Thermophysical Characterization of Paraffins versus Temperature for Thermal Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Raw Materials
2.1.2. Sample Preparation
2.2. Experimental Methods
2.2.1. Differential Scanning Calorimetry (DSC)
- DSC measurements at a heating–cooling rate of 10 °C.min−1
- DSC measurements at a heating–cooling rate of 0.2 °C.min−1
2.2.2. Thermogravimetric Analysis (TGA)
2.2.3. Transient Plane Source Technique (Hot Disk)
- Principle
- Specifications of the thermal analyzer
- Measurements in the solid phase
- Measurements in the liquid phase
2.2.4. Density Measurement
- Measurements in the solid phase
- Measurements in the liquid phase
3. Results and Discussion
3.1. DSC Results
3.1.1. Temperatures and Latent Heats of Phase Transitions
- Studies of RT21, RT27 and RT50
- Study of RT35HC
- Comparison between the findings of the present work and the available literature data
- Comparison between the properties of paraffins RT21, RT27, RT35HC and RT50
3.1.2. Thermal Reliability
3.1.3. Specific Heats
- Apparent specific heats
- Specific heats in the solid and liquid phases
- Comparison between the findings of the present work and the available literature data
3.2. Thermogravimetric Analysis (TGA)
3.3. Thermal Conductivities
3.4. Thermal Diffusivities
3.5. Thermal Dependence of the Density
3.6. Exploitation of the Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
a | Thermal diffusivity (m2.s−1) |
Cp | Specific heat (kJ.kg−1.K−1) |
DSC | Differential scanning calorimetry |
Heat flow (W) | |
f | Fraction |
m | Mass (kg) |
n.a. | Not available |
PCM | Phase change material |
r | Radius of the sensor (mm) |
ref | Reference |
Sapphire | Sapphire sample |
T | Temperature (°C) |
TGA | Thermogravimetric Analysis |
V | Volume (m3) |
Greek letters | |
β | Thermal expansion coefficient (K−1) |
Δ | Difference |
ΔH | Latent heat of the phase transition (kJ.kg−1) |
λ | Thermal conductivity (W.m−1.K−1) |
ρ | Density (kg.m−3) |
Subscripts | |
Exp | Experimental |
L-S | Liquid–solid phase change |
L | Liquid |
S-L | Solid–liquid phase change |
S-S | Solid–solid phase change |
S | Solid |
0 | Baseline |
Appendix A. The DSC thermograms of RT27 and RT50
- 1.
- Analysis of the DSC thermograms of RT27
- 2.
- Analysis of the DSC thermograms of RT50
References
- BP. BP Energy Outlook: 2022 Edition; The British Petroleum Company BP: London, UK, 2022. [Google Scholar]
- BP. Statistical Review of World Energy, 2020 69th Edition; The British Petroleum company BP: London, UK, 2020. [Google Scholar]
- US Energy Information Administration. International Energy Outlook 2019 with Projections to 2050; US Energy Information Administration: Washington, DC, USA, 2019.
- Nazir, H.; Batool, M.; Osorio, F.J.B.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent de-velopments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Luo, Z.; Wang, K.; Shah, S.P. A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy Build. 2022, 260, 111923. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, C.; Wang, X.; Sun, S.; Cui, D.; Pan, S.; Sheng, H. A review of eutectic salts as phase change energy storage materials in the context of concentrated solar power. Int. J. Heat Mass Transf. 2023, 205, 123904. [Google Scholar] [CrossRef]
- Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Castelain, C. Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renew. Sustain. Energy Rev. 2020, 119, 109579. [Google Scholar] [CrossRef]
- Pielichowska, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Gulfam, R.; Zhang, P.; Meng, Z. Advanced thermal systems driven by paraffin-based phase change materials—A review. Appl. Energy 2019, 238, 582–611. [Google Scholar] [CrossRef]
