The Policy Impact of Carbon Emission Trading on Building Enterprises’ Total Factor Productivity in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Analysis and Hypotheses
2.2. Methods
- There is no relationship between intervention and baseline outcome, which means the intervention allocation is not attributed to the outcome.
- A parallel trend can be seen between the treatment group and control groups (see line M and line N).
- Performance of intervention and comparison results is consistent for repeated research design.
- No spillover phenomenon exists.
3. Research Design
3.1. Theoretical Framework
3.2. Model Setting
3.2.1. Data Description
- —the logarithm of the TFP of private enterprise i in industry j in year t
- —the logarithm of the labor input intensity of enterprise i in industry j in year t
- —the logarithm of enterprise i capital input in industry j in year t—the logarithm of enterprise i intermediate capital input in industry j in year t—the random error terms
3.2.2. Model Construction and Theories
4. Empirical Analysis
4.1. Descriptive Statistics and Data Sources
4.2. Multicollinearity Test
4.3. Analysis of Regression Results
5. Robustness Test
5.1. Parallel Trend Test
5.2. Placebo Test
5.3. Propensity Score Matching
5.4. Substitution of Explained Variables
5.5. One-Period Lag of Explanatory Variables
6. Mechanism Test
7. Further Discussion
7.1. Analyzing by Enterprise Size
7.2. Analyzing by Enterprise Ownership
7.3. Analyzing by Financial Structure
7.4. Analyzing by Geographical Location
7.5. Analyzing by Official Subsidies
8. Conclusions and Policy Recommendations
8.1. Conclusions
8.2. Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, S.; Xie, S.-P.; Liu, W. Global Pattern Formation of Net Ocean Surface Heat Flux Response to Greenhouse Warming. J. Clim. 2020, 33, 7503–7522. [Google Scholar] [CrossRef]
- Hemer, M.A.; Katzfey, J.; Trenham, C.E. Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Model. 2013, 70, 221–245. [Google Scholar] [CrossRef]
- Song, C.; Yang, J.; Wu, F.; Xiao, X.; Cecilia, J.X.; Li, X. Response characteristics and influencing factors of carbon emissions and land surface temperature in Guangdong Province, China. Urban Clim. 2022, 46, 101330. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hobbie, J.E.; Melillo, J.M.; Moore, B.; Peterson, B.J.; Shaver, G.R.; Woodwell, G.M. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980—A net release of Co2 to the atmosphere. Ecol. Monogr. 1983, 53, 235–262. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, C.; He, B.-J. Spatial and temporal heterogeneity of urban land area and PM2.5 concentration in China. Urban Clim. 2022, 45, 101268. [Google Scholar] [CrossRef]
- Stuiver, M. Atmospheric Carbon-Dioxide and Carbon Reservoir Changes. Science 1978, 199, 253–258. [Google Scholar] [CrossRef]
- Chen, X.; Lin, B.Q. Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China. Energy Policy 2021, 157, 112510. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, J.; Xia, Y.; Liu, J.-Y. How will a nationwide carbon market affect regional economies and efficiency of CO2 emission reduction in China? China Econ. Rev. 2016, 38, 151–166. [Google Scholar] [CrossRef]
