Analysis of the Water/Cement/Bentonite Ratio Used for Construction of Cut-Off Walls
Abstract
:1. Introduction
- The hydraulic behavior of the material is enhanced by using a larger quantity of bentonite regardless of the quantity of sand used.
- The viscosity of the mixtures in the fresh state is influenced by increasing the quantity of standard sand, and the compressive strength does not significantly modify the function of the sand.
- Considering the negative effects (cracking) induced by using too much or too little standard sand, a ratio of sand to solids of 2:1 was considered enough to fabricate the samples as this material does not interfere with the hydration process of the binder [33].
2. Materials and Methods
3. Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Witkowska-Dobrev, J.; Szlachetka, O.; Malarski, M.; Czajkowska, J.; Miturski, M.; Nowak, P.; Dohojda, M. Effect of Sewage on Compressive Strength and Geometric Texture of the Surface of Concrete Elements. Struct. Concr. 2023, 24, 468–484. [Google Scholar] [CrossRef]
- Dzięcioł, J.; Radziemska, M. Blast Furnace Slag, Post-Industrial Waste or Valuable Building Materials with Remediation Potential? Minerals 2022, 12, 478. [Google Scholar] [CrossRef]
- Sas, W.; Dzięcioł, J.; Radzevičius, A.; Radziemska, M.; Dapkienė, M.; Šadzevičius, R.; Skominas, R.; Głuchowski, A. Geotechnical and Environmental Assessment of Blast Furnace Slag for Engineering Applications. Materials 2021, 14, 6029. [Google Scholar] [CrossRef] [PubMed]
- Rabajczyk, A.; Zielecka, M.; Cygańczuk, K.; Pastuszka, Ł.; Jurecki, L. The Use of Polymer Membranes to Counteract the Risk of Environmental of Soil and Water Contamination. Membranes 2021, 11, 426. [Google Scholar] [CrossRef] [PubMed]
- Touze, N. Healing the World: A Geosynthetics Solution. Geosynth. Int. 2021, 28, 1–31. [Google Scholar] [CrossRef]
- Jiang, S.; Guo, X.; Wang, Y.; Wen, X.; Chang, H.; Wang, J.; Li, G.; Liang, H.; Tang, X. NaClO-Based Rapid Sand Filter in Treating Manganese-Containing Surface Water: Fast Ripening and Mechanism. J. Environ. Chem. Eng. 2023, 11, 109082. [Google Scholar] [CrossRef]
- Jaswal, R.; Bedi, A.; Bedi, I.; Jaiswar, A.; Jasrotia, R.S. Chapter 13—Phytoremediation of Soil and Water. In Phytoremediation; Bhat, R.A., Tonelli, F.M.P., Dar, G.H., Hakeem, K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 239–262. ISBN 978-0-323-89874-4. [Google Scholar]
- Waqas, S.; Bilad, M.R.; Man, Z.; Wibisono, Y.; Jaafar, J.; Indra Mahlia, T.M.; Khan, A.L.; Aslam, M. Recent Progress in Integrated Fixed-Film Activated Sludge Process for Wastewater Treatment: A Review. J. Environ. Manag. 2020, 268, 110718. [Google Scholar] [CrossRef]
- Koch, D. Bentonites as a Basic Material for Technical Base Liners and Site Encapsulation Cut-off Walls. Appl. Clay Sci. 2002, 21, 1–11. [Google Scholar] [CrossRef]
- Sample-Lord, K.M.; Ahmed, M.; Malusis, M.A. Diffusion through Soil-Bentonite Backfill from a Constructed Vertical Cutoff Wall. Soils Found. 2021, 61, 429–443. [Google Scholar] [CrossRef]