- Parhizi, M.; Jain, A. Analytical modeling and optimization of phase change thermal management of a Li-ion battery pack. Appl. Therm. Eng. 2019, 148, 229–237. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Min, H.; Li, H.; Li, Q. Performance investigation of a passive battery thermal management system applied with phase change material. J. Energy Storage 2021, 35, 102279. [Google Scholar] [CrossRef]
- El Idi, M.M.; Karkri, M.; Kraiem, M. Preparation and effective thermal conductivity of a Paraffin/Metal Foam composite. J. Energy Storage 2021, 33, 102077. [Google Scholar] [CrossRef]
- El Idi, M.M.; Karkri, M.; Tankari, M.A.; Vincent, S. Hybrid cooling based battery thermal management using composite phase change materials and forced convection. J. Energy Storage 2021, 41, 102946. [Google Scholar] [CrossRef]
- Hua, W.; Zhang, L.; Zhang, X. Research on passive cooling of electronic chips based on PCM: A review. J. Mol. Liq. 2021, 340, 117183. [Google Scholar] [CrossRef]
- Alva, G.; Liu, L.; Huang, X.; Fang, G. Thermal energy storage materials and systems for solar energy applications. Renew. Sustain. Energy Rev. 2017, 68, 693–706. [Google Scholar] [CrossRef]
- Himran, S.; Suwono, A.; Mansoori, G.A. Characterization of Alkanes and Paraffin Waxes for Application as Phase Change Energy Storage Medium. Energy Sources 1994, 16, 117–128. [Google Scholar] [CrossRef]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Ahmad, D.; Lipinski, T. Latent thermal energy storage technologies and applications: A review. Int. J. Thermofluids 2020, 5–6, 100039. [Google Scholar] [CrossRef]
- Ibrahim, S.I.; Ali, A.H.; Hafidh, S.A.; Chaichan, M.T.; Kazem, H.A.; Ali, J.M.; Isahak, W.N.R.; Alamiery, A. Stability and thermal conductivity of different nano-composite material prepared for thermal energy storage applications. S. Afr. J. Chem. Eng. 2022, 39, 72–89. [Google Scholar] [CrossRef]
- Wilhelm, E.; Richter, C.; Rapp, B. Phase change materials in microactuators: Basics, applications and perspectives. Sens. Actuators A Phys. 2018, 271, 303–347. [Google Scholar] [CrossRef]
- Trigui, A.; Karkri, M.; Krupa, I. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material. Energy Convers. Manag. 2014, 77, 586–596. [Google Scholar] [CrossRef]
- Hosseini, M.; Rahimi, M.; Bahrampoury, R. Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. Int. Commun. Heat Mass Transf. 2014, 50, 128–136. [Google Scholar] [CrossRef]
- Al-Shannaq, R.; Kurdi, J.; Al-Muhtaseb, S.; Dickinson, M.; Farid, M. Supercooling elimination of phase change materials (PCMs) microcapsules. Energy 2015, 87, 654–662. [Google Scholar] [CrossRef]
- Martinelli, M.; Bentivoglio, F.; Caron-Soupart, A.; Couturier, R.; Fourmigue, J.-F.; Marty, P. Experimental study of a phase change thermal energy storage with copper foam. Appl. Therm. Eng. 2016, 101, 247–261. [Google Scholar] [CrossRef]
- Agarwal, A.; Sarviya, R. Characterization of Commercial Grade Paraffin wax as Latent Heat Storage material for Solar dryers. Mater. Today Proc. 2017, 4, 779–789. [Google Scholar] [CrossRef]
- Mekaddem, N.; Ali, B.; Fois, M.; Hannachi, A. Paraffin/Expanded Perlite/Plaster as Thermla Energy Storage Composite. Energy Procedia 2019, 157, 1118–1129. [Google Scholar] [CrossRef]
- Chriaa, I.; Trigui, A.; Karkri, M.; Jedidi, I.; Abdelmouleh, M.; Boudaya, C. Thermal properties of shape-stabilized phase change materials based on Low Density Polyethylene, Hexadecane and SEBS for thermal energy storage. Appl. Therm. Eng. 2020, 171, 115072. [Google Scholar] [CrossRef]
- B, K.; Pandey, A.; Shahabuddin, S.; George, M.; Sharma, K.; Samykano, M.; Tyagi, V.; Saidur, R. Synthesis and characterization of conducting Polyaniline@cobalt-Paraffin wax nanocomposite as nano-phase change material: Enhanced thermophysical properties. Renew. Energy 2021, 173, 1057–1069. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, Y.; Sun, D.; Jing, X. Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage. Renew. Energy 2021, 178, 669–678. [Google Scholar] [CrossRef]
