Parameter Sensitivity Analysis of the Seismic Response of a Piled Wharf Structure
Abstract
:1. Introduction
2. Numerical Models for Piled Wharf
3. Grey Relational Analysis Methodology
4. Parameter Sensitivity Analysis of the Piled Wharf
4.1. Fiducial Error Analysis of Piled Wharf
4.2. Grey Relational Analysis of Piled Wharf
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, C.; Qian, J.; Chen, X.; Xie, F.; Zhu, J. Nonlinear Behavior of Marine Soil on the Dynamic Stability of Upper Wha-rf Structures: A Numerical Simulation Approach. J. Coast. Res. 2021, 37, 149–155. [Google Scholar] [CrossRef]
- Brunet, S.; Llera, J.C.; Jacobsen, A.; Miranda, E.; Meza, C. Performance of port facilities in Southern Chile during the 27 February 2010 Maule earthquake. Earthq. Spectra 2012, 28, S553–S579. [Google Scholar] [CrossRef]
- Cui, C.; Meng, K.; Wu, Y.; Chapman, D.; Liang, Z. Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation. Geomech. Eng. 2018, 16, 609–618. [Google Scholar] [CrossRef]
- Yuan, B.; Chen, W.; Zhao, J.; Li, L.; Liu, F.; Guo, Y.; Zhang, B. Addition of alkaline solutions and fibers for the reinforcement of kaolinite-containing granite residual soil. Appl. Clay Sci. 2022, 228, 106644. [Google Scholar] [CrossRef]
- Yan, Z.; Sun, X.; Yang, Z.; Fu, D. Lateral Bearing Performance of a Defective Pile-Supported Wharf with Batter Piles. J. Waterw. Port Coast. Ocean Eng. 2020, 146, 04020035. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Y.; Ling, X.; Tian, S. Fuzzy optimization for ground motion intensity measures to characterize the response of the pile-supported wharf in liquefiable soils. Ocean Eng. 2022, 265, 112645. [Google Scholar] [CrossRef]
- Su, L.; Wan, H.; Dong, Y.; Frangopol, D.; Ling, X. Seismic fragility assessment of large-scale pile-supported wharf structures considering soil-pile interaction. Eng. Struct. 2019, 186, 270–281. [Google Scholar] [CrossRef]
- Cullough, N.J.M. The Seismic Geotechnical Modeling, Performance, and Analysis of Pile-Supported Wharves. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2004. [Google Scholar]
- Moghadam, A.M.; Ghalandarzadeh, A.; Towhata, I.; Majid, M.; Babak, E.; Pourya, H. Studying the effects of deformable panels on seismic displacement of gravity quay walls. Ocean Eng. 2009, 36, 1129–1148. [Google Scholar] [CrossRef]
- Fu, D.; Li, H.; Guo, X.; Yu, D.; Wu, Y. Seismic response analysis of high-pile wharf. Port Waterw. Eng. 2011, 3, 71–75. (In Chinese) [Google Scholar] [CrossRef]
- Chau, N.L.; Dao, T.P.; Nguyen, V. An Efficient Hybrid Approach of Finite Element Method, Artificial Neural Network-Based Multiobjective Genetic Algorithm for Computational Optimization of a Linear Compliant Mechanism of Nanoindentation Tester. Math. Probl. Eng. 2018, 14, 7070868. [Google Scholar] [CrossRef]
- Wang, C.N.; Yang, F.C.; Nguyen, V.; Vo, N.T.M. CFD Analysis and Optimum Design for a Centrifugal Pump Using an Effectively Artificial Intelligent Algorithm. Micromachines 2022, 13, 1208. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Lu, J.; Elgamal, A.; Arulmoli, A. Seismic performance of a pile-supported wharf: Three-dimensional finite element simulation. Soil Dyn. Earthq. Eng. 2017, 95, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Song, B.; Cui, J. Seismic Dynamic Damage Characteristics of Vertical and Batter Pile-supported Wharf Structure Systems. J. Eng. Sci. Technol. Rev. 2015, 8, 180–189. [Google Scholar] [CrossRef]
- Mirzaeefard, H.; Mirtaheri, M.; Hariri-Ardebili, M.A. Life-cycle cost analysis of pile-supported wharves under multi-hazard condition: Aging and shaking. Struct. Infrastruct. Eng. 2021, 19, 269–289. [Google Scholar] [CrossRef]