- Martin, R.; Muuls, M.; Wagner, U.J. The Impact of the European Union Emissions Trading Scheme on Regulated Firms: What Is the Evidence after Ten Years? Rev. Environ. Econ. Policy 2016, 10, 129–148. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.G.; Li, X.L.; Yuan, B.L.; Li, D.Y.; Chen, X.H. The effects of three types of environmental regulation on eco-efficiency: A cross-region analysis in China. J. Clean. Prod. 2018, 173, 245–255. [Google Scholar] [CrossRef]
- Lo, A.Y. COMMENTARY: Carbon emissions trading in China. Nat. Clim. Chang. 2012, 2, 765–766. [Google Scholar] [CrossRef] [Green Version]
- Jorgenson, D.W.; Wilcoxen, P.J. Environmental regulation and US economic growth. Rand J. Econ. 1990, 21, 314–340. [Google Scholar] [CrossRef]
- Demailly, D.; Quirion, P. European Emission Trading Scheme and competitiveness: A case study on the iron and steel industry. Energy Econ. 2008, 30, 2009–2027. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.C.; Liu, C.L. Energy productivity and total-factor productivity in the Australian construction industry. Archit. Sci. Rev. 2016, 59, 432–444. [Google Scholar] [CrossRef]
- Loschel, A.; Lutz, B.J.; Managi, S. The impacts of the EU ETS on efficiency and economic performance—An empirical analyses for German manufacturing firms. Resour. Energy Econ. 2019, 56, 71–95. [Google Scholar] [CrossRef]
- Pan, X.F.; Pu, C.X.; Yuan, S.; Xu, H.T. Effect of Chinese pilots carbon emission trading scheme on enterprises’ total factor productivity: The moderating role of government participation and carbon trading market efficiency. J. Environ. Manag. 2022, 316, 115228. [Google Scholar] [CrossRef]
- Borghesi, S.; Cainelli, G.; Mazzanti, M. Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry. Res. Policy 2015, 44, 669–683. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C.v.d. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Li, G.H.; Zhu, B.; Xie, L.; Hu, Y.; Huang, J. Evaluating the impact of carbon emissions trading scheme on Chinese firms’ total factor productivity. J. Clean. Prod. 2021, 306, 127104. [Google Scholar] [CrossRef]
- Wang, B.; Yang, M.J.; Zhang, X. The effect of the carbon emission trading scheme on a firm’s total factor productivity: An analysis of corporate green innovation and resource allocation efficiency. Front. Environ. Sci. 2022, 10, 1036482. [Google Scholar] [CrossRef]
- Miao, Z.; Balezentis, T.; Shao, S.; Chang, D.F. Energy use, industrial soot and vehicle exhaust pollution-China’s regional air pollution recognition, performance decomposition and governance. Energy Econ. 2019, 83, 501–514. [Google Scholar] [CrossRef]
- Chang, T.P.; Hu, J.L. Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China. Appl. Energy 2010, 87, 3262–3270. [Google Scholar] [CrossRef]
- Li, X.S.; Shu, Y.X.; Jin, X. Environmental regulation, carbon emissions and green total factor productivity: A case study of China. Environ. Dev. Sustain. 2022, 24, 2577–2597. [Google Scholar] [CrossRef]
