Fatigue Behaviour of CFRP Bar-Reinforced Seawater Sea Sand Concrete Beams: Deformation Analysis and Prediction
Abstract
:1. Introduction
2. Experimental Programme
2.1. Material Properties
2.2. Design and Preparation of CFRP Bar-Reinforced SSC Beams
2.3. Test Setup and Measuring Points
2.4. Loading Rules
3. Results and Discussions of Static Tests
3.1. Static Test Result
3.2. Load–Deflection Curves
3.3. Stain Analysis of SSC and CFRP Bars
4. Results and Discussions of Fatigue Tests
4.1. Fatigue Experiment Result
4.2. Fatigue Load–Deflection Curves
4.3. Crack Width
4.4. Flexural Stiffness
4.5. Mid-Span Deflection
4.6. Fatigue Strain of SSC
4.7. Fatigue Strain of CFRP Bar
5. Fatigue Life Estimation
6. Conclusions
- (1)
- Excessive stirrup spacing might change the static failure modes, thus reducing their shear capacity and deformation resistance. A tentative suggestion proposed was that the maximum stirrup spacing should be limited to 200 mm.
- (2)
- The influence of stirrup spacing was considered to improve the static crack width equation of GB 50608-2020. Then, based on this modified equation, a fatigue crack width equation considering the effect of load levels and n/N was further proposed in this paper.
- (3)
- The fatigue deflection presented a three-stage development of “disorder-orderliness-disorder”. According to the existing calculation concept, the influence of load levels and stirrup spacing was further considered, and an equation for fatigue deflection was proposed.
- (4)
- The fatigue design concept was further improved, and the fatigue life was subdivided into the fatigue life on bearing capacity and normal service. The load levels had a prominent impact on the fatigue life on bearing capacity and normal service, while the stirrup spacing only had a significant impact on the fatigue life on normal service.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, Z.; Hu, L.; Jiang, H.; Fang, S.; Zhao, G.; Ma, Y. Shear behaviour of high-strength friction-grip bolted shear connector in prefabricated steel–UHPC composite beams: Finite element modelling and parametric study. Case Stud. Constr. Mater. 2023, 18, e01860. [Google Scholar]
- Tang, Y.; Huang, Z.; Chen, Z.; Chen, M.; Zhou, H.; Zhang, H.; Sun, J. Novel visual crack width measurement based on backbone double-scale features for improved detection automation. Eng. Struct. 2023, 274, 115158. [Google Scholar] [CrossRef]
- Fang, S.; Li, L.; Luo, Z.; Fang, Z.; Huang, D.; Liu, F.; Wang, H.; Xiong, Z. Novel FRP interlocking multi-spiral reinforced-seawater sea-sand concrete square columns with longitudinal hybrid FRP–steel bars: Monotonic and cyclic axial compressive behaviours. Compos. Struct. 2023, 305, 116487. [Google Scholar] [CrossRef]
- Sun, J.; Aslani, F.; Wei, J.; Wang, X. Electromagnetic absorption of copper fiber oriented composite using 3D printing. Constr. Build. Mater. 2021, 300, 124026. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, S.; Cao, Z.; Zhao, G.; Fang, Z.; Ma, Y.; Jiang, H. Effects of stud aspect ratio and cover thickness on push-out behaviour of thin full-depth precast UHPC slabs with grouped short studs: Experimental evaluation and design considerations. J. Build. Eng. 2023, 67, 105910. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, C.; Sun, J.; Li, K.; Xiao, F.; Wang, Y.; Chen, M.; Huang, J.; Wang, X. Mixture optimisation for cement-soil mixtures with embedded GFRP tendons. J. Mater. Res. Technol.-JMRT 2022, 18, 611–628. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, C.; Zhang, Y.; Zhao, H.; Wang, Y.; Wang, X. Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil. Geomech. Eng. 2022, 28, 599–611. [Google Scholar]
