Numerical Investigation of the Ultimate Load-Carrying Capacity of Square Concrete-Filled Steel Tube Columns Considering Initial Stresses Generated during Construction
Abstract
:1. Introduction
2. Validation of Finite Element Model
3. Steel Tube Behaviors during Construction
3.1. Finite Element Model
3.2. Simulation Results
4. Structural Behaviors of CFST Columns Considering Initial Stresses
4.1. Finite Element Model
4.2. Stress and Deformation Responses
4.3. Influences of Initial Stresses
No. | Model | l (mm) | λ | e (mm) | β | Failure mode | Nu (kN) |
---|---|---|---|---|---|---|---|
1 | S-M-6.4-0.0 | 6400 | 37.0 | 6.4 | 0.0 | Sectional failure | 2.18 × 104 |
2 | S-M-6.4-0.1 | 6400 | 37.0 | 6.4 | 0.1 | Elasto-plastic buckling | 1.87 × 104 |
3 | S-M-6.4-0.3 | 6400 | 37.0 | 6.4 | 0.3 | Elasto-plastic buckling | 1.61 × 104 |
4 | S-M-6.4-0.5 | 6400 | 37.0 | 6.4 | 0.5 | Elasto-plastic buckling | 1.34 × 104 |
5 | S-M-20-0.0 | 6400 | 37.0 | 20 | 0.0 | Sectional failure | 2.08 × 104 |
6 | S-M-20-0.1 | 6400 | 37.0 | 20 | 0.1 | Elasto-plastic buckling | 1.75 × 104 |
7 | S-M-20-0.3 | 6400 | 37.0 | 20 | 0.3 | Elasto-plastic buckling | 1.50 × 104 |
8 | S-M-20-0.5 | 6400 | 37.0 | 20 | 0.5 | Elasto-plastic buckling | 1.24 × 104 |
9 | S-M-120-0.0 | 6400 | 37.0 | 120 | 0.0 | Elasto-plastic buckling | 1.63 × 104 |
10 | S-M-120-0.1 | 6400 | 37.0 | 120 | 0.1 | Elasto-plastic buckling | 1.22 × 104 |
11 | S-M-120-0.3 | 6400 | 37.0 | 120 | 0.3 | Elasto-plastic buckling | 9.99 × 103 |
12 | S-M-120-0.5 | 6400 | 37.0 | 120 | 0.5 | Elasto-plastic buckling | 7.68 × 103 |
13 | S-M-240-0.0 | 6400 | 37.0 | 240 | 0.0 | Elasto-plastic buckling | 1.18 × 104 |
14 | S-M-240-0.1 | 6400 | 37.0 | 240 | 0.1 | Elasto-plastic buckling | 8.99 × 103 |
15 | S-M-240-0.3 | 6400 | 37.0 | 240 | 0.3 | Elasto-plastic buckling | 6.90 × 103 |
16 | S-M-240-0.5 | 6400 | 37.0 | 240 | 0.5 | Elasto-plastic buckling | 4.75 × 103 |
17 | S-M-360-0.0 | 6400 | 37.0 | 360 | 0.0 | Elasto-plastic buckling | 9.08 × 103 |
18 | S-M-360-0.1 | 6400 | 37.0 | 360 | 0.1 | Elasto-plastic buckling | 6.98 × 103 |
19 | S-M-360-0.3 | 6400 | 37.0 | 360 | 0.3 | Elasto-plastic buckling | 4.95 × 103 |
20 | S-M-360-0.5 | 6400 | 37.0 | 360 | 0.5 | Elasto-plastic buckling | 2.84 × 103 |
21 | S-S-3.2-0.0 | 3200 | 18.5 | 3.2 | 0.0 | Sectional failure | 2.20 × 104 |
22 | S-S-3.2-0.1 | 3200 | 18.5 | 3.2 | 0.1 | Elasto-plastic buckling | 1.90 × 104 |
23 | S-S-3.2-0.3 | 3200 | 18.5 | 3.2 | 0.3 | Elasto-plastic buckling | 1.64 × 104 |
24 | S-S-3.2-0.5 | 3200 | 18.5 | 3.2 | 0.5 | Elasto-plastic buckling | 1.38 × 104 |
25 | S-S-20-0.0 | 3200 | 18.5 | 20 | 0.0 | Sectional failure | 2.08 × 104 |
26 | S-S-20-0.1 | 3200 | 18.5 | 20 | 0.1 | Elasto-plastic buckling | 1.73 × 104 |
27 | S-S-20-0.3 | 3200 | 18.5 | 20 | 0.3 | Elasto-plastic buckling | 1.49 × 104 |