- Xu, J.H.; Destech Publicat, I. Total Factor Productivity Change in China-Considering Environmental Issue. In Proceedings of the 4th International Conference on Energy and Environmental Protection (ICEEP), Shenzhen, China, 2–4 June 2015; pp. 510–514. [Google Scholar]
- Honma, S.; Hu, J.L. Total-factor energy productivity growth of regions in Japan. Energy Policy 2009, 37, 3941–3950. [Google Scholar] [CrossRef]
- Panesar, B.S.; Fluck, R.C. Energy productivity of a production system—Analysis and measurement. Agric. Syst. 1993, 43, 415–437. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X. The north-south gap and spillover effect of Chinese service industry green development. Front. Ecol. Evol. 2023, 10, 1094646. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, S.; Zhang, Y.; He, Y. Environmental regulation effect on green total factor productivity in the Yangtze River Economic Belt. J. Environ. Manag. 2023, 325, 116465. [Google Scholar] [CrossRef]
- Shao, W.; Yang, K.; Jin, Z. How the carbon emissions trading system affects green total factor productivity? A quasi-natural experiment from 281 Chinese cities. Front. Energy Res. 2023, 10, 895539. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, K.; Cui, Z.; Xu, J.; Zhao, X. Exploring the impact of the digital economy on green total factor productivity in China: A spatial econometric perspective. Front. Environ. Sci. 2023, 10, 1097944. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Y.; Wu, T. Digital economy and green total factor productivity-based on the empirical research on the resource-based cities. Environ. Sci. Pollut. Res. Int. 2023, 30, 47394–47407. [Google Scholar] [CrossRef]
- Lyu, Y.; Gu, B.; Zhang, J. Does digital finance enhance industrial green total factor productivity? Theoretical mechanism and empirical test. Environ. Sci. Pollut. Res. Int. 2023, 30, 52858–52871. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Wang, W.; Wu, Y.; Zhang, J. How does digital economy affect green total factor productivity? Evidence from China. Sci. Total Environ. 2023, 857, 159428. [Google Scholar] [CrossRef]
- Yang, Z.; Shen, Y. The impact of intelligent manufacturing on industrial green total factor productivity and its multiple mechanisms. Front. Environ. Sci. 2023, 10, 1058664. [Google Scholar] [CrossRef]
- Li, J.; Lin, Q. Threshold effects of green technology application on sustainable grain production: Evidence from China. Front. Plant Sci. 2023, 14, 1107970. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhong, S.; Zhang, Y.; Bai, Y. The Economic Impact of Green Credit: From the Perspective of Industrial Structure and Green Total Factor Productivity. Sustainability 2023, 15, 1224. [Google Scholar] [CrossRef]
- Li, L.; Han, J.; Zhu, Y. Does farmland inflow improve the green total factor productivity of farmers in China? An empirical analysis based on a propensity score matching method. Heliyon 2023, 9, e13750. [Google Scholar] [CrossRef]