- Xian, G.; Guo, R.; Li, C.; Hong, B. Mechanical properties of carbon/glass fiber reinforced polymer plates with sandwich structure exposed to freezing-thawing environment: Effects of water immersion, bending loading and fiber hybrid mode. Mech. Adv. Mater. Struct. 2023, 30, 814–834. [Google Scholar] [CrossRef]
- Abed, F.; Mehaini, Z.; Oucif, C.; Abdul–Latif, A.; Baleh, R. Quasi-static and dynamic response of GFRP and BFRP bars under compression. Compos. Part C Open Access 2020, 2, 100034. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Y.; Li, C. Experimental Investigation of Fatigue Capacity of Bending-Anchored CFRP Cables. Polymers 2023, 15, 2483. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, Y.; Li, G.; Wang, Y.; Sun, J.; Li, J. Machine-learning-assisted shear strength prediction of reinforced concrete beams with and without stirrups. Eng. Comput. 2022, 38, 1293–1307. [Google Scholar] [CrossRef]
- Xiong, Z.; Lin, L.; Qiao, S.; Li, L.; Li, Y.; He, S.; Li, Z.; Liu, F.; Chen, Y. Axial behaviour of seawater sea-sand concrete columns reinforced with basalt fibre-reinforced polymer bars under concentric compressive load. J. Build. Eng. 2022, 47, 103828. [Google Scholar] [CrossRef]
- Gravina, R.J.; Smith, S.T. Flexural behaviour of indeterminate concrete beams reinforced with FRP bars. Eng. Struct. 2008, 30, 2370–2380. [Google Scholar] [CrossRef]
- ACI 440.1R-15; Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) bars, ACI Committee 440. American Concrete Institute: Farmington Hills, MI, USA, 2015.
- CSA S806-12; Design and Construction of Building Structures with Fibre-Reinforced Polymers. Canadian Standards Association: Toronto, ON, Canada, 2012.
- GB 50608-2020; Technical Standard for Fiber Reinforced Polymer (FRP) in Construction. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2020.
- Shamass, R.; Cashell, K.A. Experimental investigation into the flexural behaviour of basalt FRP reinforced concrete members. Eng. Struct. 2020, 220, 110950. [Google Scholar] [CrossRef]
- Li, L.; Lu, J.; Fang, S.; Liu, F.; Li, S. Flexural study of concrete beams with basalt fibre polymer bars. Proc. Inst. Civil Eng.-Struct. Build. 2018, 171, 505–516. [Google Scholar] [CrossRef]
- Kara, I.F.; Ashour, A.F.; Dundar, C. Deflection of concrete structures reinforced with FRP bars. Compos. Part B Eng. 2013, 44, 375–384. [Google Scholar] [CrossRef]
- Kara, I.F.; Ashour, A.F. Flexural behaviour of FRP reinforced concrete beams. Compos. Struct. 2012, 94, 1616–1625. [Google Scholar] [CrossRef]
- Acciai, A.; D’Ambrisi, A.; De Stefano, M.; Feo, L.; Focacci, F.; Nudo, R. Experimental response of FRP reinforced members without transverse reinforcement: Failure modes and design issues. Compos. Part B Eng. 2016, 89, 397–407. [Google Scholar] [CrossRef]
- Barris, C.; Torres, L.; Vilanova, I.; Miàs, C.; Llorens, M. Experimental study on crack width and crack spacing for Glass-FRP reinforced concrete beams. Eng. Struct. 2017, 131, 231–242. [Google Scholar] [CrossRef]
- ACI Committee215. Considerations for Design of Concrete Structure Subjected to Fatigue Loading. J. ACI 1974, 71, 97–120. [Google Scholar]
- Zhao, J.; Li, G.; Wang, Z.; Zhao, X. Fatigue behavior of concrete beams reinforced with glass- and carbon-fiber reinforced polymer (GFRP/CFRP) bars after exposure to elevated temperatures. Compos. Struct. 2019, 229, 111427. [Google Scholar] [CrossRef]