- Cao, J.; Ling, Z.; Lin, X.; Wu, Y.; Fang, X.; Zhang, Z. Flexible composite phase change material with enhanced thermophysical, dielectric, and mechanical properties for battery thermal management. J. Energy Storage 2022, 52, 10479. [Google Scholar] [CrossRef]
- Leong, K.Y.; Hasbi, S.; Ahmad, K.K.; Jali, N.M.; Ong, H.C.; Din, M.M. Thermal properties evaluation of paraffin wax enhanced with carbon nanotubes as latent heat thermal energy storage. J. Energy Storage 2022, 52, 105027. [Google Scholar] [CrossRef]
- Hayat, M.A.; Yang, Y.; Li, L.; Bevilacqua, M.; Chen, Y. Preparation and thermophysical characterisation analysis of potential nano-phase transition materials for thermal energy storage applications. J. Mol. Liq. 2023, 376, 121464. [Google Scholar] [CrossRef]
- Soares, N.; Matias, T.; Durães, L.; Simões, P.; Costa, J. Thermophysical characterization of paraffin-based PCMs for low temperature thermal energy storage applications for buildings. Energy 2023, 269, 126745. [Google Scholar] [CrossRef]
- Ukrainczyk, N.; Kurajica, S.; Šipušiæ, J. Thermophysical Comparison of FiveCommercial Paraffin Waxes as Latent Heat Storage Materials. Chem. Biochem. Eng. Q. 2010, 24, 129–137. [Google Scholar]
- Velez, C.; Khayet, M.; de Zarate, J.M.O. Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: N-Hexadecane, n-octadecane and n-eicosane. Appl. Energy 2015, 143, 383–394. [Google Scholar] [CrossRef]
- Vélez, C.; de Zárate, J.M.O.; Khayet, M. Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region. Int. J. Therm. Sci. 2015, 94, 139–146. [Google Scholar] [CrossRef]
- Shafee, S.; Gnanasekaran, K.; Solomon, G.R.; Balaji, R. Preparation and analysis of novel paraffin based stable nano fluid dispersed with carbon nano tubes as effective phase change material for free cooling applications. Mater. Today 2020, 33, 4526–4532. [Google Scholar] [CrossRef]
- RUBITHERM. Gmbh, Products, Heat Storage Materials, PCM RT-line. Available online: www.rubitherm.com (accessed on 15 August 2022).
- Mehling, H.; Cabeza, L.F. Heat and Cold Storage with PCM—An up to date Introduction into Basics and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Klancnik, G.; Medved, J.; Mrvar, P. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation. RMZ Mater. Geoenviron. 2010, 57, 127–142. [Google Scholar]
- Technical Specifications of the TGA 4000 Thermogravimetric Analyzer. Available online: https://resources.perkinelmer.com/corporate/cmsresources/images/46-74807spc_tga4000.pdf (accessed on 20 August 2022).
- Gustafsson, S.E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev.Sci. Instrum. 1991, 62, 797–804. [Google Scholar] [CrossRef]
- Bohac, V.; Gustavsson, M.K.; Kubicar, L.; Gustafsson, S.E. Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer. Rev. Sci. Instrum. 2000, 71, 2452–2455. [Google Scholar] [CrossRef] [Green Version]
- He, Y. Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations. Thermochim. Acta 2005, 436, 122–129. [Google Scholar] [CrossRef]
- ISO 22007-2:2008; Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disc) Method. ISO: Geneva, Switzerland, 2008.
- Warzoha, R.J.; Fleischer, A.S. Determining the thermal conductivity of liquids using the transient hot disk method. Part I: Establishing transient thermal-fluid constraints. Int. J. Heat Mass Transf. 2014, 71, 779–789. [Google Scholar] [CrossRef]
- Warzoha, R.J.; Fleischer, A.S. Determining the thermal conductivity of liquids using the transient hot disk method. Part II: Establishing an accurate and repeatable experimental methodology. Int. J. Heat Mass Transf. 2014, 71, 790–807. [Google Scholar] [CrossRef]
- Nagai, H.; Rossignol, F.; Nakata, Y.; Tsurue, T.; Suzuki, M.; Okutani, T. Thermal conductivity measurement of liquid materials by a hot-disk method in short-duration microgravity environments. Mater. Sci. Eng. A 2000, 276, 117–123. [Google Scholar] [CrossRef]
- Available online: https://www.thermexcel.com/french/tables/eau_atm.htm (accessed on 1 October 2018).
