Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls
Abstract
:1. Introduction
2. Research Significance
3. Database
4. The Proposed Approach
4.1. Optimization of the Neural Networks
4.2. Model Selection
4.3. Extraction of a User-Friendly Equation from the Proposed ANN
5. Comparison Study
6. Discussion
- Expanding the dataset: Efforts should be directed towards collecting a more extensive dataset of laboratory data for CSWs to bolster the robustness and generalizability of predictive models.
- Real-world validation: Conducting further experiments and sensitivity analyses within real-world applications to validate the models and account for unexplored factors.
7. Conclusions
- Due to limited laboratory data and the complexity of multiple variables in the problem, the number of unknown parameters in the ANN structures exceeded the available data. To overcome this, an optimization algorithm was employed to determine the unknown parameters of the model. The results indicate that a network with 28 neurons in the middle layer demonstrates good accuracy in estimating the target parameter.
- Sensitivity analysis reveals that altering the values of the steel plate thickness in the boundary element, yield strength of the steel faceplate, and concrete strength results in a decrease in the output, while changes in other variables lead to an increase in the output parameter.
- The weight values of the ANN, along with a numerical relationship, reveal that the section length has the most significant impact on the target parameter, with a relative importance value of 13.78%.
- To enhance the efficiency of the neural network model and reduce matrix calculations in estimating flexural strength, a step-by-step statistical approach was employed to extract a computational structure from the proposed ANN, resulting in the user-friendly formula of Equation (17).
- Based on the results obtained from the two proposed models in this article and their comparison with laboratory values, it is concluded that both proposed models exhibit acceptable accuracy compared to the AISC 341-16 seismic provisions. These models can be utilized for estimating the target parameter in this research, which is the flexural capacity of CSW members.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katsikadelis, J.; Kokkinos, F. Static and dynamic analysis of composite shear walls by the boundary element method. Acta Mech. 1987, 68, 231–250. [Google Scholar] [CrossRef]
- Yamada, M. Steel Panel encased RC composite shear walls. In Proceedings of the Composite Construction in Steel and Concrete II–Proceedings of an ASCE Engineering Foundation Conference, Trout Lodge, Potosi, MO, USA, 14–19 June 1992; pp. 899–912. [Google Scholar]
- Ren, X.D.; Bai, Q.; Yang, C.D.; Li, J. Seismic behavior of tall buildings using steel–concrete composite columns and shear walls. Struct. Des. Tall Spec. Build. 2018, 27, e1441. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Liu, C.; Miao, J. Numerical and theoretical analysis of seismic behaviour of CFDSP composite shear walls. J. Build. Eng. 2020, 31, 101359. [Google Scholar] [CrossRef]
- Tran, H.; Thai, H.T.; Ngo, T.; Uy, B.; Li, D.; Mo, J. Nonlinear inelastic simulation of high-rise buildings with innovative composite coupling shear walls and CFST columns. Struct. Des. Tall Spec. Build. 2021, 30, e1883. [Google Scholar] [CrossRef]
- Wright, H.D.; Hossain, K.M.A.; Gallocher, S.C. Composite Walls as shear elements in tall structures. In Proceedings of the ASCE Structures Congress XII, Atlanta, GA, USA, 24–28 April 1994; pp. 140–145. [Google Scholar]
- Curkovic, I.; Skejic, D.; Dzeba, I.; Lukacevic, I. Behaviour of Composite Plate Shear Walls with Variable Column Stiffness. ce/papers 2021, 4, 754–763. [Google Scholar] [CrossRef]
- Dong, H.; Cao, W.; Wu, H.; Zhang, J.; Xu, F. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams. Earthq. Eng. Eng. Vib. 2013, 12, 609–624. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, Q.; Huang, Z.; Tan, L.; Chen, J.; Ye, Y. Hysteretic model for steel–concrete composite shear walls subjected to in-plane cyclic loading. Eng. Struct. 2016, 106, 461–470. [Google Scholar] [CrossRef]
- Kisa, M.H.; Yuksel, S.B.; Caglar, N. Experimental study on hysteric behavior of composite shear walls with steel sheets. J. Build. Eng. 2021, 33, 101570. [Google Scholar] [CrossRef]