- Li, L.; Hou, B.; Lu, Z.; Liu, F. Fatigue behaviour of sea sand concrete beams reinforced with basalt fibre-reinforced polymer bars. Constr. Build. Mater. 2018, 179, 160–171. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, W.; Gribniak, V.; Hui, D. Fatigue behavior of concrete beams prestressed with partially bonded CFRP bars subjected to cyclic loads. Materials 2019, 12, 3352. [Google Scholar] [CrossRef] [PubMed]
- Younes, T.; Al-Mayah, A.; Topper, T. Fatigue behaviour of prestressed concrete beams using BFRP bars. Constr. Build. Mater. 2017, 157, 313–321. [Google Scholar] [CrossRef]
- Zhu, P.; Xu, J.; Qu, W.; Hao, H. Experimental study of fatigue flexural behaviour of concrete beams reinforced with hybrid GFRP and Steel bars. J. Compos. Constr. 2017, 21, 04017036. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, P.; Ma, Z.J.; Qu, W. Fatigue flexural analysis of concrete beams reinforced with hybrid GFRP and steel bars. Eng. Struct. 2019, 199, 109635. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, C.; Li, K.; Xiao, F.; Sun, J.; Wang, Y.; Wang, X. Multi-objective optimisation design for GFRP tendon reinforced cemented soil. Constr. Build. Mater. 2022, 320, 126297. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, S.; Zhang, G.; Morsy, A.M.; Zornberg, J.G.; Huang, J. No Access Interface creep behavior of tensioned GFRP tendons embedded in cemented soils. Geosynth. Int. 2022, 29, 241–253. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, X.; Shi, C.; Zhang, Z.; Zhu, D. A review on seawater sea-sand concrete: Mixture proportion, hydration, microstructure and properties. Constr. Build. Mater. 2021, 295, 123602. [Google Scholar] [CrossRef]
- Guo, M.; Hu, B.; Xing, F.; Zhou, X.; Sun, M.; Sui, L.; Zhou, Y. Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis. Constr. Build. Mater. 2020, 234, 117339. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, G.; Zhao, X.; Zhu, H.; Shao, X. Behaviors of hybrid beams composed of seawater sea-sand concrete(SWSSC) and a prefabricated UHPC shell reinforced with FRP bars. Constr. Build. Mater. 2019, 213, 32–42. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Zhang, J.; Xiao, F.; Sun, Y.; Ren, Z.; Zhang, G.; Liu, S.; Wang, Y. Multi-objective optimisation of a graphite-slag conductive composite applying a BAS-SVR based model. J. Build. Eng. 2021, 44, 103223. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.; Zhu, Z.; He, R.; Peng, C.; Zhang, C.; Huang, J.; Wang, Y.; Wang, X. Mechanical Behaviour Prediction for Sustainable High-Strength Concrete Using Bio-Inspired Neural Network. Buildings 2022, 12, 65. [Google Scholar] [CrossRef]
- Xiao, J.; Qiang, C.; Nanni, A.; Zhang, K. Use of sea-sand and seawater in concrete construction: Current status and future opportunities. Constr. Build. Mater. 2017, 155, 1101–1111. [Google Scholar] [CrossRef]
- Ahmed, A.; Guo, S.; Zhang, Z.; Shi, C.; Zhu, D. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete. Constr. Build. Mater. 2020, 256, 119484. [Google Scholar] [CrossRef]
- Dong, B.; Liu, W.; Ma, H.; Xing, F. Electrochemical impedance spectroscopy on the hydration behavior of the mortar with marine sand. J. Build. Mater. 2013, 16, 306–309+320. [Google Scholar]
- ASTM D1141-98; Standard Practice for the Preparation of Substitute Ocean Water. American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.
- GB/T14684-2011; Sand for Construction, General Administration of Quality Supervision. Inspection and Quarantine: Beijing, China, 2011.