- Castellon, C.; Gunther, E.; Mehling, H.; Hiebler, S.; Cabeza, L.F. Determination of the enthalpy of PCM as a function of tem-perature using a heat-flux DSC-A study of different measurement procedures and their accuracy. Int. J. Energy Res. 2008, 32, 1258–1265. [Google Scholar] [CrossRef]
- Dumas, J.-P.; Gibout, S.; Zalewski, L.; Johannes, K.; Franquet, E.; Lassue, S.; Bédécarrats, J.-P.; Tittelein, P.; Kuznik, F. Interpretation of calorimetry experiments to characterise phase change materials. Int. J. Therm. Sci. 2014, 78, 48–55. [Google Scholar] [CrossRef]
- Günther, E.; Hiebler, S.; Mehling, H.; Redlich, R. Enthalpy of Phase Change Materials as a Function of Temperature: Required Accuracy and Suitable Measurement Methods. Int. J. Thermophys. 2009, 30, 1257–1269. [Google Scholar] [CrossRef]
- Li, L.; Yu, H.; Wang, X.; Zheng, S. Thermal analysis of melting and freezing processes of phase change materials (PCMs) based on dynamic DSC test. Energy Build. 2016, 130, 388–396. [Google Scholar] [CrossRef]
- Sari-Bey, S. Mise au Point de Nouveaux Matériaux à Changement de Phase pour Optimiser les Transferts Énergétiques. Ph.D. Thesis, Université Paris-Est Créteil Val de Marne, Paris, France, 2014. [Google Scholar]
- ISO 11357-4:2005; Plastics—Differential Scanning Calorimetry (DSC), Part 4: Determination of Specific Heat Capacity. ISO: Geneva, Switzerland, 2005.
Paraffin | Melting Area | Solidification Area | Cp | λ | ρ | ||
---|---|---|---|---|---|---|---|
°C | °C | J.g−1.K−1 | W.m−1.K−1 | kg.m−3 | |||
s | l | s | l | ||||
RT21 | 18–23 | 22–19 | 2 | 0.2 | 0.2 | 880 | 770 |
RT27 | 25–28 | 28–25 | 2 | 0.2 | 0.2 | 880 | 760 |
RT35HC | 34–36 | 36–34 | 2 | 0.2 | 0.2 | 880 | 770 |
RT50 | 45–51 | 51–46 | 2 | 0.2 | 0.2 | 880 | 760 |
PCM | Mass | Heating Interval | Isothermal Duration | Cooling Interval | Isothermal Duration |
---|---|---|---|---|---|
mg | °C | min | °C | min | |
RT21 | 7.82 (0.01) | [−60, 80] | 3 | [80, −60] | 3 |
RT27 | 7.90 (0.01) | [−60, 80] | 3 | [80, −60] | 3 |
RT35HC | 7.66 (0.01) | [−40, 80] | 3 | [80, −40] | 3 |
RT50 | 7.93 (0.01) | [−40, 80] | 3 | [80, −40] | 3 |
PCM | Mass | Heating Interval | Isothermal Duration | Heating Interval | Isothermal Duration |
---|---|---|---|---|---|
mg | °C | min | °C | min | |
RT21 | 7.28 (0.01) | [−50, 50] | 3 | [50, −50] | 3 |
RT27 | 7.60 (0.01) | [−30, 40] | 3 | [40, −30] | 3 |
RT35HC | 7.36 (0.01) | [−20, 45] | 3 | [45, −20] | 3 |
RT50 | 7.40 (0.01) | [−20, 60] | 3 | [60, −20] | 3 |
PCM | Rate | Heating | Cooling | ||||||
---|---|---|---|---|---|---|---|---|---|
Solid–Solid | Solid–Liquid | Liquid–Solid | Solid–Solid | ||||||