- Kizilarslan, E.; Broberg, M.; Shafaei, S.; Varma, A.H.; Bruneau, M. Seismic design coefficients and factors for coupled composite plate shear walls/concrete filled (CC-PSW/CF). Eng. Struct. 2021, 244, 112766. [Google Scholar] [CrossRef]
- Nie, J.-G.; Ma, X.-W.; Tao, M.-X.; Fan, J.-S.; Bu, F.-M. Effective stiffness of composite shear wall with double plates and filled concrete. J. Constr. Steel Res. 2014, 99, 140–148. [Google Scholar] [CrossRef]
- Yan, J.-B.; Hu, H.-T.; Wang, T. Cyclic tests on concrete-filled composite plate shear walls with enhanced C-channels. J. Constr. Steel Res. 2021, 179, 106522. [Google Scholar] [CrossRef]
- Meftah, S.; Tounsi, A.; Megueni, A.; Bedia, E.A. Lateral stiffness and vibration characteristics of RC shear walls bonded with thin composite plates. Compos. Struct. 2006, 73, 110–119. [Google Scholar] [CrossRef]
- Meftah, S.A.; Tounsi, A. Lateral stiffness and vibration characteristics of damaged RC coupled shear walls strengthened with thin composite plates. Build. Environ. 2007, 42, 3596–3605. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, X.; Dong, Y. Seismic behaviour of composite shear walls with multi-embedded steel sections. Part I: Experiment. Struct. Des. Tall Spec. Build. 2010, 19, 618–636. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Soltani, M.; Ayazi, A. Experimental investigation of composite shear walls under shear loadings. Thin-Walled Struct. 2011, 49, 842–854. [Google Scholar] [CrossRef]
- Zhang, K.; Varma, A.H.; Malushte, S.R.; Gallocher, S. Effect of shear connectors on local buckling and composite action in steel concrete composite walls. Nucl. Eng. Des. 2014, 269, 231–239. [Google Scholar] [CrossRef]
- Yeghnem, R.; Meftah, S.; Benyoucef, S.; Tounsi, A.; Bedia, E.A. A finite-element model for the lateral stiffness and vibration characteristics of RC shear walls strengthened with composite sheets: Creep and the shrinkage effect. Mech. Compos. Mater. 2013, 49, 181–192. [Google Scholar] [CrossRef]
- Meftah, S.; Mohri, F.; Daya, E. Seismic behavior of RC coupled shear walls with strengthened coupling beams by bonded thin composite plates. KSCE J. Civ. Eng. 2013, 17, 403–414. [Google Scholar] [CrossRef]
- Rahnavard, R.; Hassanipour, A.; Mounesi, A. Numerical study on important parameters of composite steel-concrete shear walls. J. Constr. Steel Res. 2016, 121, 441–456. [Google Scholar] [CrossRef]
- Shafaei, S.; Ayazi, A.; Farahbod, F. The effect of concrete panel thickness upon composite steel plate shear walls. J. Constr. Steel Res. 2016, 117, 81–90. [Google Scholar] [CrossRef]
- Dey, S.; Bhowmick, A.K. Seismic performance of composite plate shear walls. Structures 2016, 6, 59–72. [Google Scholar] [CrossRef]
- Mohammadgholibeyki, N.; Epackachi, S. Fragility functions for steel-plate concrete composite shear walls. J. Constr. Steel Res. 2020, 167, 105776. [Google Scholar] [CrossRef]
- Xiao, C.; Zhu, A.; Li, J.; Li, Y. Experimental study on seismic performance of embedded steel plate-HSC composite shear walls. J. Build. Eng. 2021, 34, 101909. [Google Scholar] [CrossRef]
- Seo, J.; Varma, A.H.; Sener, K.; Ayhan, D. Steel-plate composite (SC) walls: In-plane shear behavior, database, and design. J. Constr. Steel Res. 2016, 119, 202–215. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Whittaker, A.S. Numerical modelling of steel-plate concrete composite shear walls. Eng. Struct. 2017, 150, 1–11. [Google Scholar] [CrossRef]
- Shafaei, S.; Farahbod, F.; Ayazi, A. The wall–frame and the steel–concrete interactions in composite shear walls. Struct. Des. Tall Spec. Build. 2018, 27, e1476. [Google Scholar] [CrossRef]
- Wang, W.; Ren, Y.; Han, B.; Ren, T.; Liu, G.; Liang, Y. Seismic performance of corrugated steel plate concrete composite shear walls. Struct. Des. Tall Spec. Build. 2019, 28, e1564. [Google Scholar] [CrossRef]
- Varma, A.H.; Shafaei, S.; Klemencic, R. Steel modules of composite plate shear walls: Behavior, stability, and design. Thin-Walled Struct. 2019, 145, 106384. [Google Scholar] [CrossRef]
- Haghi, N.; Epackachi, S.; Kazemi, M.T. Macro modeling of steel-concrete composite shear walls. Structures 2020, 23, 383–406. [Google Scholar] [CrossRef]
- Hayatdavoodi, A.; Dehghani, A.; Aslani, F.; Alahi, F.N. The development of a novel analytical model to design composite steel plate shear walls under eccentric shear. J. Build. Eng. 2021, 44, 103281. [Google Scholar] [CrossRef]