- Wang, F.; Du, L.; Tian, M. Does Agricultural Credit Input Promote Agricultural Green Total Factor Productivity? Evidence from Spatial Panel Data of 30 Provinces in China. Int. J. Environ. Res. Public Health 2023, 20, 529. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.M.; Chen, Z.M.; Pan, Y.C.; Zhou, M.; Zhou, M.R. Multi-agent Based Simulation of Carbon Emissions Trading Market in China. In Proceedings of the 10th International Conference on Service Systems and Service Management (ICSSSM), Hong Kong, China, 17–19 July 2013; pp. 686–691. [Google Scholar]
- Ding, H.L.; Min, Z.L. Dynamic Impact of Carbon Emission Trading on China’s Macro Economy—Based on CGE Model. In Proceedings of the 4th International Conference on Education, Management and Computing Technology (ICEMCT), Hangzhou, China, 15–16 April 2017; pp. 1–11. [Google Scholar]
- Hua, J.; Zhu, D.; Jia, Y. Research on the Policy Effect and Mechanism of Carbon Emission Trading on the Total Factor Productivity of Agricultural Enterprises. Int. J. Environ. Res. Public Health 2022, 19, 7581. [Google Scholar] [CrossRef] [PubMed]
- Strobl, E.V.; Lasko, T.A.; Assoc Comp, M. Synthesized Difference in Differences. In Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB), Online, 1–4 August 2021. [Google Scholar]
- Angrist, J.D.; Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econ. 2021, 225, 254–277. [Google Scholar] [CrossRef]
- Lauridsen, J.; Mur, J. Multicollinearity in cross-sectional regressions. J. Geogr. Syst. 2006, 8, 317–333. [Google Scholar] [CrossRef]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Topalova, P. Factor Immobility and Regional Impacts of Trade Liberalization: Evidence on Poverty from India. Am. Econ. J. Appl. Econ. 2010, 2, 1–41. [Google Scholar] [CrossRef] [Green Version]
Variable Symbol | Variable Name | Description |
---|---|---|
TFP | Total factor productivity of enterprises | Calculated by the C-D production function approach, the OP method, and the LP method |
DID | Difference-in-differences interaction term | Treat * Post |
Size | Enterprise size | Ln (total assets at the end of the period) |
ROA | Return on assets | Net profit/total assets |
Lev | Asset-liability ratio | Total liabilities at the end of the period/total assets at the end of the period |
Cost | Agency cost | Administrative expenses/income from main businesses |
CF | Cash flow from operations | Cash flow from operations/total assets at the end of the period |
Capital | Factor intensity | Ln (actual net fixed assets per capita) |
Top1 | The shareholding ratio of the largest shareholder | The proportion of shares of the largest shareholder |
GreInvia | The enterprise’s innovation of green inventions | The number of green invention applications |
GreUmia | The enterprise’s innovation of green utility models | The number of utility applications |
N | Mean | SD | Min | Median | Max | |
---|---|---|---|---|---|---|
TFP | 1040 | 9.532 | 1.125 | 6.685 | 9.562 | 12.959 |
DID | 1040 | 0.409 | 0.492 | 0 | 0 | 1 |
Size | 1040 | 22.858 | 1.802 | 16.185 | 22.507 | 28.502 |
ROA | 1040 | 0.015 | 0.076 | −0.986 | 0.022 | 0.502 |
Lev | 1040 | 0.643 | 0.188 | 0.028 | 0.675 | 1.89 |
Cost | 1040 | 0.064 | 0.098 | 0.001 | 0.044 | 1.404 |
CF | 1040 | −0.001 | 0.365 | −11.056 | 0.013 | 0.43 |
