Accuracy of Non-Destructive Estimation of Length of Soil Nails
Abstract
:1. Introduction
2. NDT Methods for Estimating Nail Length
3. Database of Measured and Predicted Nail Length
4. Results of Accuracy Assessment
5. Model Calibration
6. Probability Distribution of
7. Conclusions
- (1)
- Three NDT methods for estimating soil nail length are developed. They are slope attenuation, end reflection, and the frequency change of the end reflection. On average, these NDT methods can accurately predict soil length with an error of 3%. The dispersion of prediction accuracy is low, i.e., only about 12%.
- (2)
- The three NDT methods have good stability in predicting soil nail length; their accuracies do not depend upon the hammer types and the method types at a level of significance of 0.05.
- (3)
- By introducing a simple power function to the prediction of the original NDT methods, the on-average accuracy increases by 3% and the dispersion decreases by 4%, without additional computational complexity.
- (4)
- The probability distributions of the biases for the original and improved NDT methods can be approximated using second-order Gaussian and cubic polynomial functions, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sterpi, D.; Rizzo, F.; Renda, D.; Aguglia, F.; Zenti, C.L. Soil nailing at the tunnel face in difficult conditions: A case study. Tunn. Undergr. Space Technol. 2013, 38, 129–139. [Google Scholar] [CrossRef]
- Seo, D.; Lee, T.; Kim, D.; Shin, J. Pre-nailing support for shallow soft-ground tunneling. Tunn. Undergr. Space Technol. 2014, 42, 216–226. [Google Scholar] [CrossRef]
- Bridges, C.; Gudgin, J. A soil-nailed excavation for the Brisbane Airport Link project, Australia. Proc. Inst. Civ. Eng.-Geotech. Eng. 2014, 167, 205–216. [Google Scholar] [CrossRef]
- Yadegari, S.; Yazdandoust, M.; Momeniyan, M. Performance of helical soil-nailed walls under bridge abutment. Transp. Geotech. 2023, 38, 100788. [Google Scholar] [CrossRef]
- Wang, Y.; Han, M.; Li, B.; Wan, Y. Stability evaluation of earth-rock dam reinforcement with new permeable polymer based on reliability method. Constr. Build. Mater. 2022, 320, 126294. [Google Scholar] [CrossRef]
- Fan, C.-C.; Luo, J.-H. Numerical study on the optimum layout of soil–nailed slopes. Comput. Geotech. 2008, 35, 585–599. [Google Scholar] [CrossRef]
- Liao, S.-T.; Huang, C.-K.; Wang, C.-Y. Sonic echo and impulse response tests for length evaluation of soil nails in various bonding mediums. Can. Geotech. J. 2008, 45, 1025–1035. [Google Scholar] [CrossRef]
- Lama, B.; Momayez, M. Review of Non-Destructive Methods for Rock Bolts Condition Evaluation. Mining 2023, 3, 106–120. [Google Scholar] [CrossRef]
- Shoji, M.; Hirata, A. Ultrasonic guided wave testing of anchor rods embedded in soil. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; pp. 1–4. [Google Scholar]
- Qiao, L.; Cui, M.; Cai, Q.C. Nondestructive testing for support quality of tunnel. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2014; pp. 1815–1819. [Google Scholar]
- Wang, G.; Zhang, Y.; Jiang, Y.; Liu, P.; Guo, Y.; Liu, J.; Ma, M.; Wang, K.; Wang, S. Shear behaviour and acoustic emission characteristics of bolted rock joints with different roughnesses. Rock Mech. Rock Eng. 2018, 51, 1885–1906. [Google Scholar] [CrossRef]