28 | S-S-20-0.5 | 3200 | 18.5 | 20 | 0.5 | Elasto-plastic buckling | 1.24 × 104 |
29 | S-S-120-0.0 | 3200 | 18.5 | 120 | 0.0 | Sectional failure | 1.64 × 104 |
30 | S-S-120-0.1 | 3200 | 18.5 | 120 | 0.1 | Elasto-plastic buckling | 1.24 × 104 |
31 | S-S-120-0.3 | 3200 | 18.5 | 120 | 0.3 | Elasto-plastic buckling | 1.01 × 104 |
32 | S-S-120-0.5 | 3200 | 18.5 | 120 | 0.5 | Elasto-plastic buckling | 7.87 × 103 |
33 | S-S-240-0.0 | 3200 | 18.5 | 240 | 0.0 | Elasto-plastic buckling | 1.22 × 104 |
34 | S-S-240-0.1 | 3200 | 18.5 | 240 | 0.1 | Elasto-plastic buckling | 9.01 × 103 |
35 | S-S-240-0.3 | 3200 | 18.5 | 240 | 0.3 | Elasto-plastic buckling | 6.69 × 103 |
36 | S-S-240-0.5 | 3200 | 18.5 | 240 | 0.5 | Elasto-plastic buckling | 4.55 × 103 |
37 | S-S-360-0.0 | 3200 | 18.5 | 360 | 0.0 | Elasto-plastic buckling | 9.37 × 103 |
38 | S-S-360-0.1 | 3200 | 18.5 | 360 | 0.1 | Elasto-plastic buckling | 6.79 × 103 |
39 | S-S-360-0.3 | 3200 | 18.5 | 360 | 0.3 | Elasto-plastic buckling | 4.72 × 103 |
40 | S-S-360-0.5 | 3200 | 18.5 | 360 | 0.5 | Elasto-plastic buckling | 2.32 × 103 |
41 | S-L-9.6-0.0 | 9600 | 55.4 | 9.6 | 0.0 | Sectional failure | 2.14 × 104 |
42 | S-L-9.6-0.1 | 9600 | 55.4 | 9.6 | 0.1 | Elasto-plastic buckling | 1.85 × 104 |
43 | S-L-9.6-0.3 | 9600 | 55.4 | 9.6 | 0.3 | Elasto-plastic buckling | 1.85 × 104 |
44 | S-L-9.6-0.5 | 9600 | 55.4 | 9.6 | 0.5 | Elasto-plastic buckling | 1.85 × 104 |
45 | S-L-20-0.0 | 9600 | 55.4 | 20 | 0.0 | Sectional failure | 2.08 × 104 |
46 | S-L-20-0.1 | 9600 | 55.4 | 20 | 0.1 | Elasto-plastic buckling | 1.77 × 104 |
47 | S-L-20-0.3 | 9600 | 55.4 | 20 | 0.3 | Elasto-plastic buckling | 1.77 × 104 |
48 | S-L-20-0.5 | 9600 | 55.4 | 20 | 0.5 | Elasto-plastic buckling | 1.77 × 104 |
49 | S-L-120-0.0 | 9600 | 55.4 | 120 | 0.0 | Elasto-plastic buckling | 1.64 × 104 |
50 | S-L-120-0.1 | 9600 | 55.4 | 120 | 0.1 | Elasto-plastic buckling | 1.24 × 104 |
51 | S-L-120-0.3 | 9600 | 55.4 | 120 | 0.3 | Elasto-plastic buckling | 1.24 × 104 |
52 | S-L-120-0.5 | 9600 | 55.4 | 120 | 0.5 | Elasto-plastic buckling | 1.23 × 104 |
53 | S-L-240-0.0 | 9600 | 55.4 | 240 | 0.0 | Elasto-plastic buckling | 1.17 × 104 |
54 | S-L-240-0.1 | 9600 | 55.4 | 240 | 0.1 | Elasto-plastic buckling | 8.78 × 103 |
55 | S-L-240-0.3 | 9600 | 55.4 | 240 | 0.3 | Elasto-plastic buckling | 8.70 × 103 |
56 | S-L-240-0.5 | 9600 | 55.4 | 240 | 0.5 | Elasto-plastic buckling | 8.61 × 103 |
- (1)
- Firstly, calculating the Nu,β=0.0 according to the current national standards or technical regulations, e.g., as per [21,22], or using the simplified ULCC calculation equation (Equation (6)) given below to consider the influences of eccentricity. Another strength factor ϕe for the eccentricity effect is defined as:
- (2)
- Then, calculate the strength factor ϕβ=0.1 based on Equation (5) and ϕβ with a specific initial stress level using Equation (4).