Capital | 1040 | 12.03 | 1.137 | 4.431 | 12.06 | 15.386 |
Top1 | 1040 | 0.375 | 0.151 | 0.044 | 0.36 | 0.786 |
GreInvia | 1040 | 9.307 | 34.535 | 0 | 0 | 534 |
GreUmia | 1040 | 11.735 | 40.437 | 0 | 1 | 396 |
Variable | VIF | 1/VIF |
---|---|---|
Size | 1.850 | 0.540 |
Lev | 1.540 | 0.649 |
Top1 | 1.170 | 0.852 |
Cost | 1.170 | 0.853 |
ROA | 1.160 | 0.862 |
DID | 1.150 | 0.872 |
Capital | 1.060 | 0.946 |
CF | 1.030 | 0.971 |
Mean VIF | 1.270 |
(1) | (2) | (3) | |
---|---|---|---|
VARIABLES | TFP | TFP | TFP |
DID | 0.1483 ** | 0.4338 *** | 0.2451 *** |
(0.0737) | (0.0391) | (0.0607) | |
Size | 0.3826 *** | 0.3878 *** | |
(0.0136) | (0.0277) | ||
ROA | 1.2609 *** | 1.2183 *** | |
(0.2553) | (0.1944) | ||
Lev | 1.1627 *** | 0.7200 *** | |
(0.1183) | (0.1228) | ||
Cost | −1.8069 *** | −0.7403 *** | |
(0.1989) | (0.1641) | ||
CF | −0.1110 ** | −0.1399 *** | |
(0.0500) | (0.0391) | ||
Capital | −0.1478 *** | −0.1220 *** | |
(0.0162) | (0.0165) | ||
Top1 | 0.3749 *** | 0.3497 * | |
(0.1284) | (0.2044) | ||
Constant | 8.2875 *** | 1.5953 *** | 1.0127 * |
(0.0916) | (0.3079) | (0.5789) | |
Observations | 1040 | 1040 | 1040 |
R-squared | 0.5301 | 0.7374 | 0.7741 |
Number of id | 96 | 96 | 96 |
Firm | Yes | no | yes |
Year | yes | no | yes |
F value | 65.44 *** | 361.8 *** | 95.30 *** |
(1) | |
---|---|
VARIABLES | TFP |
Pre_3 | −0.1974 |
(0.1228) | |
Pre_2 | −0.1915 |
(0.1300) | |
Pre_1 | −0.1428 |
(0.1119) | |
Current | 0.0318 |
(0.1145) | |
Post_1 | 0.2402 ** |
(0.1089) | |
Post_2 | 0.2130 ** |
(0.1031) | |
Post_3 | 0.2287 ** |
(0.0912) | |
Size | 0.3753 *** |
(0.0667) | |
ROA | 1.2287 * |
(0.6330) | |
Lev | 0.7529 ** |
(0.3070) | |
Cost | −0.7536 ** |
(0.3071) | |
CF | −0.1245 *** |
(0.0273) | |
Capital | −0.1222 ** |
(0.0482) | |
Top1 | 0.2106 |
(0.4509) | |
Constant | 1.3276 |
(1.0568) | |
Observations | 1040 |
Number of id | 96 |
R-squared | 0.7064 |
Firm | yes |
Year | yes |
F value | 35.30 *** |
(1) | (2) | |
---|---|---|
VARIABLES | TFP (Test2011) | TFP (Test2012) |
DID2011 | −0.1679 | |
(0.1962) | ||
DID2012 | 0.2166 | |
(0.1752) | ||
Size | 0.3813 *** | 0.3860 *** |
(0.0697) | (0.0708) | |
ROA | 1.2303 * | 1.2200 * |
(0.6464) | (0.6457) | |
Lev | 0.7400 ** | 0.7307 ** |
(0.3228) | (0.3234) | |
Cost | −0.7644 ** | −0.7545 ** |
(0.3120) | (0.3129) | |
CF | −0.1388 *** | −0.1380 *** |
(0.0282) | (0.0281) | |
Capital | −0.1215 ** | −0.1222 ** |
(0.0488) | (0.0492) | |
Top1 | 0.2754 | 0.3195 |
(0.4414) | (0.4470) | |
Constant | 1.1672 | 1.0616 |
(1.1330) | (1.1336) | |
Observations | 1040 | 1040 |
R-squared | 0.7007 | 0.7025 |
Number of id | 96 | 96 |
Firm | yes | yes |
Year | yes | yes |
F value | 26.85 *** | 26.84 *** |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
VARIABLES | TFP (Kernel) | TFP (Neighbor) | TFP (Radius) | tfp_op | TFP |
DID | 0.2346 *** | 0.2383 *** | 0.2451 *** | 0.1156 *** | |
(0.0578) | (0.0836) | (0.0607) | (0.0410) | ||
L.DID | 0.2257 *** | ||||
(0.0595) | |||||
Size | 0.4034 *** | 0.4332 *** | 0.3878 *** | −0.4844 *** | 0.4091 *** |
(0.0282) | (0.0411) | (0.0277) | (0.0187) | (0.0274) | |
ROA | 1.8580 *** | 1.2500 *** | 1.2183 *** | 0.0645 | 1.0474 *** |
