Strength and Microstructural Changes in Cementitious Composites Containing Waste Oyster Shell Powder
Abstract
:1. Introduction
2. Research Significance
3. Materials and Methods
3.1. Materials and Sample Preparation
3.2. Testing and Measurements
3.3. Analysis
4. Test Results
4.1. Compressive Strength
4.2. Flexural Strength
4.3. Sorptivity
5. Analysis
5.1. Effect of WOSP Replacement Ratio on the Strength and Microstructures of Cementitious Composites
5.2. Effect of Curing Water on the Strength and Microstructures of Cementitious Composites
5.3. Effect of Curing Periods on the Strength and Microstructures of Cementitious Composites
6. Discussion
7. Conclusions
- (1)
- A WOSP replacement ratio higher than 25% negatively influenced strength development, and reduced reactivity was observed based on the SEM and XRD results.
- (2)
- The effect of different curing waters on compressive strength development was confirmed only in the early stages, potentially related to the presence of chloride in seawater, which accelerates the rate of cement hydration.
- (3)
- The mean strength values gradually increased between 7 and 365 d, with no substantial strength gain beyond 28 d.
- (4)
- The stronger correlations were observed between the compressive strength and initial sorptivity, with higher R values in comparison with the flexural strength.
- (5)
- The XRD analysis revealed that most samples prepared with WOSP contained CaCO3, and the peak of CaCO3 tended to increase with an increasing WOSP replacement ratio.
- (6)
- The SEM results revealed that a high replacement ratio of WOSP can have a negative influence on cement hydration and the pozzolanic effect.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Classification | Type of Cement | w/c Ratio, Cement to Sand Ratio * (%) | Replacement Ratio (%) | Compressive Strength (28 days, MPa) | Reference |
---|---|---|---|---|---|
Cockle | Type I Ordinary Portland cement | 35.51 (w/c) | 0.0 | 36.20 | Olivia et al. [43] |
2.0 | 30.84 | ||||
4.0 | 32.24 | ||||
6.0 | 28.86 | ||||
8.0 | 30.56 | ||||
Oyster | Type I Ordinary Portland cement | 1:4 * | 0.0 | 7.50 to 15.00 | Lertwattanaruk et al. [44] |
5.0 | |||||
10.0 | |||||
15.0 | |||||
20.0 | |||||
Cockle | Ordinary Portland cement | 35.82 (w/c) | 0.0 | 38.00 | Olivia et al. [45] |
4.0 | 36.00 | ||||
Clam | Ordinary Portland cement | 35.82 (w/c) | 0.0 | 38.00 | Olivia et al. [45] |
4.0 | 39.00 | ||||
Oyster | Ordinary Portland cement | 40.00 (w/b) | 0.0 | 38.00 | Abinaya et al. [46] |
2.5 | 40.00 | ||||
5.0 | 42.00 | ||||
7.5 | 40.00 | ||||
10.0 | 39.50 | ||||
Oyster | Ordinary Portland cement | - | 5.0 | 5% increased | Zhong et al. [47] |
Oyster | Ordinary Portland cement | - | 5.0 to 20.0 | Up to 35% decreased | Zhong et al. [47] |
Oyster | Ordinary Portland cement (CEM I 52.5) | 40.00 (w/c) | 0.0 | 60.30 | Ez-zaki et al. [48] |
8.0 | 50.00 to 57.50 | ||||
16.0 | 37.50 to 52.50 | ||||
33.0 | 27.50 to 42.50 |
References
- Andrew, R.M. Global CO2 Emissions from Cement Production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef]
- A Plaza, M.G.; Martínez, S.; Rubiera, F. CO2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations. Energies 2020, 13, 5692. [Google Scholar] [CrossRef]
- Liao, Y.; Yao, J.; Deng, F.; Li, H.; Wang, K.; Tang, S. Hydration behavior and strength development of supersulfated cement prepared by calcined phosphogypsum and slaked lime. J. Build. Eng. 2023, 80, 108075. [Google Scholar] [CrossRef]
- Aamar Danish, M.; Usama Salim, T.A. Trends and Developments in Green Cement “A Sustainable Approach”. Sustain. Struct. Mater. 2019, 2, 45–60. [Google Scholar]
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and Developments in Green Cement and Concrete Technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef]