- Kizilarslan, E.; Broberg, M.; Shafaei, S.; Varma, A.H.; Bruneau, M. Non-linear analysis models for Composite Plate Shear Walls-Concrete Filled (C-PSW/CF). J. Constr. Steel Res. 2021, 184, 106803. [Google Scholar] [CrossRef]
- Olabi, M.N.; Caglar, N.; Kisa, M.H.; Yuksel, S.B. Numerical study on the response of composite shear walls with steel sheets under cyclic loading. J. Build. Eng. 2021, 34, 102069. [Google Scholar] [CrossRef]
- Shafaei, S.; Varma, A.H.; Broberg, M.; Klemencic, R. Modeling the cyclic behavior of composite plate shear walls/concrete filled (C-PSW/CF). J. Constr. Steel Res. 2021, 184, 106810. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, Y.; Chen, Z. Experimental seismic behavior of innovative composite shear walls. J. Constr. Steel Res. 2016, 116, 218–232. [Google Scholar] [CrossRef]
- Guo, L.; Rong, Q.; Qu, B.; Liu, J. Testing of steel plate shear walls with composite columns and infill plates connected to beams only. Eng. Struct. 2017, 136, 165–179. [Google Scholar] [CrossRef]
- Wu, L.; Tian, Y.; Su, Y.; Chen, H. Seismic performance of precast composite shear walls reinforced by concrete-filled steel tubes. Eng. Struct. 2018, 162, 72–83. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Zhang, S. Experimental study of rectangular multi-partition steel-concrete composite shear walls. Thin-Walled Struct. 2018, 130, 577–592. [Google Scholar] [CrossRef]
- Ren, F.; Chen, J.; Chen, G.; Guo, Y.; Jiang, T. Seismic behavior of composite shear walls incorporating concrete-filled steel and FRP tubes as boundary elements. Eng. Struct. 2018, 168, 405–419. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Li, G.; Ning, X. Seismic performance of encased steel plate-reinforced gangue concrete composite shear walls. KSCE J. Civ. Eng. 2019, 23, 2919–2932. [Google Scholar] [CrossRef]
- Labibzadeh, M.; Hamidi, R. A comparison between shear capacities of two composite shear walls: DSCSWs and CSPSWs. Struct. Eng. Int. 2019, 29, 276–281. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, K.; Chen, Y.; Ding, Y. Experimental study on the seismic behaviour of composite shear walls with stiffened steel plates and infilled concrete. Thin-Walled Struct. 2019, 144, 106279. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Cao, W.; Yu, C. Seismic behavior of composite shear walls incorporating high-strength materials and CFST boundary elements. Eng. Struct. 2020, 220, 110994. [Google Scholar] [CrossRef]
- Hu, L.; Feng, P.; Lin, H.; Yang, J.-Q.; Qiang, H. Seismic performance of composite shear walls with embedded FCCCs in boundary elements. Compos. Struct. 2021, 257, 113126. [Google Scholar] [CrossRef]
- Yan, J.-B.; Hu, H.-T.; Wang, T. Seismic behaviour of novel concrete-filled composite plate shear walls with boundary columns. J. Constr. Steel Res. 2021, 179, 106507. [Google Scholar] [CrossRef]
- Dan, D.; Fabian, A.; Stoian, V. Nonlinear behavior of composite shear walls with vertical steel encased profiles. Eng. Struct. 2011, 33, 2794–2804. [Google Scholar] [CrossRef]
- Booth, P.N.; Bhardwaj, S.R.; Tseng, T.-C.; Seo, J.; Varma, A.H. Ultimate shear strength of steel-plate composite (SC) walls with boundary elements. J. Constr. Steel Res. 2020, 165, 105810. [Google Scholar] [CrossRef]
- Haghi, N.; Epackachi, S.; Kazemi, M.T. Cyclic performance of composite shear walls with boundary elements. Structures 2020, 27, 102–117. [Google Scholar] [CrossRef]
- Wang, J.-J.; Nie, X.; Bu, F.-M.; Tao, M.-X.; Fan, J.-S. Experimental study and design method of shear-dominated composite plate shear walls. Eng. Struct. 2020, 215, 110656. [Google Scholar] [CrossRef]
- Mei, C.; Zhao, Z.; Zhang, Y.; Wang, D.; Wu, C. Performance Evaluation and Shear Resistance of Modular Prefabricated Two-Side Connected Composite Shear Walls. KSCE J. Civ. Eng. 2021, 25, 2936–2950. [Google Scholar] [CrossRef]
- Zhou, J.; Ling, Y.; Jiang, Y. Seismic Behaviour of PC-encased HCSC Composite Shear Walls under Vertical Tension and Horizontal Cyclic Loading. J. Earthq. Eng. 2022, 26, 6778–6802. [Google Scholar] [CrossRef]
- Mo, J.; Uy, B.; Li, D.; Thai, H.T.; Tran, H. A review of the behaviour and design of steel–concrete composite shear walls. Structures 2021, 31, 1230–1253. [Google Scholar] [CrossRef]
- ANSI/AISC 341-16; Seismic Provisions for Structural Steel Buildings. AISC: Chicago, IL, USA, 2016.