- Guo, X.; Xiong, Z.; Luo, Y.; Qiu, L.; Liu, J. Experimental investigation on the semi-rigid behaviour of aluminium alloy gusset joints. Thin-Walled Struct. 2015, 87, 30–40. [Google Scholar] [CrossRef]
- Sun, J.; Lin, S.; Zhang, G.; Sun, Y.; Zhang, J.; Chen, C.; Morsy, A.M.; Wang, X. The effect of graphite and slag on electrical and mechanical properties of electrically conductive cementitious composites. Constr. Build. Mater. 2021, 281, 122606. [Google Scholar] [CrossRef]
- Xiong, Z.; Guo, X.; Luo, Y.; Zhu, S.; Liu, Y. Experimental and numerical studies on single-layer reticulated shells with aluminium alloy gusset joints. Thin-Walled Struct. 2017, 118, 124–136. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Liu, S.; Dehghani, A.; Xiang, X.; Wei, J.; Wang, X. Mechanical, chemical and hydrothermal activation for waste glass reinforced cement. Constr. Build. Mater. 2021, 301, 124361. [Google Scholar] [CrossRef]
- Guo, X.; Xiong, Z.; Luo, Y.; Xu, H.; Qiu, L. Theoretical study on bending stiffness of aluminum alloy gusset joint. J. Build. Struct. 2014, 35, 144–150. [Google Scholar]
- Li, L.; Zeng, L.; Li, S.; Liu, F. Shear capacity of sea sand concrete beams with polymer bars. Proc. Inst. Civil Eng. -Struct. Build. 2019, 172, 237–248. [Google Scholar] [CrossRef]
- Stratford, T.; Burgoyne, C. Shear Analysis of Concrete with Brittle Reinforcement. J. Compos. Constr. 2003, 7, 323–330. [Google Scholar] [CrossRef]
- El-Ragaby, A.; El-Salakawy, E.; Benmokrane, B. Fatigue life evaluation of concrete bridge deck slabs reinforced with glass FRP composite bars. J. Compos. Constr. 2007, 11, 258–268. [Google Scholar] [CrossRef]
- Mai, G.; Li, L.; Chen, X.; Xiong, Z.; Liang, J.; Zou, X.; Qiu, Y.; Qiao, S.; Liang, D.; Liu, F. Fatigue behaviour of basalt fibre-reinforced polymer bar-reinforced sea sand concrete slabs. J. Mater. Res. Technol.-JMRT 2023, 22, 706–727. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Wu, Z.; Zhu, Z. Fatigue behavior of basalt fiber-reinforced polymer tendons under a marine environment. Constr. Build. Mater. 2017, 137, 46–54. [Google Scholar] [CrossRef]
- Xiong, Z.; Wei, W.; He, S.; Liu, F.; Luo, H.; Li, L. Dynamic bond behaviour of fibre-wrapped basalt fibre-reinforced polymer bars embedded in sea sand and recycled aggregate concrete under high-strain rate pull-out tests. Constr. Build. Mater. 2021, 276, 122195. [Google Scholar] [CrossRef]
- Xiong, Z.; Mai, G.; Qiao, S.; He, S.; Zhang, B.; Wang, H.; Zhou, K.; Li, L. Fatigue bond behaviour between basalt fibre-reinforced polymer bars and seawater sea-sand concrete. Ocean. Coast. Manag. 2022, 218, 106038. [Google Scholar] [CrossRef]
- Xiong, Z.; Mai, G.; Li, L.; Chen, X.; Zeng, H.; You, W. Investigation on Fatigue Bond Behaviour between GFRP Bars and Seawater Sea-sand Concrete. China J. Highw. Transp. 2022, 35, 259–268. [Google Scholar]
