Research on Optimal Arch Rib Inclination of Large Span Highway CFST through Arch Bridge
Abstract
:1. Introduction
2. Bridge Background and Finite Element Model
3. Analysis of Reasonable Value of Arch Rib Inclination Angle
3.1. Analysis of the Influence of Natural Vibration Characteristics
3.2. Linear Elastic Stability Analysis
3.3. Static Performance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbol | Illustrate |
L | Calculated span |
f | Calculate rise-to-span ratio |
m | arch-axis coefficient |
Arch rib inclination angle | |
λ | Structural stability safety factor |
N | axial force |
M | bending moment |
References
- Chen, B.C.; Wei, J.G.; Zhou, J. Application status and Prospect of concrete filled steel tubular arch bridges in China. J. Civ. Eng. 2017, 50, 12. (In Chinese) [Google Scholar] [CrossRef]
- Hu, C.F.; Huang, Y.M. In-plane nonlinear elastic stability of pin-ended parabolic multi-span continuous arches. Eng. Struct. 2019, 190, 435–446. [Google Scholar] [CrossRef]
- Chen, B.C.; Liu, J.P. Summary of World Arch Bridge Construction and Technical Development. J. Transp. Eng. 2020, 20, 27–41. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, J.; Wang, J. Concrete-Filled Steel Tube Arch Bridges in China. Engineering 2017, 4, 143–155. [Google Scholar] [CrossRef]
- Chen, B.C.; Wang, T.L. Overview of Concrete Filled Steel Tube Arch Bridges in China. Pract. Period. Struct. Des. Constr. 2009, 14, 70–80. [Google Scholar] [CrossRef]
- Rajeev, S.; John, P.D.; Varkey, M.V. Study of concrete filled steel tubular arch bridge: A review. Appl. Mech. Mater. 2016, 857, 261–266. [Google Scholar] [CrossRef]
- Hu, J.H. Analysis of Basic Dynamic Characteristics of a Steel Tube Concrete Basket Arch Bridge. J. Nanchang Univ. (Eng. Ed.) 2019, 41, 144–148+156. (In Chinese) [Google Scholar]
- Zhang, Q.M.; Zhou, G. Research on the influence of the lateral inclination angle of the arch ribs on the stability of large-span basket arches. Bridge Constr. 2007, 37, 32–34. (In Chinese) [Google Scholar]
- Cao, Z.Z.; Feng, Y.T.; Shen, F.J. Spatial Stability Analysis of Long Span Steel Box Basket Arch Bridge. Bridge Constr. 2011, 205, 43–47. (In Chinese) [Google Scholar]
- Bonopera, M.; Chang, K.C.; Chen, C.C.; Lin, T.K.; Tullini, N. Bending tests for the structural safety assessment of space truss members. Int. J. Space Struct. 2018, 33, 026635111880412. [Google Scholar] [CrossRef]
- Maes, K.; Peeters, J.; Reynders, E.; Lombaert, G.; De Roeck, G. Identification of axial forces in beam members by local vibration measurements. J. Sound Vib. 2013, 332, 5417–5432. [Google Scholar] [CrossRef]
- Yang, Y. Design and Research on Long Span Concrete Filled Steel Tubular Arch Bridges for Heavy Haul Railways. Railw. Stand. Des. 2018, 62, 107–111+186. (In Chinese) [Google Scholar] [CrossRef]
- Yun, D.; Liu, H.; Zhang, S.M. Natural vibration characteristics and stability of large-span through steel tube concrete arch bridges. J. Jilin Univ. (Eng. Ed.) 2013, 43, 86–91. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Peng, R.H.; Guo, X.R. The effect of arch rib inclination angle on the dynamic response of steel tube concrete basket arch bridges. J. Railw. Sci. Eng. 2012, 9, 25–29. (In Chinese) [Google Scholar] [CrossRef]