- Nie, X.; Wang, J.-J.; Tao, M.-X.; Fan, J.-S.; Bu, F.-M. Experimental study of flexural critical reinforced concrete filled composite plate shear walls. Eng. Struct. 2019, 197, 109439. [Google Scholar] [CrossRef]
- Hooshmand, M.K.; Hosahalli, D. Network anomaly detection using deep learning techniques. CAAI Trans. Intell. Technol. 2022, 7, 228–243. [Google Scholar] [CrossRef]
- Yadav, K.; Yadav, M.; Saini, S. Stock values predictions using deep learning based hybrid models. CAAI Trans. Intell. Technol. 2022, 7, 107–116. [Google Scholar] [CrossRef]
- Zhang, Z.; De Luca, G.; Archambault, B.; Chavez, J.; Rice, B. Traffic Dataset and Dynamic Routing Algorithm in Traffic Simulation. J. Artif. Intell. Technol. 2022, 2, 111–122. [Google Scholar] [CrossRef]
- Zheng, M.; Zhi, K.; Zeng, J.; Tian, C.; You, L. A hybrid CNN for image denoising. J. Artif. Intell. Technol. 2022, 2, 93–99. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Mirrashid, M.; Naderpour, H. Transit search: An optimization algorithm based on exoplanet exploration. Results Control Optim. 2022, 7, 100127. [Google Scholar] [CrossRef]
- Milne, L. Feature selection using neural networks with contribution measures. In Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence, AI’95, Canberra, Australia, 13–17 November 1995. [Google Scholar]
Variable | Unit | Name in This Research | Minimum | Maximum | Mean | St. Dev. | Median |
---|---|---|---|---|---|---|---|
Wall height | mm | X1 | 750.00 | 3850.00 | 2379.34 | 658.06 | 1200 |
Section length | mm | X2 | 750.00 | 1284.00 | 1055.41 | 175.93 | 2016 |
Thickness of the wall web | mm | X3 | 90.00 | 214.00 | 143.24 | 42.82 | 2350 |
Length of the boundary element | mm | X4 | 0.00 | 280.00 | 165.16 | 71.13 | 1020 |
Thickness of the boundary element | mm | X5 | 100.00 | 219.10 | 152.50 | 42.05 | 140 |
Steel plate thickness in boundary element | mm | X6 | 2.94 | 10.00 | 5.01 | 2.12 | 150 |
Steel faceplate thickness | mm | X7 | 1.83 | 10.00 | 4.78 | 2.27 | 140 |
Yield strength of steel faceplate | MPa | X8 | 245.00 | 443.00 | 335.49 | 56.12 | 4.71 |
Yield strength of steel in boundary element | MPa | X9 | 245.00 | 443.00 | 331.01 | 55.37 | 4.08 |
Concrete strength | MPa | X10 | 25.30 | 92.60 | 49.18 | 21.42 | 322 |
Axial stress | MPa | X11 | 0.00 | 30.04 | 12.59 | 9.67 | 306 |
Flexural capacity | kN.m | Y | 858.00 | 6929.00 | 2868.19 | 1942.09 | 41.3 |
Neuron | Input 1 | Input 2 | Input 3 | Input 4 | Input 5 | Input 6 | Input 7 | Input 8 | Input 9 | Input 10 | Input 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
N1 | −0.011503 | −0.004022 | −0.002823 | −0.000002 | 0.000000 | 0.001313 | −0.007224 | −0.018706 | 0.001310 | −0.001246 | −0.001350 |
N2 | −0.003010 | 0.000005 | 0.002786 | −0.000007 | −0.001349 | 0.013977 | 0.000000 | −0.002840 | 0.000001 | −0.006054 | −0.001337 |