- Wang, Y.; He, L. Simplified Calculation Methods for All-Vertical-Piled Wharf in Offshore Deep Water. China Ocean Eng. 2017, 31, 182–191. [Google Scholar] [CrossRef]
- Su, L.; Wan, H.; Lu, J.; Lu, J.; Arulmoli, A. Seismic performance evaluation of a pile-supported wharf system at two seismic hazard levels. Ocean Eng. 2020, 219, 108333. [Google Scholar] [CrossRef]
- Deghoul, L.; Gabi, S.; Hamrouni, A. The influence of the soil constitutive models on the seismic analysis of pile-supported wharf structures with batter piles in cut-slope rock dike. Stud. Geotech. Mech. 2020, 42, 191–209. [Google Scholar] [CrossRef]
- Meng, C.; Tang, L. Effects of Ground Motion Characteristics on Seismic Responses of Pile-Supported Wharf in Liquefia-ble Soils. J. Jilin Univ. Earth Sci. Ed. 2021, 51, 1463–1472. (In Chinese) [Google Scholar] [CrossRef]
- Yuan, B.; Li, Z.; Chen, W.; Zhao, J.; Lv, J.; Song, J.; Cao, X. Influence of Groundwater Depth on Pile–Soil Mechanical Properties and Fractal Characteristics under Cyclic Loading. Fractal Fract. 2022, 6, 198. [Google Scholar] [CrossRef]
- Shao, W.; Sun, Q.; Xu, X.; Yue, W.; Shi, D. Durability life prediction and horizontal bearing characteristics of CFRP com-posite piles in marine environments. Constr. Build. Mater. 2023, 367, 130116. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Tong, L. A numerical interpretation of the soil-pile interaction for the pile adjacent to an excavation in clay. Tunn. Undergr. Space Technol. 2022, 121, 104344. [Google Scholar] [CrossRef]
- Cui, C.; Liang, Z.; Xu, C.; Xin, Y.; Wang, B. Analytical solution for horizontal vibration of end-bearing single pile in radially heterogeneous saturated soil. App. Math. Model. 2023, 116, 65–83. [Google Scholar] [CrossRef]
- Cui, C.; Meng, K.; Xu, C.; Liang, Z.; Li, H.; Pei, H. Analytical solution for longitudinal vibration of a floating pile in s-aturated porous media based on a fictitious saturated soil pile model. Comput. Geotech. 2021, 131, 103942. [Google Scholar] [CrossRef]
- Cui, C.; Meng, K.; Xu, C.; Wang, B.; Xin, Y. Vertical vibration of a floating pile considering the incomplete bonding effect of the pile-soil interface. Comput. Geotech. 2022, 150, 104894. [Google Scholar] [CrossRef]
- Meng, K.; Cui, C.; Liang, Z.; Pei, H. A new approach for longitudinal vibration of a large-diameter floating pipe pile i-n visco-elastic soil considering the three-dimensional wave effects. Comput. Geotech. 2020, 128, 103840. [Google Scholar] [CrossRef]
- Gao, S.; Gong, J.; Feng, Y. Equivalent Damping Ratio Equations in Support of Displacement-Based Seismic Design for Pile-Supported Wharves. J. Dalian Univ. Technol. 2016, 21, 93–530. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Zhang, M.; Yu, J. Seismic Response Analysis of the High—Pile Wharf Based on the Interaction of Piles and Soil. J. Jiangnan Univ. 2014, 13, 457–462. (In Chinese) [Google Scholar] [CrossRef]
- Liu, L.; Yang, X. Dynamic interaction of saturated soil-pile-structure system under seismic loading. Rock and Soil Mech. 2012, 33, 120–128. (In Chinese) [Google Scholar] [CrossRef]
- Su, L.; Wan, H.; Li, Y.; Ling, X. Soil-Pile-Quay Wall System with Liquefaction-Induced Lateral Spreading: Experimental Investigation, Numerical Simulation, and Global Sensitivity Analysis. J. Geotech. Geoenviron. 2018, 144, 04018087. [Google Scholar] [CrossRef]