- Wei, J.G.; Chen, J.W.; Xie, Z.T. Construction and analysis of a steel tube concrete dumbbell shaped cross-section basket shaped standard arch bridge. J. Fuzhou Univ. (Nat. Sci. Ed.) 2019, 47, 663–668. (In Chinese) [Google Scholar] [CrossRef]
- Zeng, D.R.; Zhang, Q.M. The influence of the inclination angle of the arch rib of a basket arch bridge on lateral stability. J. Chongqing Jiaotong Univ. 2006, 25, 4–8. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Lao, W.Q.; Feng, R. Analysis of the influence of internal inclination angle on the mechanical properties of steel tube concrete basket arches. Highw. Transp. Technol. 2007, 24, 56–58+89. (In Chinese) [Google Scholar]
- Huang, P.M.; Ren, X.; Li, W.J. The influence of arch rib inclination angle on the static and dynamic behavior of steel tube concrete arch bridges. J. Chang. Univ. (Nat. Sci. Ed.) 2009, 29, 51–55. (In Chinese) [Google Scholar]
- Xu, H.; Wu, Y.T.; Xie, W.W. Research on Reasonable Arch Rib Inclination of CFST Arch Bridges for 400 m Railway. J. Railw. Sci. Eng. 2021, 18, 1203–1212. (In Chinese) [Google Scholar]
- Wang, D.; Yao, X.L.; Yan, W.F. Analysis of the Influence of the Optimal Inclination Angle of the Arch Ribs of a Through Type Basket Arch Bridge. Transp. Sci. Eng. 2022, 38, 60–64+71. (In Chinese) [Google Scholar] [CrossRef]
- Ji, R.C.; Shi, M.X. Stability Analysis of Long Span Railway Steel Pipe Concrete Tied Arch Bridges. Vib. Impact 2011, 30, 87–91. (In Chinese) [Google Scholar] [CrossRef]
- Pan, S.S.; Zhang, Z.; Huang, C.L. Research on the influence of the inclination angle of the X-shaped double rib arch on lateral stability. J. Dalian Univ. Technol. 2008, 06, 845–850. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; Xin, J.; Jiang, Y.; Wang, C.; Zhou, J.; Yang, X. Temperature-induced deflection separation based on bridge deflection data using the TVFEMD-PE-KLD method. J. Civ. Struct. Health Monit. 2023, 13, 781–797. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, S.; Zou, K.; Qu, Y. A numerical analysis of buckle cable force of concrete arch bridge based on stress balance method. Sci. Rep. 2022, 12, 12451. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.S.; Yu, X. Local Stability Test and Numerical Analysis of Steel Bridge Towers. J. Chang. Univ. (Nat. Sci. Ed.) 2008, 127, 67–72. (In Chinese) [Google Scholar]
- Xin, J.; Jiang, Y.; Zhou, J.; Peng, L.; Liu, S.; Tang, Q. Bridge deformation prediction based on SHM data using improved VMD and conditional KDE. Eng. Struct. 2022, 261, 114285. [Google Scholar] [CrossRef]
- Xin, J.; Zhou, C.; Jiang, Y.; Tang, Q.; Yang, X.; Zhou, J. A signal recovery method for bridge monitoring system using TVFEMD and encoder-decoder aided LSTM. Measurement 2023, 214, 112797. [Google Scholar] [CrossRef]
- Geng, Y.; Ranzi, G.; Wang, Y.T. Out-of-plane creep buckling analysis on slender concrete-filled steel tubular arches. J. Constr. Steel Res. 2018, 140, 174–190. [Google Scholar] [CrossRef]
- Liu, C.Y.; Hu, Q.; Wang, Y.Y. In-plane stability of concrete-filled steel tubular parabolic truss arches. Int. J. Steel Struct. 2018, 18, 1306–1317. [Google Scholar] [CrossRef]
Serial Number | Bridge Name | Span/m | Arch Rib Section Form | Inclination Angle |
---|---|---|---|---|
1 | The Yarlung Zangbo River | 430 | Four limb truss | 4.6° |
2 | Yellow River Extra Large Bridge | 380 | Four limb truss | 8° |
3 | Guangxi Shawei Zuojiang Bridge | 360 | Four limb truss | 10° |