N3 | 0.000966 | 0.003575 | −0.003528 | 0.000143 | 0.000007 | 0.003397 | −0.000949 | −0.002801 | 0.000005 | −0.002819 | −0.004304 |
N4 | 0.000000 | −0.000019 | −0.000019 | −0.002874 | 0.000002 | 0.000215 | 0.000621 | 0.001310 | −0.001844 | 0.000003 | −0.004217 |
N5 | 0.006638 | −0.004013 | 0.000002 | 0.000000 | −0.000002 | −0.001310 | 0.000000 | 0.000002 | −0.001262 | 0.001310 | −0.001307 |
N6 | 0.000923 | 0.001884 | −0.000049 | 0.002092 | 0.000000 | −0.000927 | −0.010491 | 0.003001 | 0.001871 | 0.004747 | 0.000000 |
N7 | 0.001925 | −0.004841 | 0.000002 | 0.001310 | 0.000000 | 0.002856 | 0.000042 | 0.000000 | 0.006810 | 0.002394 | 0.004729 |
N8 | 0.000002 | 0.001655 | −0.000318 | −0.001310 | 0.002144 | −0.000018 | 0.000041 | −0.001530 | 0.001662 | −0.001723 | 0.000000 |
N9 | −0.000983 | −0.000197 | −0.001304 | −0.001331 | 0.004399 | 0.001291 | −0.002109 | 0.002820 | 0.003538 | 0.000162 | −0.001579 |
N10 | −0.000019 | 0.000217 | −0.000090 | 0.000007 | −0.001309 | 1.955827 | −0.001317 | 0.000000 | 0.010353 | −0.000019 | −0.008409 |
N11 | −0.008876 | −0.006932 | −0.012903 | 0.000000 | −0.000006 | 0.001730 | 0.000000 | 0.001313 | 0.000019 | −0.001313 | −0.005812 |
N12 | −0.001287 | −0.000219 | −0.000018 | −0.000001 | −0.000002 | −0.000057 | −0.001692 | −0.001350 | −0.000004 | 0.000002 | −0.000004 |
N13 | 0.000000 | −0.009142 | −0.000192 | 0.000010 | −0.001310 | 0.001310 | 0.000000 | 0.000000 | 0.000001 | −0.008685 | −0.004695 |
N14 | 0.000000 | −1.305027 | −0.000010 | −0.003954 | 0.001310 | 0.002722 | −0.000010 | 0.005397 | −0.000004 | −0.000199 | −0.000303 |
N15 | 0.000000 | 0.000219 | 0.009769 | −0.000267 | 0.013826 | 0.000002 | −0.001490 | −0.000042 | 0.001307 | −0.000002 | −0.001310 |
N16 | 0.000947 | −0.002846 | −0.001979 | −0.001330 | 0.000000 | −0.006541 | −0.006685 | −0.002095 | 0.000218 | 0.000218 | 0.004712 |
N17 | −0.003684 | −0.000005 | 0.000000 | −0.000104 | 0.000000 | 0.008035 | 0.001310 | 0.008684 | 0.000018 | −0.001307 | −0.001655 |
N18 | −0.000218 | 0.004706 | −0.000002 | 0.000000 | 0.001828 | 0.000000 | 0.000000 | 0.001929 | −0.000960 | −0.000226 | 1.931129 |
N19 | 0.002160 | 0.001310 | 0.000219 | −0.006635 | 0.002873 | −0.001222 | 0.009734 | −0.000691 | −0.002075 | 0.000004 | −0.001307 |
N20 | −0.000966 | −0.000018 | −0.001310 | 0.001327 | −0.001313 | −0.000049 | 0.000234 | 0.000003 | −0.000019 | −0.002786 | 0.001000 |
N21 | 0.000000 | 0.001307 | −0.000961 | 0.000000 | −0.000003 | 0.000002 | −0.000019 | −0.000019 | 0.000003 | 0.006654 | 0.000962 |
N22 | −0.000752 | 0.006077 | −0.001316 | 0.000000 | −0.001313 | 0.001307 | 0.000000 | 0.001389 | 0.001310 | 0.002226 | 0.001248 |
N23 | −1.970320 | −0.006568 | −0.001291 | −0.005663 | −1.814332 | 0.000002 | −0.864744 | 0.000002 | −0.000002 | 0.001310 | −0.001318 |
N24 | 0.002908 | 0.006066 | 0.000000 | −0.002092 | −0.001304 | −0.004567 | −0.000166 | −0.004562 | 0.002824 | 0.000000 | 0.003524 |