- Tang, S.; Cai, R.; He, Z.; Cai, X.; Shao, H.; Li, Z.; Yang, H.; Chen, E. Continuous microstructural correlation of slag/superplasticizer cement pastes by heat and impedance methods via fractal analysis. Fractals 2017, 25, 1740003. [Google Scholar] [CrossRef]
- Mach, K.; Mastrandrea, M. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2014; Volume 1. [Google Scholar]
- Alshammari, Y.M. Achieving Climate Targets via the Circular Carbon Economy: The Case of Saudi Arabia. C J. Carbon Res. 2020, 6, 54. [Google Scholar] [CrossRef]
- Van Der Zwaan, B.; Smekens, K. CO2 Capture and Storage with Leakage in an Energy-Climate Model. Environ. Model. Assess. 2009, 14, 135–148. [Google Scholar] [CrossRef]
- Tang, L.; Ruan, J.H.; Bo, X.; Mi, Z.F.; Wang, S.Y.; Dong, G.X.; Davis, S.J. Plant-level real-time monitoring data reveal substantial abatement potential of air pollution and CO2 in China’s cement sector. One Earth 2022, 5, 892–906. [Google Scholar] [CrossRef]
- Li, H.; Tan, X.C.; Guo, J.X.; Zhu, K.W.; Huang, C. Study on an Implementation Scheme of Synergistic Emission Reduction of CO2 and Air Pollutants in China’s Steel Industry. Sustainability 2019, 11, 352. [Google Scholar] [CrossRef]
- Kim, H.S.; Kasipandi, S.; Kim, J.; Kang, S.H.; Kim, J.H.; Ryu, J.H.; Bae, J.W. Current Catalyst Technology of Selective Catalytic Reduction (SCR) for NOx Removal in South Korea. Catalysts 2020, 10, 52. [Google Scholar] [CrossRef]
- Seo, J.H.; Kim, Y.J.; Cho, K.H.; Cho, J.S.; Han, K.H.; Yoon, D.Y. Trend of Nitrogen Oxide Reduction Technologies in Cement Industry. J. Korean Inst. Resour. Recycl. 2020, 29, 114–124. [Google Scholar] [CrossRef]
- Rivera, F.; Martínez, P.; Castro, J.; López, M.; Rivera, F.; Martínez, P.; Castro, J.; López, M. Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates. Cem. Concr. Compos. 2015, 63, 104–112. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.; Zhao, F.; Huo, T.; Chen, E.; Tang, S. Comparison between the influence of finely ground phosphorous slag and fly ash on frost resistance, pore structures and fractal features of hydraulic concrete. Fractal Fract. 2022, 6, 598. [Google Scholar] [CrossRef]
- Błaszczyński, T.; Król, M. Usage of Green Concrete Technology in Civil Engineering. Procedia Eng. 2015, 122, 296–301. [Google Scholar] [CrossRef]
- Müller, H.S.; Haist, M.; Vogel, M. Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime. Constr. Build. Mater. 2014, 67, 321–337. [Google Scholar] [CrossRef]
- Gilfillan, D.; Marland, G. CDIAC-FF: Global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017. Earth Syst. Sci. Data 2021, 13, 1667–1680. [Google Scholar] [CrossRef]
- Susmitha, P.J.R.L.P.; Rao, M.K. Comparative study on strength and durability of concrete upon partial substitution of fly ash and bagasse ash in conventional concrete. IOP Conf. Ser. Earth Environ. Sci. 2022, 982, 012011. [Google Scholar] [CrossRef]
- Xu, G.; Shi, X. Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resour. Conserv. Recycl. 2018, 136, 95–109. [Google Scholar] [CrossRef]
- Awoyera, P.O.; Akinmusuru, J.O.; Ndambuki, J.M. Green concrete production with ceramic wastes and laterite. Constr. Build. Mater. 2016, 117, 29–36. [Google Scholar] [CrossRef]
- Chen, W.; Jin, R.; Xu, Y.; Wanatowski, D.; Li, B.; Yan, L.; Pan, Z.; Yang, Y. Adopting recycled aggregates as sustainable construction materials: A review of the scientific literature. Constr. Build. Mater. 2019, 218, 483–496. [Google Scholar] [CrossRef]
- Çelik, Z.; Bingöl, A.F.; Ağsu, A.S. Fresh, mechanical, sorptivity and rapid chloride permeability properties of self-compacting concrete with silica fume and fly ash. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 789–799. [Google Scholar] [CrossRef]