4 | Lancang River Grand Bridge | 342 | Four limb truss | 6.8 |
5 | Anhui Taiping Lake Bridge | 336 | Four limb truss | 10° |
6 | Zhejiang Sanmenkou Cross Sea Bridge | 270 | Dumbbell shaped | 8° |
7 | Zhejiang Tongwamen Bridge | 238 | Dumbbell shaped | 8.5° |
8 | Jinghang Canal Grand Bridge | 235 | Four limb truss | 10° |
9 | Menghua Railway Longmen Yellow River Bridge | 202 | Four limb truss | 6° |
10 | Huayudong Bridge | 180 | Four limb truss | 10° |
11 | Jiangning Grand Bridge | 128 | Dumbbell shaped | 9° |
12 | Hujiawan Grand Bridge | 112 | Dumbbell shaped | 9° |
13 | Dongtiaoxi Grand Bridge | 112 | Dumbbell shaped | 13° |
14 | Longmen Yellow River Bridge | 202 | Four limb truss | 6° |
Element Type | Quantity | |
---|---|---|
Arch Rib | Beam | 3080 |
Steel lattice beam | Beam | 1862 |
Bridge deck | Plate Element | 724 |
Suspender | Truss Element | 48 |
L/8 | 2L/8 | 3L/8 | 4L/8 | 5L/8 | 6L/8 | 7L/8 | |
---|---|---|---|---|---|---|---|
(3)—(1) | −0.1 | −2.6 | −7.6 | −6.6 | −6.3 | −1.7 | −0.2 |
(3)—(2) | 0.0 | −2.1 | −4.3 | −1.6 | −3.1 | −1.3 | −0.1 |
Modal | Natural Frequency (HZ) | Vibration Mode Direction |
---|---|---|
1 | 0.32 | Symmetrical transverse bending of the main arch |
2 | 0.53 | Antisymmetric vertical bending of the main beam and arch rib |
3 | 0.55 | Antisymmetric transverse bending of the main arch |
4 | 0.64 | Symmetrical transverse bending of the main beam and arch rib |
5 | 0.73 | Symmetrical vertical bending of the main beam and arch rib |
6 | 0.86 | Symmetrical torsion of the main beam and arch rib |
Working Condition | Modal | Linear Elastic Stability Coefficient λ | Buckling Shape |
---|---|---|---|
Dead Load | Out-of-plane 1st bucking mode | 7.447 | Antisymmetric transverse bending of the main arch |
In plane 1st bucking mode | 15.69 | Antisymmetric vertical bending of the main arch |
λ of Out-of-Plane Mode | λ of In-Plane Mode | |
---|---|---|
Linear elastic model | 7.447 | 15.69 |
Geometric nonlinear model | 7.335 | 14.77 |
Difference percentage (%) | −1.50 | −5.86 |
Internal Force | Position | Arch Foot Section | 2L/8 Section | 4L/8 Section |
---|---|---|---|---|
Axial Force (kN) | Upper chord | −13,995.48 | −18,325.64 | −22,800.5 |
Lower chord | −22,804.11 | −21,297.89 | −13,871.3 | |
Bending Moment (kN·m) | Upper chord | 124.67 | −164.95 | 487.35 |
Lower chord | −984.09 | −87.74 | 670.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wu, Y.; Wang, C.; Fan, Y.; Luo, C.; Wang, S. Research on Optimal Arch Rib Inclination of Large Span Highway CFST through Arch Bridge. Buildings 2023, 13, 1415. https://doi.org/10.3390/buildings13061415
Liu Z, Wu Y, Wang C, Fan Y, Luo C, Wang S. Research on Optimal Arch Rib Inclination of Large Span Highway CFST through Arch Bridge. Buildings. 2023; 13(6):1415. https://doi.org/10.3390/buildings13061415
Chicago/Turabian StyleLiu, Zengwu, Yuexing Wu, Chengwei Wang, Yonghui Fan, Chao Luo, and Shaorui Wang. 2023. "Research on Optimal Arch Rib Inclination of Large Span Highway CFST through Arch Bridge" Buildings 13, no. 6: 1415. https://doi.org/10.3390/buildings13061415
APA StyleLiu, Z., Wu, Y., Wang, C., Fan, Y., Luo, C., & Wang, S. (2023). Research on Optimal Arch Rib Inclination of Large Span Highway CFST through Arch Bridge. Buildings, 13(6), 1415. https://doi.org/10.3390/buildings13061415