TS-S | ∆HS-S | TS-L | ∆HS-L | TL-S | ∆HL-S | TS-S | ∆HS-S | ||
RT21 | °C.min−1 | °C | J.g−1 | °C | J.g−1 | °C | J.g−1 | °C | J.g−1 |
10 | −5.2 (0.2) | 8.46 (0.22) | 18.1 (0.2) | 126.00 (2.20) | 20.7 (0.2) | 129.76 (0.72) | −5.7 (0.2) | 7.18 (0.12) | |
0.2 | −8.9 (0.2) | 13.32 (0.14) | 17.5 (0.2) | 136.02 (1.38) | 22.2 (0.2) | 144.42 (1.46) | −5.1 (0.2) | 11.43 (0.12) |
PCM | Rate | Heating | Cooling | ||||||
---|---|---|---|---|---|---|---|---|---|
Solid–Solid | Solid–Liquid | Liquid–Solid | Solid–Solid | ||||||
TS-S | ∆HS-S | TS-L | ∆HS-L | TL-S | ∆HL-S | TS-S | ∆HS-S | ||
RT27 | °C.min−1 | °C | J.g−1 | °C | J.g−1 | °C | J.g−1 | °C | J.g−1 |
10 | 1.5 (0.2) | 19.85 (0.30) | 25.3 (0.2) | 148.20 (1.34) | 24.4 (0.2) | 145.96 (0.96) | 0.9 (0.2) | 18.26 (0.58) | |
0.2 | 1.9 (0.2) | 21.81 (0.22) | 26.5 (0.2) | 175.07 (1.78) | 27.3 (0.2) | 137.52 (1.40) | 1.9 (0.2) | 20.08 (0.20) |
PCM | Rate | Heating | Cooling | ||||||
---|---|---|---|---|---|---|---|---|---|
Solid–Solid | Solid–Liquid | Liquid–Solid | Solid–Solid | ||||||
TS-S | ∆HS-S | TS-L | ∆HS-L | TL-S | ∆HL-S | TS-S | ∆HS-S | ||
RT50 | °C.min−1 | °C | J.g−1 | °C | J.g−1 | °C | J.g−1 | °C | J.g−1 |
10 | 28.0 (0.2) | 25.15 (1.64) | 48.5 (0.2) | 132.49 (1.04) | 50.3 (0.2) | 134.98 (0.28) | 34.6 (0.2) | 23.32 (0.06) | |
0.2 | 29.5 (0.2) | 28.24 (0.28) | 48.9 (0.2) | 151.92 (1.52) | 52.9 (0.2) | 142.66 (1.42) | 36.2 (0.2) | 24.52 (0.24) |
PCM | Rate | Heating | Cooling | |||||
---|---|---|---|---|---|---|---|---|
Solid–Liquid | Liquid–Solid | |||||||
TS-L | ∆HS-L | TL-S1 | ∆HL-S1 | TL-S2 | ∆HL-S2 | ∆HL-S | ||
RT35HC | °C.min−1 | °C | J.g−1 | °C | J.g−1 | °C | J.g−1 | J.g−1 |
10 | 35.8 (0.2) | 213.56 (0.34) | 33.8 (0.2) | - | 30.2 (0.6) | - | 210.83 (0.34) | |
0.2 | 35.0 (0.2) | 221.23 (2.24) | 35.0 (0.2) | 118.28 (1.20) | 30.4 (0.2) | 63.02 (0.64) | 181.30 (1.36) |
Paraffin | TS-L | ∆HS-L | TL-S | ∆HL-S | Reference |
---|---|---|---|---|---|
°C | J.g−1 | °C | J.g−1 | ||
RT21 | 17.5 | 136.02 | 22.2 | 144.42 | Present work |
16.53 | n.a. | 20.18 | n.a. | [22] | |
18–23 | 155 | 22–19 | n.a. | [37] | |
RT27 | 26.5 | 175.07 | 27.3 | 137.52 | Present work |
23.67 | 134.928 | 24.78 | 130.139 | [20] | |
25–28 | 179 | 28–25 | n.a. | [37] | |
RT35HC | 35.0 | 221.23 | 35 S1 * 63.02 S2 * | 181.3 | Present work |
n.a. | 230 | n.a. | n.a. | [23] | |
34–36 | 240 | 36–34 | n.a. | [37] | |
RT50 | 48.9 | 151.92 | 52.9 | 142.66 | Present work |
44.05 | 170.32 | n.a. | 160 | [21] | |
45–51 | 160 | 51–46 | n.a. | [37] |
a | b | c | d | e | |
---|---|---|---|---|---|
RT21 | |||||
Solid | 1.95877 × 10−6 | 3.36816 × 10−4 | 0.02206 | 0.66399 | 9.09801 |