- Nones, J.; Riella, H.G.; Trentin, A.G.; Nones, J. Effects of Bentonite on Different Cell Types: A Brief Review. Appl. Clay Sci. 2015, 105–106, 225–230. [Google Scholar] [CrossRef]
- Goo, J.Y.; Kim, J.S.; Kwon, J.S.; Jo, H.Y. A Literature Review on Studies of Bentonite Alteration by Cement-Bentonite Interactions. Econ. Environ. Geol. 2022, 55, 219–229. [Google Scholar] [CrossRef]
- Sanavada, K.; Shah, M.; Gandhi, D.; Unnarkat, A.; Vaghasiya, P. A Systematic and Comprehensive Study of Eco-Friendly Bentonite Clay Application in Esterification and Wastewater Treatment. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100784. [Google Scholar] [CrossRef]
- Maged, A.; Kharbish, S.; Ismael, I.S.; Bhatnagar, A. Characterization of Activated Bentonite Clay Mineral and the Mechanisms Underlying Its Sorption for Ciprofloxacin from Aqueous Solution. Environ. Sci. Pollut. Res. 2020, 27, 32980–32997. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.T.; Khaleefa Ali, S.A. Removal of Heavy Metal by Ion Exchange Using Bentonite Clay. J. Ecol. Eng. 2020, 22, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Dolphen, R.; Dhurakit, P.; Thiravetyan, P. Influence of Chemical Composition of Activated Calcium Bentonites and Sodium Bentonites on Palm Oil Bleaching Capacity and Oil Quality. J. Oil Palm. Res. 2022, 34, 337–347. [Google Scholar] [CrossRef]
- Borah, D.; Nath, H.; Saikia, H. Modification of Bentonite Clay & Its Applications: A Review. Rev. Inorg. Chem. 2022, 42, 265–282. [Google Scholar]
- Haynes, H.M.; Bailey, M.T.; Lloyd, J.R. Bentonite Barrier Materials and the Control of Microbial Processes: Safety Case Implications for the Geological Disposal of Radioactive Waste. Chem. Geol. 2021, 581, 120353. [Google Scholar] [CrossRef]
- Maxim, L.D.; Niebo, R.; McConnell, E.E. Bentonite Toxicology and Epidemiology—A Review. Inhal. Toxicol. 2016, 28, 591–617. [Google Scholar] [CrossRef]
- Evans, J.C.; Ruffing, D.G. Design and Construction of an Experimental Soil-Bentonite Cutoff Wall. In Geotechnical Frontiers; Brandon, T.L., Valentine, R.J., Eds.; American Society of Civil Engineers: Orlando, FL, USA, 2017; pp. 164–174. [Google Scholar]
- Yeo, S.S.; Shackelford, C.D.; Evans, J.C. Consolidation and Hydraulic Conductivity of Nine Model Soil-Bentonite Backfills. J. Geotech. Geoenviron. Eng. 2005, 131, 1189–1198. [Google Scholar] [CrossRef]
- Yu, Y.; Pu, J.; Ugai, K. Study of Mechanical Properties of Soil-Cement Mixture for a Cutoff Wal. Soils Found. 1997, 37, 93–103. [Google Scholar] [CrossRef]
- Consoli, N.C.; Heineck, K.S.; Carraro, J.A.H. Portland Cement Stabilization of Soil–Bentonite for Vertical Cutoff Walls against Diesel Oil Contaminant. Geotech. Geol. Eng. 2010, 28, 361–371. [Google Scholar] [CrossRef]
- Bouazza, A.; Manassero, M.; Smith, N. Cement-Bentonite Slurry Walls for Waste Containment. In Proceedings 8th Australia New Zealand Conference on Geomechanics: Consolidating Knowledge; Australian Geomechanics Society: Barton, Australia, 1999; pp. 679–684. [Google Scholar]