(0.2350) | (0.3783) | (0.1944) | (0.1311) | (0.1883) | |
Lev | 1.0121 *** | 1.0727 *** | 0.7200 *** | 0.2337 *** | 0.5797 *** |
(0.1354) | (0.2195) | (0.1228) | (0.0828) | (0.1251) | |
Cost | −0.8097 *** | −2.3120 *** | −0.7403 *** | −0.1277 | −0.8029 *** |
(0.1936) | (0.4180) | (0.1641) | (0.1107) | (0.1591) | |
CF | 0.1263 | −0.0240 | −0.1399 *** | −0.1534 *** | −0.1376 *** |
(0.1905) | (0.2633) | (0.0391) | (0.0264) | (0.0377) | |
Capital | −0.1161 *** | −0.1163 *** | −0.1220 *** | 0.7978 *** | −0.1432 *** |
(0.0157) | (0.0215) | (0.0165) | (0.0111) | (0.0169) | |
Top1 | 0.3332 * | 0.4270 | 0.3497 * | 0.0963 | 0.3902 * |
(0.2021) | (0.3012) | (0.2044) | (0.1379) | (0.2063) | |
Constant | 0.4066 | −0.2459 | 1.0127 * | 5.1146 *** | 1.5324 ** |
(0.5879) | (0.8263) | (0.5789) | (0.3906) | (0.6306) | |
Observations | 1032 | 469 | 1040 | 1040 | 944 |
R-squared | 0.7278 | 0.7855 | 0.7041 | 0.9374 | 0.7095 |
Number of id | 96 | 88 | 96 | 96 | 96 |
Firm | yes | yes | yes | yes | yes |
Year | yes | yes | yes | yes | yes |
F value | 106.2 *** | 57.01 *** | 95.30 *** | 599.3 *** | 91.69 *** |
(1) | (2) | |
---|---|---|
VARIABLES | TFP | TFP |
DID_Inv | 0.0031 *** | |
(0.0011) | ||
GreInvia | −0.0004 | |
(0.0010) | ||
DID_Um | 0.0027 ** | |
(0.0013) | ||
GreUmia | −0.0008 | |
(0.0014) | ||
DID | 0.1901 *** | 0.1892 *** |
(0.0617) | (0.0628) | |
Size | 0.3917 *** | 0.3914 *** |
(0.0275) | (0.0277) | |
ROA | 1.1927 *** | 1.2026 *** |
(0.1923) | (0.1929) | |
Lev | 0.7674 *** | 0.7525 *** |
(0.1218) | (0.1221) | |
Cost | −0.7453 *** | −0.7486 *** |
(0.1623) | (0.1629) | |
CF | −0.1450 *** | −0.1419 *** |
(0.0387) | (0.0388) | |
Capital | −0.1264 *** | −0.1274 *** |
(0.0163) | (0.0164) | |
Top1 | 0.4324 ** | 0.3509 * |
(0.2031) | (0.2031) | |
Constant | 0.9202 | 0.9767 * |
(0.5731) | (0.5767) | |
Observations | 1040 | 1040 |
R-squared | 0.7112 | 0.7093 |
Number of id | 96 | 96 |
Firm | yes | yes |
Year | yes | yes |
F value | 90.54 *** | 89.71 *** |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
VARIABLES | TFP (BigSize) | TFP (SmallSize) | TFP (State) | TFP (Private) | TFP (HighLev) | TFP (LowLev) |
DID | 0.4524 *** | 0.2544 ** | 0.1471 ** | 0.0986 | 0.2987 *** | 0.1696 * |
(0.0643) | (0.1104) | (0.0645) | (0.1038) | (0.0847) | (0.0902) | |
Size | 0.3256 *** | −0.0351 | 0.4180 *** | 0.0316 | 0.4339 *** | 0.2107 *** |
(0.0349) | (0.0595) | (0.0368) | (0.0581) | (0.0459) | (0.0562) | |
ROA | 2.2481 *** | 0.9156 *** | 2.0884 *** | 1.5757 *** | 2.1470 *** | 0.5898 ** |
(0.4484) | (0.2210) | (0.3413) | (0.2824) | (0.3275) | (0.2839) | |
Lev | 0.5320 ** | 1.2783 *** | 0.8098 *** | 1.3571 *** | 0.5554 ** | 1.2261 *** |
(0.2463) | (0.1684) | (0.1888) | (0.1846) | (0.2570) | (0.2292) | |
Cost | −3.9732 *** | −0.6114 *** | −0.9457 *** | −1.0357 *** | −1.0736 *** | −0.3362 |
(0.3984) | (0.1912) | (0.2284) | (0.2499) | (0.2788) | (0.2501) | |
CF | 0.2313 | −0.0973 ** | 0.4235 ** | −0.0501 | −0.1126 *** | 0.0141 |
(0.2232) | (0.0481) | (0.2056) | (0.0553) | (0.0408) | (0.2441) | |
Capital | −0.1547 *** | −0.0612 *** | −0.1776 *** | −0.0896 *** | −0.1210 *** | −0.0953 *** |