N25 | 0.000097 | −0.000923 | −0.001290 | −0.000064 | 0.005243 | −0.000004 | 0.000000 | −0.000984 | −0.001854 | −0.000009 | 0.000219 |
N26 | 0.001313 | 0.008380 | −0.001642 | 0.002823 | 0.002791 | −0.002075 | 0.000004 | 0.001310 | 0.001200 | 0.000004 | −0.000007 |
N27 | 0.000218 | 0.000019 | 0.000004 | −0.000255 | 0.001335 | −0.001310 | −0.001403 | −0.000234 | −0.000040 | 0.000006 | 0.000000 |
N28 | −0.000028 | −0.000019 | 0.000019 | 0.000019 | −0.000028 | 0.006925 | −0.000745 | 0.001313 | −0.002839 | 0.000000 | 0.001295 |
Neuron | Bias 1 | LW | Bias 2 |
---|---|---|---|
N1 | 0.000049 | 0.463061 | 0.006269 |
N2 | −0.002855 | −0.000004 | - |
N3 | 0.001655 | 0.018138 | - |
N4 | 0.004712 | 0.000000 | - |
N5 | −0.000166 | −0.000002 | - |
N6 | −0.001330 | 0.145684 | - |
N7 | 0.000019 | 0.008551 | - |
N8 | 0.000959 | −0.000219 | - |
N9 | 0.000018 | 0.002786 | - |
N10 | 0.001301 | −0.000065 | - |
N11 | −0.001646 | −0.000307 | - |
N12 | 0.000002 | −0.000215 | - |
N13 | 0.002143 | 0.000000 | - |
N14 | −0.001266 | −0.815577 | - |
N15 | −0.004587 | −0.000090 | - |
N16 | −0.004343 | −0.002167 | - |
N17 | −0.003749 | −0.000019 | - |
N18 | 0.000019 | 0.974563 | - |
N19 | 0.000000 | 0.001357 | - |
N20 | −0.002839 | −0.000019 | - |
N21 | −0.003281 | −0.000019 | - |
N22 | −0.001925 | 0.000000 | - |
N23 | 0.001316 | −1.290456 | - |
N24 | −0.000009 | 0.022915 | - |
N25 | 0.001086 | 0.001310 | - |
N26 | −0.000060 | 0.000253 | - |
N27 | 0.000000 | −0.001530 | - |
N28 | 0.002856 | 0.001310 | - |
Parameter | The Proposed ANN | The Proposed Formula | AISC | ||||||
---|---|---|---|---|---|---|---|---|---|
Train | Test | All | Train | Test | All | Train | Test | All | |
RMSE | 395.50 | 350.83 | 386.43 | 557.75 | 590.42 | 564.86 | 613.12 | 943.98 | 696.80 |
MAE | 299.45 | 260.48 | 291.16 | 454.22 | 380.69 | 438.58 | 417.55 | 653.71 | 467.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirrashid, M.; Naderpour, H.; Kontoni, D.-P.N.; Jakubczyk-Gałczyńska, A.; Jankowski, R.; Nguyen, T.N. Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls. Buildings 2023, 13, 2358. https://doi.org/10.3390/buildings13092358
Mirrashid M, Naderpour H, Kontoni D-PN, Jakubczyk-Gałczyńska A, Jankowski R, Nguyen TN. Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls. Buildings. 2023; 13(9):2358. https://doi.org/10.3390/buildings13092358
Chicago/Turabian StyleMirrashid, Masoomeh, Hosein Naderpour, Denise-Penelope N. Kontoni, Anna Jakubczyk-Gałczyńska, Robert Jankowski, and Tan N. Nguyen. 2023. "Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls" Buildings 13, no. 9: 2358. https://doi.org/10.3390/buildings13092358
APA StyleMirrashid, M., Naderpour, H., Kontoni, D. -P. N., Jakubczyk-Gałczyńska, A., Jankowski, R., & Nguyen, T. N. (2023). Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls. Buildings, 13(9), 2358. https://doi.org/10.3390/buildings13092358