- Civera, M.; Surace, C. Non-destructive techniques for the condition and structural health monitoring of wind turbines: A literature review of the last 20 years. Sensors 2022, 22, 1627. [Google Scholar] [CrossRef]
- Xu, M.H.; Lan, Q.Q.; Jin, W.J. Method to Detect Bolting Devices Based on Ultrasonic Guided Wave. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2012; pp. 1906–1909. [Google Scholar]
- Stepinski, T. Novel instrument for inspecting rock bolt integrity using ultrasonic guided waves. Measurement 2021, 177, 109271. [Google Scholar] [CrossRef]
- Zou, D.; Cui, Y.; Madenga, V.; Zhang, C. Effects of frequency and grouted length on the behavior of guided ultrasonic waves in rock bolts. Int. J. Rock Mech. Min. Sci. 2007, 44, 813–819. [Google Scholar] [CrossRef]
- Chen, X.; Xu, K. Propagation characteristic of ultrasonic Lamb wave. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2012; pp. 987–990. [Google Scholar]
- Ramalho, G.; Lopes, A.M.; Silva, L. Structural health monitoring of adhesive joints using Lamb waves: A review. Struct. Control Health Monit. 2021, 29, e2849. [Google Scholar] [CrossRef]
- Nakamura, K.; Kobayashi, Y.; Oda, K.; Shigemura, S. Classification of Elastic Wave for Non-Destructive Inspections Based on Self-Organizing Map. Sustainability 2023, 15, 4846. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Radzieński, M.; Kudela, P. 50th anniversary article: Comparison studies of full wavefield signal processing for crack detection. Strain 2014, 50, 275–291. [Google Scholar] [CrossRef]
- Langenberg, K.; Mayer, K.; Marklein, R. Nondestructive testing of concrete with electromagnetic and elastic waves: Modeling and imaging. Cem. Concr. Compos. 2006, 28, 370–383. [Google Scholar] [CrossRef]
- Ziaja, D.; Nazarko, P. SHM system for anomaly detection of bolted joints in engineering structures. In Structures; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3877–3884. [Google Scholar]
- Yang, Z.; Yang, H.; Tian, T.; Deng, D.; Hu, M.; Ma, J.; Gao, D.; Zhang, J.; Ma, S.; Yang, L. A review in guided-ultrasonic-wave-based structural health monitoring: From fundamental theory to machine learning techniques. Ultrasonics 2023, 133, 107014. [Google Scholar] [CrossRef]
- Beard, M.D. Guided Wave Inspection of Embedded Cylindrical Structures. Ph.D. Thesis, Department of Mechanical Engineering, Imperial College, London, UK, 2002. [Google Scholar]
- Madenga, V.; Zou, D.; Zhang, C. Effects of curing time and frequency on ultrasonic wave velocity in grouted rock bolts. J. Appl. Geophys. 2005, 59, 79–87. [Google Scholar] [CrossRef]
- Phoon, K.-K.; Tang, C. Characterisation of geotechnical model uncertainty. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2019, 13, 101–130. [Google Scholar] [CrossRef]
- Yuan, J.; Lin, P. Reliability analysis of soil nail internal limit states using default FHWA load and resistance models. Mar. Georesources Geotechnol. 2018, 37, 783–800. [Google Scholar] [CrossRef]
- Lin, P.; Chen, X.; Jiang, M.; Song, X.; Xu, M.; Huang, S. Mapping shear strength and compressibility of soft soils with artificial neural networks. Eng. Geol. 2022, 300, 106585. [Google Scholar] [CrossRef]
Wall | Soil Type | Wall Geometry | Soil Strength Properties | Nail | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (°) | (°) | (°) | (kPa) | (kN/m3) | (m) | (m) | (°) | d (mm) | ||