- Tang, Y.; Chen, Z.; Huang, Z.; Nong, Y.; Li, L. Visual measurement of dam concrete cracks based on U-net and improved thinning algorithm. J. Exp. Mech. 2022, 37, 209–220. [Google Scholar]
- Xiong, Z.; Guo, X.; Luo, Y.; Zhu, S. Elasto-plastic stability of single-layer reticulated shells with aluminium alloy gusset joints. Thin-Walled Struct. 2017, 115, 163–175. [Google Scholar] [CrossRef]
- Feng, W.; Tang, Y.; He, W.; Wei, W.; Yang, Y. Mode I dynamic fracture toughness of rubberised concrete using a drop hammer device and split Hopkinson pressure bar. J. Build. Eng. 2022, 48, 103995. [Google Scholar] [CrossRef]
- Xiong, Z.; Guo, X.; Luo, Y.; Xu, H. Numerical analysis of aluminium alloy gusset joints subjected to bending moment and axial force. Eng. Struct. 2017, 152, 1–13. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, L. Predicting flexural fatigue behaviour of RC beams strengthened with externally bonded FRP due to FRP debonding. J. Bridge Eng. 2017, 22, 04017082. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, W.; Chen, Z.; Nong, Y.; Guan, S.; Sun, J. Fracture behavior of a sustainable material: Recycled concrete with waste crumb rubber subjected to elevated temperatures. J. Clean. Prod. 2021, 318, 128553. [Google Scholar] [CrossRef]
- Balaguru, P.N.; Shah, S.P.; Naaman, A.E. Fatigue behavior and design of ferrocement beams. J. Struct. Div. 1979, 105, 1333–1346. [Google Scholar] [CrossRef]
- Lovegrove, J.M.; El Din, S. Deflection and cracking of reinforced concrete under repeated loading and fatigue. Spec. Publ. 1982, 75, 133–152. [Google Scholar]
- CEB-FIP Model Code 2010; Thomas Teford Ltd.: Lausanne, Switzerland, 2010.
- Fan, Z.; Sun, Y. Detecting and evaluation of fatigue damage in concrete with industrial computed tomography technology. Constr. Build. Mater. 2019, 223, 794–805. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Y.; Sun, J.; Tang, Y.; Wu, D.; Jiang, Z.; Wang, J.; Wang, X. Prediction of thermo-mechanical properties of rubber-modified recycled aggregate concrete. Constr. Build. Mater. 2022, 318, 125970. [Google Scholar] [CrossRef]
- Wang, X.; Shi, J.; Wu, Z.; Zhu, Z. Fatigue behavior of basalt fiber-reinforced polymer tendons for prestressing applications. J. Compos. Constr. 2016, 20, 04015079. [Google Scholar] [CrossRef]
No. | Load Types | Upper Loads | Lower Loads | Stirrup Spacing (mm) |
---|---|---|---|---|
S-100 | Static load | - | - | 100 |
S-200 | Static load | - | - | 200 |
S-300 | Static load | - | - | 300 |
F-100-0.5 | Fatigue load | 0.5 Pu | 0.1 Pu | 100 |
F-100-0.6 | Fatigue load | 0.6 Pu | 0.12 Pu | 100 |
F-100-0.7 | Fatigue load | 0.7 Pu | 0.14 Pu | 100 |
F-200-0.6 | Fatigue load | 0.6 Pu | 0.12 Pu | 200 |
F-300-0.6 | Fatigue load | 0.6 Pu | 0.12 Pu | 300 |
No. | Crack Load (kN) | Ultimate Load Pu (kN) | Maximum Width of Cracks (mm) | Failure Modes |
---|---|---|---|---|
S-100 | 30 | 175 | 1.2 | Shear failure |
S-200 | 28 | 170 | 1.44 | Shear failure |