Liquid | −2.11807 × 10−7 | 3.67055 × 10−5 | −0.00229 | 0.06479 | 1.09469 |
RT27 | |||||
Solid | 2.6730 × 10−7 | 3.13164 × 10−5 | 0.00155 | 0.04426 | 1.99897 |
Liquid | −1.63905 × 10−6 | 3.1888 × 10−4 | −0.02289 | 0.72072 | −6.45881 |
RT35HC | |||||
Solid | 7.68467 × 10−7 | −1.50598 × 10−6 | 2.0543 × 10−4 | 0.0077 | 1.54253 |
Liquid | 7.20357 × 10−7 | −1.70982 × 10−4 | 0.01518 | −0.59265 | 10.52222 |
RT50 | |||||
Solid | −1.40326 × 10−7 | 9.07044 × 10−6 | 3.12614 × 10−4 | 0.01315 | 1.78909 |
Liquid | 4.55076 × 10−6 | −0.0013 | 0.13998 | −6.66814 | 121.19226 |
Cp,s | Cp,l | |
---|---|---|
(J.g−1.K−1) | J.g−1.K−1 | |
RT21 | 1.35 (0.26) | 1.86 (0.32) |
RT27 | 1.52 (0.31) | 1.97 (0.31) |
RT35HC | 1.57(0.23) | 2.00 (0.31) |
RT50 | 1.79 (0.33) | 2.38 (0.32) |
Cp, s | Cp,l | |||
---|---|---|---|---|
J.g−1.K−1 | J.g−1.K−1 | |||
Present Work | Literature | Present Work | Literature | |
RT21 | 1.35 (0.26) | 2 [37] | 1.86 (0.32) | 2 [37] |
RT27 | 1.52 (0.31) | 2 [37] 3.25 [20] | 1.97 (0.31) | 2 [37] 2.23 [20] |
RT35HC | 1.57(0.23) | 2 [37] | 2.00 (0.31) | 2 [37] |
RT50 | 1.79 (0.33) | 2 [37] | 2.38 (0.32) | 2 [37] |
Degradation Rate | 10% | 25% | 50% | 75% |
---|---|---|---|---|
T (°C) | T (°C) | T (°C) | T (°C) | |
RT21 | 144.7 | 172.4 | 199.2 | 217.4 |
RT27 | 169.6 | 196.2 | 217 | 230.6 |
RT35HC | 181.7 | 205.8 | 224.8 | 237.2 |
RT50 | 228.8 | 249.4 | 265.7 | 279.7 |
Paraffin | T (°C) | λ (W.m−1.K−1) | Phase |
---|---|---|---|
RT21 | 17 | 0.257 (0.001) | Solid |
22.1 | 0.188 (0.001) | Liquid | |
22.9 | 0.187 (0.002) | ||
23.8 | 0.185 (0.001) | ||
25.3 | 0.185 (0.002) | ||
26.5 | 0.185 (0.002) | ||
28 | 0.185 (0.009) | ||
29.9 | 0.185 (0.006) | ||
34.7 | 0.185 (0.001) | ||
39.5 | 0.185 (0.003) |
Paraffin | T (°C) | λ (W.m−1.K−1) | Phase |
---|---|---|---|
RT27 | 16 | 0.196 (0.010) | Solid |
18 | 0.197 (0.010) | ||
20 | 0.200 (0.005) | ||
23 | 0.235 (0.001) | ||
25 | 0.256 (0.013) | ||
27.3 | 0.190 (0.002) | Liquid | |
29.3 | 0.188 (0.002) | ||
31 | 0.190 (0.005) | ||
34.2 | 0.187 (0.009) | ||
39.5 | 0.186 (0.009) | ||
44.6 | 0.185 (0.001) |
Paraffin | T (°C) | λ (W.m−1.K−1) | Phase |
---|---|---|---|
RT35HC | 25.7 | 0.313 (0.006) | Solid |
28.1 | 0.316 (0.003) | ||
30.2 | 0.334 (0.006) | ||
32.2 | 0.334 (0.005) | ||
36 | 0.187 (0.001) | Liquid | |
38 | 0.186 (0.002) | ||
40 | 0.187 (0.004) | ||
42 | 0.186 (0.009) | ||
44 | 0.1846 (0.004) | ||
50 | 0.1836 (0.005) |
Paraffin | T (°C) | λ (W.m−1.K−1) | Phase |
---|---|---|---|
RT50 | 30 | 0.236 (0.012) | Solid |
35 | 0.235 (0.012) | ||
42 | 0.237 (0.012) | ||
44 | 0.248 (0.012) | ||
46 | 0.278 (0.014) | ||
48 | 0.330 (0.006) | ||
