
No. of samples (test 2) | 20 | 0.386 | −25.40% |
30 | 0.411 | −20.56% | |
40 | 0.449 | −13.25% | |
52 * | 0.518 * | 0.00% * | |
70 | 0.789 | 52.36% | |
108 | 0.765 | 47.86% | |
No. of hidden neurons (test 3) | 36 | 0.718 | 38.65% |
54 | 0.659 | 27.24% | |
72 | 0.607 | 17.36% | |
90 | 0.564 | 8.91% | |
108 * | 0.518 * | 0.00% * | |
144 | 0.462 | −10.69% | |
Dataset format (test 4) | dataset 1 | 0.529 | 2.46% |
dataset 2 * | 0.517 * | 0.00% * | |
dataset 3 | 0.505 | −2.20% | |
dataset 4 | 0.525 | 1.64% |
TEST | Average R Value | Ratio Compare to Base Case | |
---|---|---|---|
No. of samples (test 2) | 20 | 0.466 | −25.19% |
30 | 0.500 | −19.68% | |
40 | 0.557 | −10.68% | |
52 * | 0.623 * | 0.00% * | |
70 | 0.854 | 37.04% | |
108 | 0.888 | 42.52% | |
No. of hidden neurons (test 3) | 36 | 0.729 | 16.93% |
54 | 0.756 | 21.27% | |
72 | 0.704 | 12.99% | |
90 | 0.652 | 4.67% | |
108 * | 0.623 * | 0.00% * | |
144 | 0.552 | −11.35% | |
Dataset format (test 4) | dataset 1 | 0.614 | −1.38% |
dataset 2 * | 0.623 * | 0.00% * | |
dataset 3 | 0.621 | −0.32% | |
dataset 4 | 0.616 | −1.09% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Yi, Y.K.; Liu, N. The ANN Architecture Analysis: A Case Study on Daylight, Visual, and Outdoor Thermal Metrics of Residential Buildings in China. Buildings 2023, 13, 2795. https://doi.org/10.3390/buildings13112795
Wang S, Yi YK, Liu N. The ANN Architecture Analysis: A Case Study on Daylight, Visual, and Outdoor Thermal Metrics of Residential Buildings in China. Buildings. 2023; 13(11):2795. https://doi.org/10.3390/buildings13112795
Chicago/Turabian StyleWang, Shanshan, Yun Kyu Yi, and Nianxiong Liu. 2023. "The ANN Architecture Analysis: A Case Study on Daylight, Visual, and Outdoor Thermal Metrics of Residential Buildings in China" Buildings 13, no. 11: 2795. https://doi.org/10.3390/buildings13112795
APA StyleWang, S., Yi, Y. K., & Liu, N. (2023). The ANN Architecture Analysis: A Case Study on Daylight, Visual, and Outdoor Thermal Metrics of Residential Buildings in China. Buildings, 13(11), 2795. https://doi.org/10.3390/buildings13112795