W1 | Silty clay | 8.1 | 10 | 0 | 22 | 16 | 18.2 | 1.2 | 1.2 | 20 | 22 |
W2 | Silty clay | 16 | 0 | 5 | 17 | 22 | 17.9 | 1.2 | 1.2 | 15 | 25 |
W3 | Silty clay with gravel | 22 | 20 | 20 | 21 | 10 | 19 | 1.35 | 1.35 | 10 | 30 |
W4 | Clay, medium sand | 32 | 40 | 6 | 23–31 | 10–16 | 20 | 1.5 | 1.5 | 10 | 36 |
W5 | Silty clay, sand | 6.2 | 0 | 0 | 24 | 18 | 19 | 1.4 | 1.4 | 10 | 22 |
W6 | Silty sand, clay | 6–12 | 15 | 5 | 27–31.9 | 0–17 | 19.1–20.2 | 1.4 | 1.4 | 10 | 25 |
W7 | Silty clay, coarse sand | 8–10 | 6 | 0 | 12.3 | 16 | 20.8 | 1.2 | 1.2 | 15 | 25 |
W8 | Silty clay | 17 | 10 | 5 | 18.9 | 26 | 19.2 | 1.5 | 1.5 | 10 | 25 |
W9 | Sandy silt, fine sand | 20.5 | 11.3–22 | 0 | 20–40 | 0–20 | 19.2 | 1.5 | 1.5 | 8 | 30 |
No. | True Length (m) | Hammer Type | Estimation Method a | NDT Nail Length (m) | No. | True Length (m) | Hammer Type | Estimation Method a | NDT Nail Length (m) |
---|---|---|---|---|---|---|---|---|---|
1 | 9.0 | Small | SA | 9.11 | 59 | 4.5 | Large | FC | 4.33 |
2 | 9.0 | Small | SA | 9.09 | 60 | 4.5 | Large | FC | 4.33 |
3 | 9.0 | Large | FC | 9.08 | 61 | 4.5 | Small | SA | 4.13 |
4 | 9.0 | Large | FC | 9.08 | 62 | 4.5 | Small | FC | 4.10 |
5 | 9.0 | Small | FC | 9.04 | 63 | 4.5 | Large | FC | 4.13 |
6 | 9.0 | Small | SA | 9.05 | 64 | 4.5 | Large | FC | 4.09 |
7 | 9.0 | Large | SA | 8.99 | 65 | 4.5 | Small | SA | 4.36 |
8 | 9.0 | Large | FC | 8.87 | 66 | 4.5 | Small | FC | 4.33 |
9 | 15.2 | Small | SA | 16.71 | 67 | 4.5 | Large | SA | 4.14 |
10 | 15.2 | Small | SA | 15.94 | 68 | 4.5 | Large | SA | 4.10 |
11 | 15.2 | Large | ER | 16.52 | 69 | 4.5 | Small | SA | 3.48 |
12 | 15.2 | Large | ER | 16.59 | 70 | 4.5 | Small | SA | 3.50 |
13 | 15.6 | Small | SA | 16.40 | 71 | 4.5 | Large | SA | 3.47 |
14 | 15.6 | Small | FC | 15.89 | 72 | 4.5 | Large | SA | 3.50 |
15 | 15.6 | Large | FC | 15.47 | 73 | 4.5 | Small | FC | 3.71 |
16 | 15.6 | Large | FC | 15.71 | 74 | 4.5 | Small | FC | 3.69 |
17 | 15.6 | Small | SA | 16.37 | 75 | 4.5 | Large | FC | 3.69 |
18 | 15.6 | Small | SA | 16.41 | 76 | 4.5 | Large | FC | 3.66 |
19 | 15.6 | Large | FC | 15.09 | 77 | 4.5 | Small | SA | 3.56 |
20 | 15.6 | Large | FC | 16.00 | 78 | 4.5 | Small | SA | 3.50 |
21 | 15.6 | Small | SA | 15.98 | 79 | 4.5 | Large | SA | 3.54 |
22 | 15.6 | Small | SA | 16.07 | 80 | 4.5 | Large | SA | 3.51 |
23 | 15.6 | Large | FC | 15.90 | 81 | 5.0 | Small | SA | 4.79 |
24 | 15.6 | Large | SA | 16.39 | 82 | 5.0 | Small | FC | 4.72 |
25 | 15.6 | Small | ER | 15.52 | 83 | 5.0 | Large | FC | 4.77 |
26 | 15.6 | Small | FC | 15.45 | 84 | 5.0 | Large | FC | 4.75 |
27 | 15.6 | Large | ER | 16.17 | 85 | 12.0 | Small | SA | 12.01 |
28 | 15.6 | Large | FC | 16.16 | 86 | 12.0 | Small | SA | 11.80 |
29 | 31.6 | Small | FC | 32.40 | 87 | 12.0 | Large | SA | 11.93 |
30 | 31.6 | Small | FC | 32.5 | 88 | 12.0 | Large | SA | 11.90 |
31 | 31.2 | Small | SA | 32.2 | 89 | 12.0 | Small | ER | 11.63 |
32 | 31.2 | Small | ER | 30.42 | 90 | 12.0 | Small | FC | 11.62 |
33 | 31.2 | Large | SA | 32.13 | 91 | 12.0 | Large | FC | 12.16 |
34 | 31.2 | Large | FC | 32.08 | 92 | 12.0 | Large | FC | 11.90 |
35 | 31.6 | Small | SA | 29.98 | 93 | 21.0 | Small | ER | 21.17 |
36 | 31.6 | Small | FC | 29.04 | 94 | 20.5 | Small | FC | 17.65 |
37 | 31.6 | Large | SA | 31.84 | 95 | 20.6 | Large | FC | 19.80 |