52 | 0.228 (0.011) | Liquid | |
54 | 0.200 (0.003) | ||
56 | 0.198 (0.001) | ||
58 | 0.195 (0.003) | ||
60 | 0.194 (0.004) | ||
62 | 0.192 (0.003) | ||
64 | 0.191 (0.004) | ||
68 | 0.190 (0.003) | ||
70 | 0.192 (0.004) |
λs | λl | |||
---|---|---|---|---|
W.m−1.K−1 | W.m−1.K−1 | |||
Present Work | Literature | Present Work | Literature | |
RT21 | 0.257 (0.001) | 0.2 [37] | 0.186 (0.002) | 0.187 [36] |
RT27 | 0.217 (0.004) | 0.166 [25] | 0.188 (0.002) | 0.2 [37] |
RT35HC | 0.324 (0.003) | 0.2 [37] | 0.186 (0.002) | 0.2 [37] |
RT50 | 0.260 (0.005) | 0.2 [37] | 0.198 (0.002) | 0.2 [37] |
Paraffin | T (°C) | a (10−6 m2.s−1) | Phase |
---|---|---|---|
RT21 | 22.1 | 0.155 (0.006) | Liquid |
22.9 | 0.152 (0.010) | ||
23.8 | 0.147 (0.006) | ||
25.3 | 0.151 (0.005) | ||
26.5 | 0.151 (0.003) | ||
28 | 0.147 (0.008) | ||
29.9 | 0.147 (0.02) | ||
34.7 | 0.147 (0.006) | ||
39.5 | 0.149 (0.007) |
Paraffin | T (°C) | a (10−6 m2.s−1) | Phase |
---|---|---|---|
RT27 | 27.3 | 0.156 (0.003) | Liquid |
29.3 | 0.153 (0.005) | ||
34.2 | 0.157 (0.002) | ||
39.5 | 0.147 (0.003) | ||
44.6 | 0.150 (0.001) |
Paraffin | T (°C) | a (10−6 m2.s−1) | Phase |
---|---|---|---|
RT35HC | 36 | 0.140 (0.005) | Liquid |
38 | 0.134 (0.005) | ||
42 | 0.131 (0.013) | ||
44 | 0.130 (0.013) | ||
50 | 0.125 (0.014) |
Paraffin | T (°C) | a (10−6 m2.s−1) | Phase |
---|---|---|---|
RT50 | 52 | 0.170 (0.011) | Liquid |
54 | 0.146 (0.011) | ||
56 | 0.145 (0.008) | ||
58 | 0.130 (0.010) | ||
60 | 0.127 (0.008) | ||
62 | 0.124 (0.008) | ||
64 | 0.118 (0.009) | ||
68 | 0.119 (0.009) | ||
70 | 0.123 (0.009) |
Paraffin | T (°C) | (kg.m−3) | Phase | |
---|---|---|---|---|
Present Work | [37] | |||
RT21 | 17 | 748,263 (0.595) | - | Solid |
22 | 729,958 (0.053) | - | Liquid | |
25 | 728,880 (0.053) | 770 | ||
29 | 726,650 (0.053) | - | ||
34 | 724,122 (0.053) | - | ||
38 | 721,093 (0.053) | - | ||
40 | 720,368 (0.053) | - |
Paraffin | T (°C) | (kg.m−3) | Phase | |
---|---|---|---|---|
Present Work | [37] | |||
RT27 | 20 | 794,806 (0.513) | - | Solid |
28 | 787,699 (0.055) | - | Liquid | |
31 | 785,209 (0.055) | - | ||
35 | 782,087 (0.055) | - | ||
40 | 778,054 (0.054) | 760 |
Paraffin | T (°C) | (kg.m−3) | Phase | |
---|---|---|---|---|
Present Work | [37] | |||
RT35HC | 33 | 906,362 (0.642) | - | Solid |
36 | 800,077 (0.055) | - | Liquid | |
38 | 798,553 (0.055) | - | ||
40 | 796,992 (0.055) | 770 | ||
42 | 795,468 (0.055) | - | ||
45 | 793,145 (0.055) | - | ||
50 | 789,298 (0.055) | - |
Paraffin | T (°C) | (kg.m−3) | Phase | |
---|---|---|---|---|
Present Work | [37] | |||
RT50 | 40 | 904,002 (0.689) | - | Solid |
52 | 805,429 (0.055) | - | Liquid | |