- Yang, K.-H.; Jung, Y.-B.; Cho, M.-S.; Tae, S.-H. Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Clean. Prod. 2015, 103, 774–783. [Google Scholar] [CrossRef]
- Al-Gahtani, K.; Alsulaihi, I.; Ali, M.; Marzouk, M. Production of green concrete using recycled waste aggregate and byproducts. Built Environ. Proj. Asset Manag. 2017, 7, 413–425. [Google Scholar] [CrossRef]
- Berndt, M.L. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Constr. Build. Mater. 2009, 23, 2606–2613. [Google Scholar] [CrossRef]
- Sadek, D.M.; El-Attar, M.M. Development of high-performance green concrete using demolition and industrial wastes for sustainable construction. J. Am. Sci. 2012, 8, 120–131. [Google Scholar]
- Choi, S.H.; Lee, J.H.; Yoo, J.; Park, J.H.; Bae, J.S.; Park, C.Y. Toward transformation of bivalve shell wastes into high value-added and sustainable products in South Korea: A review. J. Ind. Eng. Chem. 2023; in press. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, D.K.; Ali, M.A.; Kim, P.J. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials. Waste Manag. 2008, 28, 2702–2708. [Google Scholar] [CrossRef] [PubMed]
- Ok, Y.S.; Lim, J.E.; Moon, D.H. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environ. Geochem. Health 2011, 33, 83–91. [Google Scholar] [CrossRef]
- Çatli, A.U.; Bozkurt, M.; Küçükyilmaz, K.; Çinar, M.; Bintas, E.; Çöven, F.; Atik, H. Performance and egg quality of aged laying hens fed diets supplemented with meat and bone meal or oyster shell meal. S. Afr. J. Anim. Sci. 2012, 42, 74–82. [Google Scholar] [CrossRef]
- Osorio-López, C.; Seco-Reigosa, N.; Garrido-Rodríguez, B.; Cutillas-Barreiro, L.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. As(V) adsorption on forest and vineyard soils and pyritic material with or without mussel shell: Kinetics and fractionation. J. Taiwan Inst. Chem. Eng. 2014, 45, 1007–1014. [Google Scholar] [CrossRef]
- Yang, E.I.; Yi, S.T.; Leem, Y.M. Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. fundamental properties. Cem. Concr. Res. 2005, 35, 2175–2182. [Google Scholar] [CrossRef]
- Yang, E.-I.; Kim, M.-Y.; Park, H.-G.; Yi, S.-T. Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete. Constr. Build. Mater. 2010, 24, 758–765. [Google Scholar] [CrossRef]
- Kuo, W.-T.; Wang, H.-Y.; Shu, C.-Y.; Su, D.-S. Engineering properties of controlled low-strength materials containing waste oyster shells. Constr. Build. Mater. 2013, 46, 128–133. [Google Scholar] [CrossRef]
- Liu, R.; Fan, J.; Yu, X.; Zhu, Y.; Chen, D. Properties of mortar containing polyvinyl alcohol pretreated waste oyster shells with various concentrations. Constr. Build. Mater. 2023, 363, 129879. [Google Scholar] [CrossRef]
- Bamigboye, G.O.; Nworgu, A.T.; Odetoyan, A.O.; Kareem, M.; Enabulele, D.O.; Bassey, D.E. Sustainable use of seashells as binder in concrete production: Prospect and challenges. J. Build. Eng. 2021, 34, 101864. [Google Scholar] [CrossRef]
- Soltanzadeh, F.; Emam-Jomeh, M.; Edalat-Behbahani, A.; Soltanzadeh, Z. Development and characterization of blended cements containing seashell powder. Constr. Build. Mater. 2018, 161, 292–304. [Google Scholar] [CrossRef]
- Han, Y.; Lin, R.; Wang, X.Y. Performance of sustainable concrete made from waste oyster shell powder and blast furnace slag. J. Build. Eng. 2022, 47, 103918. [Google Scholar] [CrossRef]
- Seifu, M.N.; Park, J.K.; Han, T.H.; Park, S.; Kim, M.O. Effect of oyster shell powder addition on hydration of Portland cement-calcium sulfoaluminate cement-blast furnace slag or-metakaolin ternary cement. Case Stud. Constr. Mater. 2022, 17, e01529. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hasaniyah, M.W.; Zeyad, A.M.; Yusuf, M.O. Properties of concrete containing recycled seashells as cement partial replacement: A review. J. Clean. Prod. 2019, 237, 117723. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Lee, S.C.; Goh, W.I.; Yuen, C.W. Recycling of seashell waste in concrete: A review. Constr. Build. Mater. 2018, 162, 751–764. [Google Scholar] [CrossRef]