38 | 31.6 | Large | SA | 32.21 | 96 | 20.8 | Large | FC | 25.20 |
39 | 31.6 | Small | FC | 31.66 | 97 | 21.0 | Small | ER | 20.35 |
40 | 31.6 | Small | FC | 29.37 | 98 | 21.0 | Small | FC | 25.00 |
41 | 31.6 | Large | FC | 32.74 | 99 | 24.5 | Large | FC | 28.00 |
42 | 31.6 | Large | FC | 33.08 | 100 | 28.2 | Large | FC | 29.50 |
43 | 31.6 | Large | FC | 31.74 | 101 | 3.5 | Small | ER | 3.20 |
44 | 31.6 | Large | SA | 32.07 | 102 | 3.5 | Small | FC | 3.07 |
45 | 4.5 | Small | SA | 4.28 | 103 | 6.2 | Large | FC | 6.00 |
46 | 4.5 | Small | SA | 4.42 | 104 | 9.0 | Large | FC | 9.74 |
47 | 4.5 | Large | SA | 4.09 | 105 | 9.0 | Small | ER | 9.80 |
48 | 4.5 | Large | SA | 4.15 | 106 | 9.0 | Small | FC | 10.40 |
49 | 4.5 | Small | SA | 3.95 | 107 | 26.1 | Large | FC | 27.50 |
50 | 4.5 | Small | SA | 3.94 | 108 | 26.1 | Large | FC | 27.25 |
51 | 4.5 | Large | SA | 4.10 | 109 | 23.1 | Small | ER | 22.50 |
52 | 4.5 | Large | SA | 4.16 | 110 | 3.5 | Small | FC | 6.45 |
53 | 4.5 | Small | SA | 4.35 | 111 | 3.5 | Large | FC | 4.25 |
54 | 4.5 | Small | SA | 4.31 | 112 | 15.56 | Large | FC | 15.50 |
55 | 4.5 | Large | SA | 4.40 | 113 | 3.0 | Small | ER | 3.08 |
56 | 4.5 | Large | SA | 4.24 | 114 | 3.0 | Small | FC | 2.00 |
57 | 4.5 | Small | FC | 4.23 | 115 | 3.0 | Large | FC | 4.00 |
58 | 4.5 | Small | SA | 4.34 | 116 | 3.0 | Large | FC | 3.12 |
Data Group | Mann–Whitney or Kruskal–Wallis p-Value | ||
---|---|---|---|
Mean | COV | ||
All data, n = 116 | 1.03 | 0.116 | Not applicable |
Large hammer, n = 58 | 1.02 | 0.104 | 0.219 |
Small hammer, n = 58 | 1.04 | 0.126 | >0.05 |
Frequency change of end reflection, n = 56 | 1.01 | 0.129 | 1.000 |
End reflection, n = 12 | 0.99 | 0.053 | >0.05 |
End reflection, n = 12 | 0.99 | 0.053 | 0.162 |
Slope attenuation, n = 48 | 1.06 | 0.103 | >0.05 |
Slope attenuation, n = 48 | 1.06 | 0.103 | 0.125 |
Frequency change of end reflection, n = 56 | 1.01 | 0.129 | >0.05 |
Model | Correction Bias | ||||||
---|---|---|---|---|---|---|---|
COV | Distribution | ||||||
Original | 1 | 1 | 0 | 1.03 | 0.12 | Negative | Second-order Gaussian |
Improved | 2.56 | −2.18 | 0.97 | 1.00 | 0.08 | Uncorrelated | Cubic Polynomial |
Model | Fitting Model | Expression | Parameter | Value | |
---|---|---|---|---|---|
Original | Second-order Gaussian | 1.593 | 0.975 | ||
3.962 | |||||
4.777 | |||||
0.460 | |||||
−1.510 | |||||
1.681 | |||||
Improved | Cubic Polynomial | 0.020 | 0.965 | ||
−0.012 | |||||
0.031 | |||||
1.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jin, J.; Zhang, Q.; Zhang, M.; Lin, X.; Wang, X.; Lin, P. Accuracy of Non-Destructive Estimation of Length of Soil Nails. Buildings 2023, 13, 1699. https://doi.org/10.3390/buildings13071699
Wang Y, Jin J, Zhang Q, Zhang M, Lin X, Wang X, Lin P. Accuracy of Non-Destructive Estimation of Length of Soil Nails. Buildings. 2023; 13(7):1699. https://doi.org/10.3390/buildings13071699
Chicago/Turabian StyleWang, Yonghong, Jiamin Jin, Qijun Zhang, Ming Zhang, Xiwei Lin, Xin Wang, and Peiyuan Lin. 2023. "Accuracy of Non-Destructive Estimation of Length of Soil Nails" Buildings 13, no. 7: 1699. https://doi.org/10.3390/buildings13071699
APA StyleWang, Y., Jin, J., Zhang, Q., Zhang, M., Lin, X., Wang, X., & Lin, P. (2023). Accuracy of Non-Destructive Estimation of Length of Soil Nails. Buildings, 13(7), 1699. https://doi.org/10.3390/buildings13071699