- Zhu, R.; Che, Y.; Su, J.; Luo, M.; Wang, J.; Zeng, H. Analysis of sensitivity and correlation of high-piled wharf’s natural frequency. Port Waterw. Eng. 2019, 12, 49–54. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Wang, Y.; Yin, J.; Wang, C. Dynamic Characteristics and Simplified Numerical Methods of An All-Vertical-Piled Wharf in Offshore Deep Water. China Ocean Eng. 2015, 29, 705–718. [Google Scholar] [CrossRef]
- Souri, M.; Khosravifar, A.; Dickenson, S.; McCullough, N.; Schlechter, S. Effects of long duration earthquakes on the interaction of inertial and liquefaction-induced kinematic demands on pile-supported wharves. Soil Dyn. Earthq. Eng. 2022, 154, 107155. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Tang, L. The compressive-shear fracture strength of rock containing water based on Druker-Prager failure criterion. Arab. J. Geosci. 2019, 12, 452. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, D.; Song, Q.; Liu, S. An analytical expression of reliability solution for Druker-Prager criterion. Appl. Math. Mech. Engl. Ed. 2008, 29, 121–128. [Google Scholar] [CrossRef]
- Elshenawy, T.; Li, Q. Influences of target strength and confinement on the penetration depth of an oil well perforator. Int. J. Impact Eng. 2013, 54, 130–137. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, K.; Shao, J.; Liu, H. Improved slope safety analysis by new Druker-Prager type criterion. J. Cent. South Univ. Technol. 2012, 19, 1132–1137. [Google Scholar] [CrossRef]
- Tolooiyan, A.; Gavin, K. Modelling the Cone Penetration Test in sand using Cavity Expansion and Arbitrary Lagrangian Eulerian Finite Element Methods. Comput. Geotech. 2011, 38, 482–490. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, Y. Identification of material parameters for Drucker–Prager plasticity model for FRP confined circular concrete columns. Int. J. Solids Struct. 2012, 49, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ding, T.; Xiao, J.; Mechtcherine, V. Buildability prediction of 3D–printed concrete at early-ages: A numerical study with Drucker–Prager model. Addit. Manuf. 2022, 55, 102821. [Google Scholar] [CrossRef]
- Fan, Z.; Zheng, H.; Lin, S. Shear band static evolution by spatially mobilized plane criterion based Drucker-Prager model and numerical manifold method. Comput. Geotech. 2021, 132, 103962. [Google Scholar] [CrossRef]
- Liu, K.; Chen, S.; Gu, X. Analytical and Numerical Analyses of Tunnel Excavation Problem Using an Extended Drucker–Prager Model. Rock Mech. Rock Eng. 2020, 53, 1777–1790. [Google Scholar] [CrossRef]
- Zhao, T.; Lages, E.N.; Ramos, A.S.; Paulino, G.H. Topology optimization considering the Drucker–Prager criterion with a surrogate nonlinear elastic constitutive model. Struct. Multidisc. Optim. 2020, 62, 3205–3227. [Google Scholar] [CrossRef]
- Wang, C.; Yang, F.; Nguyen, V.; Nguyen, Q.; Huynh, N.; Huynh, T. Optimal design for compliant mechanism flexure hinges: Bridge-type. Micromachines 2021, 12, 1304. [Google Scholar] [CrossRef]
- Huynh, N.; Nguyen, T.; Nguyen, Q. Optimum Design for the Magnification Mechanisms Employing Fuzzy Logic–ANFIS. Comput. Mater. Con. 2022, 73, 5961–5983. [Google Scholar] [CrossRef]
- Wang, Z. Correlation analysis of sequences with interval grey numbers based on the kernel and greyness degree. Kybernetes 2013, 42, 309–317. [Google Scholar] [CrossRef]
- Li, X.; Tan, Y. Sensitivity Analysis of Seepage Stability of Slope with Sudden Drop of Water Level Based on Grey Correlation Degree Theory. Yellow River 2019, 41, 149–154. [Google Scholar] [CrossRef]