- Olivia, M.; Mifshella, A.A.; Darmayanti, L. Mechanical properties of seashell concrete. Procedia Eng. 2015, 125, 760–764. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Makul, N.; Siripattarapravat, C. Utilization of ground waste seashells in cement mortars for masonry and plastering. J. Environ. Manag. 2012, 111, 133–141. [Google Scholar] [CrossRef]
- Olivia, M.; Oktaviani, R. Properties of concrete containing ground waste cockle and clam seashells. Procedia Eng. 2017, 171, 658–663. [Google Scholar] [CrossRef]
- Abinaya, S.; Venkatesh, S.P. An effect on oyster shell powder’s mechanical properties in self compacting concrete. Int. J. Innov. Res. Sci. Eng. Tech. 2016, 5, 11785–11789. [Google Scholar]
- Zhong, B.Y.; Zhou, Q.; Chan, C.F.; Yu, Y. Structure and property characterization of oyster shell cementing material. Jiegou Huaxue 2012, 31, 85–92. [Google Scholar]
- Ez-Zaki, H.; Diouri, A.; Kamali-Bernard, S.; Sassi, O. Composite Cement Mortars Based on Marine Sediments and Oyster ShellPowder. Mater. Constr. 2016, 66, e080. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Liu, B.; Zou, Z.; Teng, Y.; Ji, Y.; Zhou, Y.; Zhang, L.V.; Zhang, Y. Sustainable Utilization of Waste Oyster Shell Powders with Different Fineness Levels in a Ternary Supplementary Cementitious Material System. Sustainability 2022, 14, 5981. [Google Scholar] [CrossRef]
- Liao, Y.; Fan, J.; Li, R.; Da, B.; Chen, D.; Zhang, Y. Influence of the Usage of Waste Oyster Shell Powder on Mechanical Properties and Durability of Mortar. Adv. Powder Technol. 2022, 33, 103503. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, P.; Pan, T.; Liao, Y.; Zhao, H. Evaluation of the eco-friendly crushed waste oyster shell mortars containing supplementary cementitious materials. J. Clean. Prod. 2019, 237, 117811. [Google Scholar] [CrossRef]
- Kong, J.; Cong, G.; Ni, S.; Sun, J.; Guo, C.; Chen, M.; Quan, H. Recycling of waste oyster shell and recycled aggregate in the porous ecological concrete used for artificial reefs. Constr. Build. Mater. 2022, 323, 126447. [Google Scholar] [CrossRef]
- Klathae, T. Utilization of Crushed Oyster Shell on Interlocking Black. RMUTP Res. J. 2017, 11, 167–177. [Google Scholar]
- Xu, Q.Z.; Zhang, L.B.; Zhang, T.; Zhou, Y.; Xia, S.D.; Liu, H.; Yang, H.S. Effects of an artificial oyster shell reef on macrobenthic communities in Rongcheng Bay, East China. Chin. J. Oceanol. Limnol. 2014, 32, 99–110. [Google Scholar] [CrossRef]
- Choi, S.I.; Kil Park, J.; Han, T.H.; Pae, J.; Moon, J.; Kim, M.O. Early-age mechanical properties and microstructures of Portland cement mortars containing different admixtures exposed to seawater. Case Stud. Constr. Mater. 2022, 16, e01041. [Google Scholar] [CrossRef]
- Park, S.; Park, J.K.; Lee, N.; Kim, M.O. Exploring Structural Evolution of Portland Cement Blended with Supplementary Cementitious Materials in Seawater. Materials 2021, 14, 1210. [Google Scholar] [CrossRef] [PubMed]
- ASTM C109/C109M; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-Mm] Cube Specimens). American Society for Testing and Materials: West Conshohocken, PA, USA, 2020.
- ASTM C348; Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars1. ASTM International: West Conshohocken, PA, USA, 1998.
- ASTM C1585-20; Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International: West Conshohocken, PA, USA, 2020.
- ACI 363 R-10; Report on High-Strength Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2010.