(0.0242) | (0.0211) | (0.0274) | (0.0208) | (0.0356) | (0.0204) | |
Top1 | 0.3878 ** | 0.2697 | 0.0101 | −1.5812 *** | 0.3917 | 0.2090 |
(0.1897) | (0.4037) | (0.2027) | (0.5084) | (0.2619) | (0.3825) | |
Constant | 3.3091 *** | 8.8143 *** | 1.0599 | 8.7615 *** | 0.4494 | 4.0085 *** |
(0.7428) | (1.1965) | (0.8546) | (1.2311) | (1.0743) | (1.1679) | |
Observations | 520 | 520 | 550 | 490 | 520 | 520 |
R-squared | 0.7818 | 0.4340 | 0.8211 | 0.5193 | 0.7175 | 0.6223 |
Number of id | 64 | 79 | 52 | 61 | 71 | 77 |
Firm | yes | yes | yes | yes | yes | yes |
Year | yes | yes | yes | yes | yes | yes |
F value | 67.45 *** | 13.93 *** | 94.80 *** | 19.07 *** | 47.04 *** | 30.09 *** |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
VARIABLES | TFP (East) | TFP (Middle) | TFP (West) | TFP (YES) | TFP (NO) |
DID | 0.2397 *** | 0.8990 *** | 0.2284 | 0.2374 *** | 1.2236 *** |
(0.0736) | (0.1906) | (0.1687) | (0.0643) | (0.3908) | |
Size | 0.3514 *** | 0.5789 *** | 0.6616 *** | 0.3934 *** | 0.1149 |
(0.0303) | (0.0870) | (0.0598) | (0.0280) | (0.1924) | |
ROA | 1.0911 *** | 2.7451 *** | 7.2857 *** | 0.9582 *** | 0.1656 |
(0.2009) | (0.6982) | (2.2270) | (0.2354) | (0.5468) | |
Lev | 0.6578 *** | 1.0717 ** | 0.9739 ** | 0.7315 *** | −0.0454 |
(0.1291) | (0.4688) | (0.4606) | (0.1288) | (0.4862) | |
Cost | −1.0754 *** | 0.0390 | 4.4635 *** | −1.2561 *** | 0.1870 |
(0.1980) | (0.3158) | (1.3190) | (0.2292) | (0.4155) | |
CF | −0.1379 *** | −0.0783 | 0.6572 | −0.1234 *** | 0.6723 |
(0.0399) | (0.4911) | (0.8775) | (0.0382) | (0.5413) | |
Capital | −0.0942 *** | −0.3218 *** | −0.2861 *** | −0.1414 *** | −0.1453 ** |
(0.0173) | (0.0603) | (0.0744) | (0.0193) | (0.0589) | |
Top1 | 0.8081 *** | −1.7837 *** | 0.2846 | 0.3370 | −0.8615 |
(0.2434) | (0.5863) | (0.3243) | (0.2066) | (1.0601) | |
Constant | 1.4196 ** | −0.6186 | −3.5124 *** | 1.8078 *** | 7.7415 * |
(0.6325) | (1.9576) | (1.2185) | (0.6592) | (4.2954) | |
Observations | 817 | 129 | 94 | 944 | 96 |
R-squared | 0.6929 | 0.9039 | 0.8831 | 0.6967 | 0.6789 |
Number of id | 75 | 11 | 10 | 96 | 36 |
Firm | yes | yes | yes | yes | yes |
Year | yes | yes | yes | yes | yes |
F value | 70.53 *** | 38.83 *** | 21.71 *** | 86.24 *** | 4.563 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Liu, Y.; Li, A. The Policy Impact of Carbon Emission Trading on Building Enterprises’ Total Factor Productivity in China. Buildings 2023, 13, 1493. https://doi.org/10.3390/buildings13061493
Tian J, Liu Y, Li A. The Policy Impact of Carbon Emission Trading on Building Enterprises’ Total Factor Productivity in China. Buildings. 2023; 13(6):1493. https://doi.org/10.3390/buildings13061493
Chicago/Turabian StyleTian, Jinzhao, Yisheng Liu, and Anlin Li. 2023. "The Policy Impact of Carbon Emission Trading on Building Enterprises’ Total Factor Productivity in China" Buildings 13, no. 6: 1493. https://doi.org/10.3390/buildings13061493
APA StyleTian, J., Liu, Y., & Li, A. (2023). The Policy Impact of Carbon Emission Trading on Building Enterprises’ Total Factor Productivity in China. Buildings, 13(6), 1493. https://doi.org/10.3390/buildings13061493