- (3)
- Finally, calculate the targeted Nu of the CFST columns considering initial stresses with the help of Nu,β=0.0 and ϕβ. It should be noted that Nu is taken as Nu,β=0.1 for the CFST column having a large slenderness ratio (e.g., S-L series).
5. Future Work
6. Conclusions
- (1)
- During construction, the steel tube plates were more sensitive to lateral pressure, which should be limited during construction, compared with gravity loads;
- (2)
- Under the action of compressive load, the presence of initial stresses changed the failure modes of square CFST columns and reduced their ULCCs;
- (3)
- For columns with slenderness ratios of 18 and 37, the ULCC was essentially inversely proportional to the initial stress ratio in the range of 0.1 to 0.5. However, for columns with a larger slenderness ratio of 55, the initial stress level did not influence their ULCCs;
- (4)
- Finally, a simple method for calculating the ULCCs of square CFST columns considering initial stresses was proposed for design purposes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, L.H.; Yao, G.H. Behaviour of Concrete-Filled Hollow Structural Steel (HSS) Columns with Pre-Load on The Steel Tubes. J. Constr. Steel Res. 2003, 59, 1455–1475. [Google Scholar] [CrossRef]
- Uy, B.; Das, S. Wet Concrete Loading of Thin-Walled Steel Box Columns during the Construction of a Tall Building. J. Constr. Steel Res. 1997, 42, 95–119. [Google Scholar] [CrossRef]
- Huang, F.; Yu, X.; Chen, B.; Li, J. Study on Preloading Reduction of Ultimate Load of Circular Concrete-Filled Steel Tubular Columns. Thin-Walled Struct. 2016, 98, 454–464. [Google Scholar] [CrossRef]
- Han, L.H. Tests on Stub Columns of Concrete-Filled RHS Sections. J. Constr. Steel Res. 2002, 58, 353–372. [Google Scholar] [CrossRef]
- Bradford, M.A.; Loh, H.Y.; Uy, B. Slenderness Limits for Filled Circular Steel Tubes. J. Constr. Steel Res. 2002, 58, 243–252. [Google Scholar] [CrossRef]
- Zhao, X.-L.; Grzebieta, R. Void-Filled SHS Beams Subjected to Large Deformation Cyclic Bending. J. Struct. Eng. 1999, 125, 943–1082. [Google Scholar] [CrossRef]
- Han, L.-H.; Li, W.; Bjorhovde, R. Developments and Advanced Applications of Concrete-Filled Steel Tubular (CFST) Structures: Members. J. Constr. Steel Res. 2014, 100, 211–228. [Google Scholar] [CrossRef]
- Goto, Y.; Kumar, G.P.; Kawanishi, N. Nonlinear Finite-Element Analysis for Hysteretic Behavior of Thin-Walled Circular Steel Columns with In-Filled Concrete. J. Struct. Eng. 2010, 136, 1327–1469. [Google Scholar] [CrossRef]
- Kodur, V.K.R.; MacKinnon, D.H. Simplified Design of Concrete-Filled Hollow Structural Steel Columns for Fire Endurance. J. Constr. Steel Res. 1998, 46, 298. [Google Scholar] [CrossRef]
- Ji, S.-H.; Wang, W.-D.; Xian, W. Lateral Impact Behaviour of Square CFST Columns under Fire Condition. J. Constr. Steel Res. 2022, 196, 107367. [Google Scholar] [CrossRef]
- Bambach, M.R.; Jama, H.; Zhao, X.L.; Grzebieta, R.H. Hollow and Concrete Filled Steel Hollow Sections under Transverse Impact Loads. Eng. Struct. 2008, 30, 2859–2870. [Google Scholar] [CrossRef]
- Dong, H.; Qin, J.; Cao, W.; Zhao, L. Seismic Behavior of Circular CFST Columns with Different Internal Constructions. Eng. Struct. 2022, 260, 114262. [Google Scholar] [CrossRef]
- Liew, J.Y.R.; Xiong, D.X. Effect of Preload on the Axial Capacity of Concrete-Filled Composite Columns. J. Constr. Steel Res. 2009, 65, 709–722. [Google Scholar] [CrossRef]
- Huang, S.J.; Zhong, S.T.; Yan, S.Z.; Cao, H.L. Experimental Research of Pre-Stress Effect on Bearing Capacity of Concrete Filled Steel Tubular Axial Compressive Members. J. Harbin Univ. Archit. Eng. 1996, 29, 44–50. [Google Scholar]
- Xiong, D.-X.; Zha, X.-X. A Numerical Investigation on the Behaviour of Concrete-Filled Steel Tubular Columns under Initial Stresses. J. Constr. Steel Res. 2007, 63, 599–611. [Google Scholar] [CrossRef]
- Zha, X.; Zhong, S. The Behavior Effect on Concrete Filled Steel Tubular Members subjected to Compression under the Initial Stress of Steel Tube Based on the Finite Element Method. J. Harbin Univ. Civ. Eng. Archit. 1997, 30, 41–49. [Google Scholar]
- Patel, V.I.; Liang, Q.Q.; Hadi, M.N.S. Numerical Analysis of Circular Concrete-Filled Steel Tubular Slender Beam-Columns with Preload Effects. Int. J. Struct. Stab. Dyn. 2013, 13, 1250065. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, S.; Yan, S.; Lin, W.; Cao, H. Experimental Study about the Effect of Initial Stress on Bearing Capacity of Concrete Filled Steel Tubular Members Under Eccentric Compression. J. Harbin Univ. Civ. Eng. Archit. 1997, 30, 50–56. [Google Scholar]
- EN 1994-1-1: 2004; Eurocode 4: Design of Composite Steel and Concrete Stru—Ctures–Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- ANSI/AISC 360-22 2022; Specification for Structural Steel Buildings. American Institute of Steel Construction: Chicago, IL, USA, 2022.