- CEB-FIP MC 90; Design of Concrete Structures. CEB-FIP Model Code 1990. Thomas Telford: London, UK, 1993.
- Wu, H.; Xie, Z.; Zhang, L.; Lin, Z.; Wang, S.; Tang, W. A New Magnesium Phosphate Cement Based on Renewable Oyster Shell Powder: Flexural Properties at Different Curing Times. Materials 2021, 14, 5433. [Google Scholar] [CrossRef] [PubMed]
- Cha, I.; Kim, J.; Lee, H. Enhancing Compressive Strength in Cementitious Composites through Effective Use of Wasted Oyster Shells and Admixtures. Buildings 2023, 13, 2787. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Huang, M.H.; Yin, H.B.; Jiang, K.; Xiao, K.T.; Tang, S.W. Influence of Different Alkali Sulfates on the Shrinkage, Hydration, Pore Structure, Fractal Dimension and Microstructure of Low-Heat Portland Cement, Medium-Heat Portland Cement and Ordinary Portland Cement. Fractal Fract. 2021, 5, 79. [Google Scholar] [CrossRef]
- Qu, F.; Li, W.; Wang, K.; Tam, V.W.Y.; Zhang, S. Effects of seawater and undesalted sea sand on the hydration products, mechanical properties and microstructures of cement mortar. Constr. Build. Mater. 2021, 310, 125229. [Google Scholar] [CrossRef]
- Li, Q.; Geng, H.; Shui, Z.; Huang, Y. Effect of metakaolin addition and seawater mixing on the properties and hydration of concrete. Appl. Clay Sci. 2015, 115, 51–60. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, J.; Lv, Y.; Wang, D.; Ye, J. Study on the expansion of concrete under attack of sulfate and sulfate–chloride ions. Constr. Build. Mater. 2013, 39, 26–32. [Google Scholar] [CrossRef]
- Mohammed, T.U.; Hamada, H.; Yamaji, T. Performance of seawater-mixed concrete in the tidal environment. Cem. Concr. Res. 2004, 34, 593–601. [Google Scholar] [CrossRef]
- Wegian, F.M. Effect of seawater for mixing and curing on structural concrete. IES J. Part A Civ. Struct. Eng. 2010, 3, 235–243. [Google Scholar] [CrossRef]
- Matschei, T.; Lothenbach, B.; Glasser, F.P. The role of calcium carbonate in cement hydration. Cem. Concr. Res. 2007, 37, 551–558. [Google Scholar] [CrossRef]
- Seo, J.H.; Park, S.M.; Yang, B.J.; Jang, J.G. Calcined Oyster Shell Powder as an Expansive Additive in Cement Mortar. Materials 2019, 12, 1322. [Google Scholar] [CrossRef] [PubMed]
- Santhanam, M.; Cohen, M.; Olek, J. Differentiating seawater and groundwater sulfate attack in Portland cement mortars. Cem. Concr. Res. 2006, 36, 2132–2137. [Google Scholar] [CrossRef]
- Yang, H.M.; Zhang, S.M.; Lei, W.; Chen, P.; Shao, D.K.; Tang, S.W.; Li, J.Z. High-ferrite Portland cement with slag: Hydration, microstructure, and resistance to sulfate attack at elevated temperature. Cement Concrete Comp. 2022, 130, 104560. [Google Scholar] [CrossRef]
- Huang, J.; Li, W.; Huang, D.; Wang, L.; Chen, E.; Wu, C.; Wang, B.; Deng, H.; Tang, S.; Shi, Y.; et al. Fractal Analysis on Pore Structure and Hydration of Magnesium Oxysulfate Cements by First Principle, Thermodynamic and Microstructure-Based Methods. Fractal Fract. 2021, 5, 164. [Google Scholar] [CrossRef]