- Fadaie, A.M.; Nekooei, M.; Javadi, P. Effect of Dry and Saturated Bentonite on Plastic Concrete. KSCE J. Civ. Eng. 2019, 23, 3431–3442. [Google Scholar] [CrossRef]
- Woźniak, C.; Wągrowska, M.; Szlachetka, O. Asymptotic Modelling and Design of Some Microlayered Functionally Graded Heat Conductors. ZAMM Z. Fur Angew. Math. Und Mech. 2012, 92, 841–848. [Google Scholar] [CrossRef]
- Barbu, C.; Sabău, A.D.; Manoli, D.M.; Șerbulea, M.S. Water/Cement/Bentonite Ratio Selection Method for Artificial Groundwater Barriers Made of Cutoff Walls. Water 2022, 14, 376. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Alibabaie, M.; Babaie, M. Reduction in the Permeability of Plastic Concrete for Cut-off Walls through Utilization of Silica Fume. Constr. Build. Mater. 2008, 22, 1247–1252. [Google Scholar] [CrossRef]
- Hinchberger, S.; Weck, J.; Newson, T. Mechanical and Hydraulic Characterization of Plastic Concrete for Seepage Cut-off Walls. Can. Geotech. J. 2010, 47, 461–471. [Google Scholar] [CrossRef]
- Design Standards No. 13 Embankment Dams Chapter 16: Cutoff Walls Phase 4 Final; U.S. Department of the Interior Bureau of Reclamation, Denver, Colorado, US, July 2014. Available online: https://www.usbr.gov/tsc/techreferences/designstandards-datacollectionguides/finalds-pdfs/DS13-16.pdf (accessed on 19 October 2023).
- Pashang Pisheh, Y.; Mir Mohammad Hosseini, M. Experimental Investigation of Mechanical Behavior of Plastic Concrete in Cutoff Walls. J. Mater. Civ. Eng. 2019, 31, 04018355. [Google Scholar] [CrossRef]
- Shepherd, D.A.; Kotan, E.; Dehn, F. Plastic Concrete for Cut-off Walls: A Review. Constr. Build. Mater. 2020, 255, 119248. [Google Scholar] [CrossRef]
- Barbu, C.S.; Sabău, A.D.; Chirică, A. Water/Cement/Bentonite Mixtures Property Testing in The Presence of Standard Sand. Int. Multidiscip. Sci. GeoConference: SGEM 2022, 22, 185–192. [Google Scholar]
- EN 196-1: 2016; Methods of Testing Cement—Part 1: Determination of Strength. British Standard Institution: London, UK, 2016.
- Szlachetka, O.; Witkowska-Dobrev, J.; Dohojda, M.; Cała, A. Influence of Compressive Strength and Maturity Conditions on Shrinkage of Ordinary Concrete. Adv. Mech. Eng. 2021, 13, 1–11. [Google Scholar] [CrossRef]
- ISO 17892-7:2017; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 7: Unconfined Compression Test. European Committee for Standardization: Brussels, Belgium, 2017.
- Zavadskas, E.K.; Turskis, Z. A New Logarithmic Normalization Method in Games Theory. Informatica 2008, 19, 303–314. [Google Scholar] [CrossRef]
- Merkblatt DWA-M 512-1—Dichtungssysteme Im Wasserbau—Teil 1: Erdbauwerke, German Information Sheet; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (Verlag): Hennef, Germany, 2012.
- ÖNORM B 4452; Erd-Und Grundbau—Dichtwände Im Untergrund, 1998/12. Austrian standard, Österreichisches Normungsinstitut: Wien, Austria, 1998.