55 | 801,916 (0.055) | - | ||
60 | 796,323 (0.055) | - | ||
65 | 789,818 (0.055) | - | ||
80 | - | 760 |
Paraffins | β (K−1) |
---|---|
RT21 | 0.0007 (0.0001) |
RT27 | 0.0010 (6 × 10−6) |
RT35HC | 0.0009 (10−6) |
RT50 | 0.0014 (0.0001) |
Paraffin | T | a | acalcuated |
---|---|---|---|
°C | 10−6 m2.s−1 | 10−6 m2.s−1 | |
RT21 | 22.1 | 0.155 (0.006) | 0.138 (0.024) |
22.9 | 0.152 (0.010) | 0.137 (0.024) | |
23.8 | 0.147 (0.006) | 0.136 (0.024) | |
25.3 | 0.151 (0.005) | 0.136 (0.024) | |
26.5 | 0.151 (0.003) | 0.136 (0.024) | |
28 | 0.147 (0.008) | 0.136 (0.024) | |
29.9 | 0.147 (0.02) | 0.137 (0.024) | |
34.7 | 0.147 (0.006) | 0.137 (0.024) | |
39.5 | 0.149 (0.007) | 0.138 (0.024) |
Paraffin | T | a | acalculated |
---|---|---|---|
°C | 10−6 m2.s−1 | 10−6 m2.s−1 | |
RT27 | 27.3 | 0.156 (0.003) | 0.122 (0.019) |
29.3 | 0.153(0.005) | 0.121 (0.019) | |
34.2 | 0.157 (0.002) | 0.123 (0.02) | |
39.5 | 0.147 (0.003) | 0.121 (0.02) | |
44.6 | 0.150 (0.001) | 0.121 (0.02) |
Paraffin | T | a | acalculated |
---|---|---|---|
°C | 10−6 m2.s−1 | 10−6 m2.s−1 | |
RT35HC | 36 | 0.140 (0.005) | 0.117 (0.018) |
38 | 0.134 (0.005) | 0.116 (0.018) | |
42 | 0.131 (0.013) | 0.117 (0.019) | |
44 | 0.130 (0.013) | 0.116 (0.018) | |
50 | 0.125 (0.014) | 0.116 (0.018) |
Paraffin | T | a | acalculated |
---|---|---|---|
°C | 10−6 m2.s−1 | 10−6 m2.s−1 | |
RT50 | 52 | 0.170 (0.011) | 0.119 (0.032) |
54 | 0.146 (0.011) | 0.105 (0.028) | |
56 | 0.145 (0.008) | 0.104 (0.028) | |
58 | 0.130 (0.010) | 0.103 (0.028) | |
60 | 0.127 (0.008) | 0.102 (0.028) | |
62 | 0.124 (0.008) | 0.102 (0.027) | |
64 | 0.118 (0.009) | 0.101 (0.027) | |
68 | 0.119 (0.009) | 0.102 (0.027) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraiem, M.; Karkri, M.; Fois, M.; Sobolciak, P. Thermophysical Characterization of Paraffins versus Temperature for Thermal Energy Storage. Buildings 2023, 13, 877. https://doi.org/10.3390/buildings13040877
Kraiem M, Karkri M, Fois M, Sobolciak P. Thermophysical Characterization of Paraffins versus Temperature for Thermal Energy Storage. Buildings. 2023; 13(4):877. https://doi.org/10.3390/buildings13040877
Chicago/Turabian StyleKraiem, Manel, Mustapha Karkri, Magali Fois, and Patrik Sobolciak. 2023. "Thermophysical Characterization of Paraffins versus Temperature for Thermal Energy Storage" Buildings 13, no. 4: 877. https://doi.org/10.3390/buildings13040877
APA StyleKraiem, M., Karkri, M., Fois, M., & Sobolciak, P. (2023). Thermophysical Characterization of Paraffins versus Temperature for Thermal Energy Storage. Buildings, 13(4), 877. https://doi.org/10.3390/buildings13040877