- Peng, Y.; Tang, S.; Huang, J.; Tang, C.; Liu, Y. Fractal analysis on pore structure and modeling of hydration of magnesium phosphate cement paste. Fractal Fract. 2022, 6, 337. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W.; Peng, Y.; Tang, S.; Wang, L.; Shi, Y.; Li, Y.; Wang, Y.; Geng, Z.; Wu, K. Hydration and Fractal Analysis on Low-Heat Portland Cement Pastes Using Thermodynamics-Based Methods. Fractal Fract. 2023, 7, 606. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Y.; Geng, Z.; Xu, X.; Yu, W.; Chen, J. Structure, Fractality, Mechanics and Durability of Calcium Silicate Hydrates. Fractal Fract. 2021, 5, 47. [Google Scholar] [CrossRef]
- Bellei, P.; Torres, I.; Solstad, R.; Flores-Colen, I. Potential Use of Oyster Shell Waste in the Composition of Construction Composites: A Review. Buildings 2023, 13, 1546. [Google Scholar] [CrossRef]
Constituent (%) | OPC | SF | WOSP |
---|---|---|---|
CaO | 61.40 | 1.54 | 85.12 |
SiO2 | 21.23 | 96.90 | 1.78 |
Al2O3 | 5.64 | 0.29 | 0.31 |
Fe2O3 | 3.38 | 0.15 | 0.41 |
MgO | 2.20 | 0.18 | 0.32 |
SO3 | 2.25 | – | 1.01 |
K2O | 1.15 | 0.64 | 0.12 |
Na2O | 0.11 | 0.16 | 5.31 |
Cl | 0.06 | – | 0.24 |
MnO | – | 0.03 | – |
P2O5 | – | 0.05 | 0.19 |
Loss of Ignition | 2.58 | 0.05 | 5.19 |
ID | OPC | SF | WOSP | Silica Sand | Water | SP | Flow (mm) |
---|---|---|---|---|---|---|---|
C100W0 | 1 | 0.25 | - | 1.45 | 0.45 | 0.012 | 235.0 |
C75W25 | 0.75 | 0.25 | 217.5 | ||||
C50W50 | 0.50 | 0.50 | 180.0 | ||||
C25W75 | 0.25 | 0.75 | 178.5 |
Ions | Tap Water (mg/L 1) | Seawater (mg/L) |
---|---|---|
Chloride (Cl−) | 39.1 | 21,075 |
Sodium (Na+) | 86.2 | 17,075 |
Sulfate (SO42−) | 58.8 | 2258 |
Magnesium (Mg2+) | – | 973 |
Calcium (Ca2+) | – | 364 |
Potassium (K+) | – | 549 |
Nitrate (NO3−) | 16.1 | – |
Type of Water | pH | Salinity (%) | Temperature (°C) | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Tap water | 7.11 | 1.12 | 0.07 | - | 21.70 | 0.69 |
Seawater | 8.35 | 0.19 | 2.56 | 0.21 | 20.50 | 0.51 |
Compressive Strength (MPa) | ||||||
Groups | Count | Sum | Average | Variance | ||
TW | 100 | 2305.8 | 23.06 | 177.812 | ||
SW | 100 | 2252.6 | 22.53 | 152.62 | ||
Source of Variation | SS | df | MS | F | p-value | F crit. |
Between groups | 14.1 | 1 | 14.12 | 0.0855 | 0.7703 | 3.88885 |
Within groups | 32,712.8 | 198 | 165.22 | |||
Total | 32,726.9 | 199 | ||||
Flexural Strength (MPa) | ||||||
Groups | Count | Sum | Average | Variance | ||
TW | 100 | 491.5 | 4.91 | 5.949 | ||
SW | 100 | 515.3 | 5.15 | 6.529 | ||
Source of Variation | SS | df | MS | F | p-value | F crit. |
Between groups | 2.8 | 1 | 2.83 | 0.454 | 0.5012 | 3.88885 |
Within groups | 1235.3 | 198 | 6.24 | |||
Total | 1238.1 | 199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.O.; Lee, M.K. Strength and Microstructural Changes in Cementitious Composites Containing Waste Oyster Shell Powder. Buildings 2023, 13, 3078. https://doi.org/10.3390/buildings13123078
Kim MO, Lee MK. Strength and Microstructural Changes in Cementitious Composites Containing Waste Oyster Shell Powder. Buildings. 2023; 13(12):3078. https://doi.org/10.3390/buildings13123078
Chicago/Turabian StyleKim, Min Ook, and Myung Kue Lee. 2023. "Strength and Microstructural Changes in Cementitious Composites Containing Waste Oyster Shell Powder" Buildings 13, no. 12: 3078. https://doi.org/10.3390/buildings13123078
APA StyleKim, M. O., & Lee, M. K. (2023). Strength and Microstructural Changes in Cementitious Composites Containing Waste Oyster Shell Powder. Buildings, 13(12), 3078. https://doi.org/10.3390/buildings13123078