Paper Reference | W/C Ratio | W/B Ratio | B/C Ratio |
---|---|---|---|
Bagheri, Alibabaie, and Babaie, 2008 [28] | 1.80 ÷ 2.60 | 13.00 | 0.14 ÷ 0.23 |
Hinchberger, Weck, and Newson, 2010 [29] | 1.70 ÷ 2.35 | 12.50 ÷ 18.20 | 0.20 ÷ 0.30 |
US Dept. of Interior, 2014 [30] | 1 ÷ 2.78 | 6.67 ÷ 13.90 | 0.1 ÷ 0.22 |
Pisheh and Hosseini, 2018 [31] | 1.80 | 6.30 ÷ 10.20 | 0.14 ÷ 0.29 |
Fadaie and Nekooei, 2019 [25] | 1.60 ÷ 2.00 | 8.00 ÷ 20.00 | 0.00 ÷ 0.40 |
Shepherd, Kotan, and Dehn, 2020 [32] | 3.30 ÷ 10.00 | - | 0.1 ÷ 0.24 |
Barbu, Sabău, Manoli, and Șerbulea, 2022 [27] | 1.25 ÷ 3.65 | 2.00 ÷ 10.42 | 0.175 ÷ 1.25 |
Square Mesh Size (mm) | 2.00 | 1.60 | 1.00 | 0.50 | 0.16 | 0.08 |
---|---|---|---|---|---|---|
Cumulative Sieve Residue (%) | 0 | 7 ± 5 | 33 ± 5 | 67 ± 5 | 87 ± 5 | 99 ± 1 |
No. | W (%) | B (%) | C (%) | k (cm/s) | MV k (cm/s) | CV k (%) | cu (kPa) | MV cu (kPa) | CV cu (%) | μ (Pa·s) | MV μ (Pa·s) | CV μ (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 50 | 17.5 | 32.5 | 5.71 × 10−8 | 8.06 × 10−8 | 47.72 | 803 | 877.6 | 7.76 | 117.2 | 99.3 | 11.7 |
2 | 6.29 × 10−8 | 968 | 95.48 | |||||||||
3 | 5.53 × 10−8 | 873 | 99.6 | |||||||||
4 | 1.47 × 10−7 | 865 | 84.96 | |||||||||
5 | 55 | 17.5 | 27.5 | 1.13 × 10−7 | 2.19 × 10−7 | 46.29 | 613 | 599.2 | 2.33 | 85.2 | 113.7 | 45.9 |
6 | 1.53 × 10−7 | 581 | 176.4 | |||||||||
7 | 3.78 × 10−7 | 596 | 149.5 | |||||||||
8 | 2.31 × 10−7 | 605 | 43.8 | |||||||||
9 | 62.5 | 17.5 | 20 | 5.46 × 10−7 | 5.42 × 10−7 | 4.40 | 129 | 137.8 | 4.79 | 98.4 | 93.1 | 19.9 |
10 | 5.79 × 10−7 | 144 | 76.2 | |||||||||
11 | 5.23 × 10−7 | 136 | 76.6 | |||||||||
12 | 5.19 × 10−7 | 140 | 121.2 | |||||||||
13 | 55 | 12.5 | 32.5 | 1.32 × 10−7 | 1.26 × 10−7 | 31.60 | 1014 | 926.6 | 8.48 | 49.46 | 60.7 | 33.1 |
14 | 1.88 × 10−7 | 936 | 37.8 | |||||||||
15 | 8.18 × 10−8 | 931 | 91.68 | |||||||||
16 | 1.03 × 10−7 | 823 | 64.2 | |||||||||
17 | 60 | 12.5 | 27.5 | 3.77 × 10−7 | 3.09 × 10−7 | 16.57 | 792 | 778.2 | 1.98 | 150 | 155.5 | 18.0 |
18 | 2.93 × 10−7 | 757 | 201 | |||||||||
19 | 3.30 × 10−7 | 786 | 146.4 | |||||||||
20 | 2.37 × 10−7 | 775 | 124.8 | |||||||||
21 | 65 | 12.5 | 22.5 | 5.63 × 10−7 | 5.08 × 10−7 | 9.92 | 508 | 506.9 | 1.68 | 22.56 | 30.6 | 37 |
22 | 5.02 × 10−7 | 508 | 35.52 | |||||||||
23 | 4.29 × 10−7 | 515 | 17.8 | |||||||||
24 | 5.37 × 10−7 | 495 | 46.8 | |||||||||
25 | 50 | 10 | 40 | 3.36 × 10−7 | 2.73 × 10−7 | 60.01 | 1023 | 1163.5 | 8.28 | 79.8 | 68.8 | 24 |