- Ning, Y.; Tang, H.; Wang, F.; Zhang, G. Sensitivity analysis of toppling deformation for interbedded anti-inclined rock slopes based on the grey relation method. Bull. Eng. Geol. Environ. 2019, 78, 6017–6032. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Jin, M.; Liu, S.; Chang, X.; Xie, N.; Wang, Y. Key indices of the remanufacturing industry in China using a combined method of grey incidence analysis and grey clustering. Cleaner Prod. 2017, 168, 1348–1357. [Google Scholar] [CrossRef]
- Ye, S.; Huang, A. Sensitivity Analysis of Factors Affecting Stability of Cut and Fill Multistage Slope Based on Improved Grey Incidence Model. Soil Mech. Found. Eng. 2020, 57, 8–17. [Google Scholar] [CrossRef]
- Chen, X.; Deng, Z.; Hu, S.; Gao, J.; Gao, X. Design of a Compliant Mechanism Based Four-Stage Amplification Piezoelectric-Driven Asymmetric Microgripper. Micromachines 2020, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xia, W.; Liang, J. Grey Correlation Analysis between Macro Mechanical Damage and Meso Volume Charact-eristics of SBS Modified Asphalt Mixture under Freeze-Thaw Cycles. Buildings 2022, 12, 2118. [Google Scholar] [CrossRef]
- Deng, J. The Foundation of Grey Theory; Huazhong University of Science Technology Press: Wuhan, China, 2002; pp. 122–141. [Google Scholar]
- Xie, N.; Liu, S. A novel grey relational model based on grey number sequences. Grey Syst. 2011, 1, 117–128. [Google Scholar] [CrossRef]
- Yin, K.; Xu, T.; Li, X.; Gao, Y. A study of the grey relational model of interval numbers for panel data. Grey Syst. Theory Appl. 2020, 11, 200–211. [Google Scholar] [CrossRef]
Materials | Elevation (m) | Elastic Modulus (kN.m−2) | Volumetric Weight (kN.m−3) | Poisson’s Ratio | Cohesion (kN.m−2) | Friction Angle (°) |
---|---|---|---|---|---|---|
Concrete (Pile) | -- | 3 × 107 | 24.5 | 0.15 | 2 × 103 | 47 |
Concrete (Pile Cap) | 1.3 ~ 4.3 | 3.45 × 107 | 25 | 0.18 | 2 × 103 | 47 |
Concrete (Pavement) | 1.3 ~ 4.3 | 3.45 × 107 | 25 | 0.18 | 2 × 103 | 47 |
Crushed Rock Revetment | −1 ~ 2.7 | 1 × 105 | 15.2 | 0.33 | 7 | 40 |
Rubble Mound Breakwater | −12.8 ~ 1.7 | 2.1 × 105 | 20 | 0.3 | 7 | 41 |
Sand-Filling | −10 ~ 3.5 | 1.37 × 104 | 13.24 | 0.33 | 7 | 36 |
Mud and Silt | −13.7 ~ −10 | 4.55 × 104 | 15.2 | 0.35 | 9 | 30 |
Hard Loam | −19.8 ~ −13.7 | 2.5 × 105 | 17.65 | 0.31 | 25 | 30 |
Dense Sand | −29.8 ~ −19.8 | 3.567 × 105 | 19.12 | 0.32 | 15 | 38 |
Hard Clay | −35.7 ~ −29.8 | 8.722 × 105 | 20.1 | 0.27 | 40 | 31 |
Sensitivity Parameters | Fiducial Value | Parameter Variation Range |
---|---|---|
Elastic modulus (E) | E0 = 4.55 × 104 | 0.6–0.8–1.0–1.2–1.4 E0 |
Cohesion (C) | C0 = 7 | 0.6–0.8–1.0–1.2–1.4 C0 |
Friction angle (φ) | φ0 = 30 | 0.6–0.8–1.0–1.2–1.4 φ0 |
Ground motion intensity (g) | g0 = 0.2 | 0.6–0.8–1.0–1.2–1.4 g0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Cui, C.; Zhang, P.; Wang, K.; Zhao, M. Parameter Sensitivity Analysis of the Seismic Response of a Piled Wharf Structure. Buildings 2023, 13, 349. https://doi.org/10.3390/buildings13020349
Zhao J, Cui C, Zhang P, Wang K, Zhao M. Parameter Sensitivity Analysis of the Seismic Response of a Piled Wharf Structure. Buildings. 2023; 13(2):349. https://doi.org/10.3390/buildings13020349
Chicago/Turabian StyleZhao, Jingtong, Chunyi Cui, Peng Zhang, Kunpeng Wang, and Min Zhao. 2023. "Parameter Sensitivity Analysis of the Seismic Response of a Piled Wharf Structure" Buildings 13, no. 2: 349. https://doi.org/10.3390/buildings13020349
APA StyleZhao, J., Cui, C., Zhang, P., Wang, K., & Zhao, M. (2023). Parameter Sensitivity Analysis of the Seismic Response of a Piled Wharf Structure. Buildings, 13(2), 349. https://doi.org/10.3390/buildings13020349