- GB 50936-2014; Technical Code for Concrete Filled Steel Tubular Structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2014.
- CECS 159: 2004; Technical Specification for Structures with Concrete-Filled Rectangular Steel Tube Members. China Association for Engineering Construction Standardization: Beijing, China, 2004.
- DB 11/T 1628-2019; Technical Specification for Construction of Concrete Filled Steel Tube with Pumping-Up Casting Method. Beijing Municipal Commission of Housing and Urban-Rural Development: Beijing, China, 2019.
- Angelis, F.D.; L.Taylor, R. A Nonlinear Finite Element Plasticity Formulation without Matrix Inversions. Finite Elem. Anal. Des. 2016, 112, 11–25. [Google Scholar] [CrossRef]
- Xue, H.; Guan, H.; Gilbert, B.P.; Lu, X.; Li, Y. Comparative and Parametric Studies on Behaviour of RC Flat Plates subjected to Interior Column Loss. J. Struct. Eng. 2020, 146, 04020183. [Google Scholar] [CrossRef]
- Xue, H.; Guan, H.; Gilbert, B.P.; Lu, X.; Li, Y. Simulation of Punching and Post-Punching Shear Behaviours of RC Slab-Column Connections. Mag. Concr. Res. 2021, 73, 1135–1150. [Google Scholar] [CrossRef]
- Angelis, F.D. On the Structural Response of Elasto/Viscoplastic Materials Subject to Time-Dependent Loadings. Struct. Durab. Health Monit. 2012, 8, 341–358. [Google Scholar] [CrossRef]
- LSTC. LS-DYNA Keyword User’s Manual Volume I; Livermore Software Technology Corporation: Livermore, CA, USA, 2016. [Google Scholar]
- Murray, Y.D. Users Manual for LS-DYNA Concrete Material Model 159; FHWA-HRT-05-062; U.S. Department of Transportation: McLean, VA, USA, 2007.
- Schwer, L.E. Modeling Pre and Post Tensioned Concrete. In Proceedings of the 14th International LS-DYNA Users Conference, Detroit, MI, USA, 12–14 June 2016. [Google Scholar]
- Cicco, S.D.; Angelis, F.D. A Plane Strain Problem in the Theory of Elastic Materials with Voids. Math. Mech. Solids 2020, 25, 46–59. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, Z.-B.; Yu, Q. Finite Element Modelling of Concrete-Filled Steel Stub Columns under Axial Compression. J. Constr. Steel Res. 2013, 89, 121–131. [Google Scholar] [CrossRef]
- Han, L.H.; Yao, G.H.; Zhao, X.L. Tests and Calculations for Hollow Structural Steel (HSS) Stub Columns Filled with Self-Consolidating Concrete (SCC). J. Constr. Steel Res. 2005, 61, 1241–1269. [Google Scholar] [CrossRef]
- Chen, J.; Yu, S.; Wei, W.; Ma, Y. Matrix-Based Method for Solving Decision Domains of Neighbourhood Multigranulation Decision-Theoretic Rough Sets. CAAI Trans. Intell. Technol. 2021, 7, 313–327. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, L. Several Rough Set Models in Quotient Space. CAAI Trans. Intell. Technol. 2021, 7, 69–80. [Google Scholar] [CrossRef]
- Du, H.; Du, S.; Li, W. Probabilistic Time Series Forecasting with Deep Non-Linear State Space Models. CAAI Trans. Intell. Technol. 2022, 8, 3–13. [Google Scholar] [CrossRef]
- Hu, X.; Kuang, Q.; Cai, Q.; Xue, Y.; Zhou, W.; Ying, L. A Coherent Pattern Mining Algorithm Based on All Contiguous Column Bicluster. J. Artif. Intell. Technol. 2022, 2, 80–92. [Google Scholar] [CrossRef]