26 | 1.20 × 10−8 | 1240 | 57.6 | |||||||||
27 | 2.83 × 10−7 | 1185 | 89.4 | |||||||||
28 | 4.60 × 10−7 | 1205 | 48.48 | |||||||||
29 | 60 | 10 | 30 | 2.28 × 10−7 | 2.72 × 10−7 | 11.17 | 818 | 819.3 | 1.66 | 126 | 138.6 | 8.1 |
30 | 2.65 × 10−7 | 823 | 140.4 | |||||||||
31 | 2.82 × 10−7 | 801 | 132 | |||||||||
32 | 3.12 × 10−7 | 834 | 156 | |||||||||
33 | 70 | 10 | 20 | 8.59 × 10−7 | 7.64 × 10−7 | 9.03 | 437 | 442.5 | 1.00 | 39.45 | 29.0 | 23.2 |
34 | 7.22 × 10−7 | 447 | 21.6 | |||||||||
35 | 6.79 × 10−7 | 444 | 25 | |||||||||
36 | 7.96 × 10−7 | 440 | 30.15 | |||||||||
37 | 52.5 | 7.5 | 40 | 4.97 × 10−8 | 2.03 × 10−7 | 75.41 | 1022 | 1042.2 | 3.05 | 73.2 | 83.5 | 12.8 |
38 | 3.65 × 10−7 | 1018 | 95.4 | |||||||||
39 | 3.46 × 10−7 | 1041 | 93 | |||||||||
40 | 5.03 × 10−8 | 1087 | 72.6 | |||||||||
41 | 55 | 7.5 | 37.5 | 1.69 × 10−7 | 1.82 × 10−7 | 48.88 | 1021 | 1022.9 | 1.53 | 48 | 60.3 | 19.8 |
42 | 3.31 × 10−7 | 1036 | 51.6 | |||||||||
43 | 1.03 × 10−7 | 1033 | 78.6 | |||||||||
44 | 1.26 × 10−7 | 1001 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbu, C.-Ș.; Sabău, A.-D.; Manoli, D.-M.; Șerbulea, M.-S.; Erbașu, R.; Țăpuși, D.; Szlachetka, O.; Dzięcioł, J.; Baryła, A.; Dohojda, M.; et al. Analysis of the Water/Cement/Bentonite Ratio Used for Construction of Cut-Off Walls. Buildings 2023, 13, 2922. https://doi.org/10.3390/buildings13122922
Barbu C-Ș, Sabău A-D, Manoli D-M, Șerbulea M-S, Erbașu R, Țăpuși D, Szlachetka O, Dzięcioł J, Baryła A, Dohojda M, et al. Analysis of the Water/Cement/Bentonite Ratio Used for Construction of Cut-Off Walls. Buildings. 2023; 13(12):2922. https://doi.org/10.3390/buildings13122922
Chicago/Turabian StyleBarbu, Cristian-Ștefan, Andrei-Dan Sabău, Daniel-Marcel Manoli, Manole-Stelian Șerbulea, Ruxandra Erbașu, Daniela Țăpuși, Olga Szlachetka, Justyna Dzięcioł, Anna Baryła, Marek Dohojda, and et al. 2023. "Analysis of the Water/Cement/Bentonite Ratio Used for Construction of Cut-Off Walls" Buildings 13, no. 12: 2922. https://doi.org/10.3390/buildings13122922
APA StyleBarbu, C. -Ș., Sabău, A. -D., Manoli, D. -M., Șerbulea, M. -S., Erbașu, R., Țăpuși, D., Szlachetka, O., Dzięcioł, J., Baryła, A., Dohojda, M., & Sas, W. (2023). Analysis of the Water/Cement/Bentonite Ratio Used for Construction of Cut-Off Walls. Buildings, 13(12), 2922. https://doi.org/10.3390/buildings13122922