S-300 | 22 | 130 | 1.92 | Bond failure |
No. | Upper Loads (kN) | Lower Loads (kN) | Fatigue Life | Failure Mode |
---|---|---|---|---|
F-100-0.5 | 87.5 | 17.5 | >2,000,000 | - |
F-100-0.6 | 105 | 21 | 13,772 | Fatigue shear failure |
F-100-0.7 | 122.5 | 24.5 | 2132 | Fatigue shear failure |
F-200-0.6 | 102 | 20.4 | 17,313 | Fatigue shear failure |
F-300-0.6 | 78 | 15.6 | 45,016 | Fatigue shear failure |
No. | F-100-0.5 | F-100-0.6 | F-200-0.6 | F-300-0.6 |
---|---|---|---|---|
Test | 0.58 | 0.8 | 0.98 | 1 |
Equation (2) | 0.6 | 0.76 | 1.05 | 0.97 |
RE (%) | 3.4 | 5 | 7.1 | 3 |
No. | n/N | Test | Equation (4) | RE (%) |
---|---|---|---|---|
F-100-0.5 | 0.2 | 1.07 | 1.06 | 0.9 |
0.4 | 1.14 | 1.14 | 0 | |
0.6 | 1.17 | 1.19 | 1.7 | |
F-100-0.6 | 0.2 | 1 | 0.97 | 3 |
0.4 | 1.2 | 1.16 | 3.3 | |
0.6 | 1.5 | 1.34 | 10.7 | |
F-200-0.6 | 0.2 | 1.2 | 1.26 | 5 |
0.4 | 1.36 | 1.5 | 10.3 | |
0.6 | - | 1.7 | - | |
F-300-0.6 | 0.2 | 1.34 | 1.28 | 4.5 |
0.4 | 1.62 | 1.53 | 5.6 | |
0.6 | 1.78 | 1.76 | 1.1 | |
Mean | - | - | - | 4.2 |
No. | n/N | Test | Equation (9) | RE (%) |
---|---|---|---|---|
F-100-0.5 | 0.2 | 7.5 | 7.62 | 1.6 |
0.4 | 7.78 | 7.9 | 1.5 | |
0.6 | 8.04 | 8.09 | 0.6 | |
0.8 | 8.26 | 8.23 | 0.4 | |
F-100-0.6 | 0.2 | 7.82 | 7.6 | 2.8 |
0.4 | 8.41 | 8.4 | 0.1 | |
0.6 | 9.36 | 9.41 | 0.5 | |
0.8 | 10.81 | 10.65 | 1.5 | |
F-200-0.6 | 0.2 | 9.2 | 9.13 | 0.8 |
0.4 | 10.22 | 10.53 | 3 | |
0.6 | 11.45 | 11.94 | 4.3 | |
0.8 | 13.03 | 13.4 | 2.8 | |
F-300-0.6 | 0.2 | 9.95 | 10.39 | 4.4 |
0.4 | 13.18 | 12.38 | 6.1 | |
0.6 | 15.12 | 14.49 | 4.2 | |
0.8 | 16.95 | 16.78 | 1 | |
Mean | - | - | - | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Pan, Z.; Mai, G.; Long, Y.; Kuang, B.; Zhu, J.; Guo, Q.; Liang, J.; Huang, F.; Qiao, S.; et al. Fatigue Behaviour of CFRP Bar-Reinforced Seawater Sea Sand Concrete Beams: Deformation Analysis and Prediction. Buildings 2023, 13, 2273. https://doi.org/10.3390/buildings13092273
Deng J, Pan Z, Mai G, Long Y, Kuang B, Zhu J, Guo Q, Liang J, Huang F, Qiao S, et al. Fatigue Behaviour of CFRP Bar-Reinforced Seawater Sea Sand Concrete Beams: Deformation Analysis and Prediction. Buildings. 2023; 13(9):2273. https://doi.org/10.3390/buildings13092273
Chicago/Turabian StyleDeng, Jinshang, Zezhou Pan, Guanghao Mai, Yaojian Long, Bingtian Kuang, Jianke Zhu, Quanxing Guo, Junjian Liang, Fengling Huang, Sihua Qiao, and et al. 2023. "Fatigue Behaviour of CFRP Bar-Reinforced Seawater Sea Sand Concrete Beams: Deformation Analysis and Prediction" Buildings 13, no. 9: 2273. https://doi.org/10.3390/buildings13092273
APA StyleDeng, J., Pan, Z., Mai, G., Long, Y., Kuang, B., Zhu, J., Guo, Q., Liang, J., Huang, F., Qiao, S., Li, X., & Liu, F. (2023). Fatigue Behaviour of CFRP Bar-Reinforced Seawater Sea Sand Concrete Beams: Deformation Analysis and Prediction. Buildings, 13(9), 2273. https://doi.org/10.3390/buildings13092273