- Vu, Q.-V.; Truong, V.-H.; Thai, H.-T. Machine Learning-Based Prediction of CFST Columns Using Gradient Tree Boosting Algorithm. Compos. Struct. 2021, 259, 113505. [Google Scholar] [CrossRef]
- Le, T.-T. Practical Machine Learning-Based Prediction Model for Axial Capacity of Square CFST Columns. Mech. Adv. Mater. Struct. 2022, 29, 1782–1797. [Google Scholar] [CrossRef]
- Moradi, M.J.; Daneshvar, K.; Ghazi-nader, D.; Hajiloo, H. The Prediction of Fire Performance of Concrete-Filled Steel Tubes (CFST) Using Artificial Neural Network. Thin-Walled Struct. 2021, 161, 107499. [Google Scholar] [CrossRef]
Aspect | Advantage | Disadvantage |
---|---|---|
Design | Higher LCC [6,7,8] | Limited design standards and guidelines |
Increased ductility [6,7,8] | ||
Superior fire resistance [9,10] | ||
Larger energy absorption capacity for resisting impact [10,11] and earthquake [8,12] loads | ||
Construction | Steel tube functioning as permanent shuttering for concrete, saving considerable amount of formwork materials and accelerating the construction process | Higher requirements for construction expertise |
Difficulty in strengthening and retrofitting existing structures |
B (mm) | t (mm) | l (mm) | λ | e (mm) | β | fy (MPa) | fcu (MPa) |
---|---|---|---|---|---|---|---|
120 | 2.65 | 1400 | 40 | 14 | 0.5 | 340 | 36.0 |
ρ (ton/mm3) | E (MPa) | ν | fy (MPa) | Etan (MPa) |
---|---|---|---|---|
7.85 × 10−9 | 2.07 × 105 | 0.267 | 340 | 4.00 × 103 |
Specimen | D (mm) | t (mm) | l (mm) | e (mm) | β | Nu,exp (kN) | Nu,cal (kN) | Nu,cal/Nu,exp |
---|---|---|---|---|---|---|---|---|
LP-1 | 120 | 2.65 | 1400 | 14 | 0.5 | 560 | 535 | 0.956 |
LP-2 | 120 | 2.65 | 1400 | 0 | 0.5 | 730 | 655 | 0.897 |
LP-3 | 120 | 2.65 | 1400 | 14 | 0.7 | 552 | 535 | 0.969 |
LP-4 | 120 | 2.65 | 1400 | 31 | 0.5 | 452 | 422 | 0.934 |
LP-6 | 120 | 2.65 | 1400 | 31 | 0.3 | 397 | 393 | 0.989 |
LP-7 | 120 | 2.65 | 1400 | 31 | 0.7 | 390 | 393 | 1.007 |
Mean | 0.959 | |||||||
COV | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, H.; Zhao, K.; Xia, F.; Wang, G.; Shen, A. Numerical Investigation of the Ultimate Load-Carrying Capacity of Square Concrete-Filled Steel Tube Columns Considering Initial Stresses Generated during Construction. Buildings 2023, 13, 2830. https://doi.org/10.3390/buildings13112830
Xue H, Zhao K, Xia F, Wang G, Shen A. Numerical Investigation of the Ultimate Load-Carrying Capacity of Square Concrete-Filled Steel Tube Columns Considering Initial Stresses Generated during Construction. Buildings. 2023; 13(11):2830. https://doi.org/10.3390/buildings13112830
Chicago/Turabian StyleXue, Huizhong, Kaozhong Zhao, Fengmin Xia, Guangyi Wang, and Ao Shen. 2023. "Numerical Investigation of the Ultimate Load-Carrying Capacity of Square Concrete-Filled Steel Tube Columns Considering Initial Stresses Generated during Construction" Buildings 13, no. 11: 2830. https://doi.org/10.3390/buildings13112830
APA StyleXue, H., Zhao, K., Xia, F., Wang, G., & Shen, A. (2023). Numerical Investigation of the Ultimate Load-Carrying Capacity of Square Concrete-Filled Steel Tube Columns Considering Initial Stresses Generated during Construction. Buildings, 13(11), 2830. https://doi.org/10.3390/buildings13112830