A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches
Abstract
:1. Introduction
2. Literature Taxonomy: Transit-Based Evacuation Planning
3. Literature Review Methodology
- Developing a review plan: The review plan plays an integral role during the review process as it allows researchers to identify which studies are out of scope as well as those that match the topic under investigation. Also, this step delineates the research aim and research questions.
- Identification: In order to identify studies to be reviewed in the context, Scopus and Web of Science databases are chosen to perform the review, since they have a larger number of indexed journals [91,92]. The selected research keywords were utilised in searching through titles, abstracts, and keywords of relevant papers and books. The chosen keywords were broad enough to avoid any artificial restrictions on the retrieved literature while still ensuring that undesired results were excluded within specified limits.
- Screening and eligibility: In this step, based on the retrieved studies to accurately delineate the scope of this SLR, the screening and eligibility evaluation is performed based on the PICO framework to guide the inclusion and exclusion criteria in SLR. In this framework, “P” stands for the population or problem that is going to be under study. “I” stands for intervention that is intended to be performed in the research. “C” stands for comparison and is related to key features that make a difference between the in-scope studies and out-of-the-scope studies. Finally, “O” stands for the desired outcome(s) that decide whether the study outcome falls within the scope of the SLR or not. The equivalent terms of the PICO framework in this review are shown in the right column of Figure 1.
- Analysing the content: In the content analysis stage, based on the refined studies in the previous step, a comprehensive analysis is conducted to provide an exclusive categorisation of literature and shed light on promising future research avenues.
4. Overall Findings from the Review
5. Content Analysis
5.1. Transit-Based Evacuation Modelling Characteristics
5.1.1. Decision Variables
5.1.2. Objective Functions
5.1.3. Mathematical Modelling Considerations
5.1.4. Input Parameter Features
5.1.5. Optimisation Approaches
5.2. Administrative Functions
6. Research Gap Analysis and Discussion
6.1. Modelling Characteristics
6.2. Administrative Function
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vahdani, B.; Veysmoradi, D.; Mousavi, S.; Amiri, M. Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty. Socio-Econ. Plan. Sci. 2022, 80, 101158. [Google Scholar] [CrossRef]
- Chan, C.L.W.; Wang, C.W.; Qu, Z.; Lu, B.Q.; Ran, M.S.; Ho, A.H.Y.; Yuan, Y.; Zhang, B.Q.; Wang, X.; Zhang, X. Posttraumatic stress disorder symptoms among adult survivors of the 2008 Sichuan earthquake in China. J. Trauma. Stress 2011, 24, 295–302. [Google Scholar] [CrossRef]
- Sawai, Y.; Namegaya, Y.; Okamura, Y.; Satake, K.; Shishikura, M. Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Sweet, W.; Zervas, C.; Gill, S.; Park, J. Hurricane Sandy inundation probabilities today and tomorrow. Bull. Am. Meteorol. Soc. 2013, 94, S17–S20. [Google Scholar]
- Filkov, A.I.; Ngo, T.; Matthews, S.; Telfer, S.; Penman, T.D. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Fryirs, K.; Zhang, N.; Ralph, T.J.; Arash, A.M. Natural flood management: Lessons and opportunities from the catastrophic 2021–2022 floods in eastern Australia. Earth Surf. Process. Landf. 2023, 48, 1649–1664. [Google Scholar] [CrossRef]
- McEntire, D.A. Disaster Response and Recovery: Strategies and Tactics for Resilience; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Lenain, P.; Bonturi, M.; Koen, V. The Economic Consequences of Terrorism. OECD Working Paper. 2002. Available online: https://www.oecd-ilibrary.org/economics/the-economic-consequences-of-terrorism_511778841283 (accessed on 20 December 2023).
- Lee, K.; Kwon, H.-M.; Cho, S.; Kim, J.; Moon, I. Improvements of safety management system in Korean chemical industry after a large chemical accident. J. Loss Prev. Process Ind. 2016, 42, 6–13. [Google Scholar] [CrossRef]
- Lei, W.; Li, A.; Gao, R.; Hao, X.; Deng, B. Simulation of pedestrian crowds’ evacuation in a huge transit terminal subway station. Phys. A Stat. Mech. Appl. 2012, 391, 5355–5365. [Google Scholar] [CrossRef]
- Lindell, M.K.; Murray-Tuite, P.; Wolshon, B.; Baker, E.J. Large-Scale Evacuation: The Analysis, Modeling, and Management of Emergency Relocation from Hazardous Areas; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Jones, J.; Walton, F.; Smith, J.; Wolshon, B. Assessment of Emergency Response Planning and Implementation for Large Scale Evacuations; Office of Nuclear Security and Incident Response, US Nuclear Regulatory Commission: Washington, DC, USA, 2008.
- Knaus, C. It Was Weirdly Functional’: The Inside Story of the Extraordinary Evacuation of Ballina Hospital. Available online: https://www.theguardian.com/australia-news/2022/mar/12/it-was-weirdly-functional-the-inside-story-of-the-extraordinary-evacuation-of-ballina-hospital (accessed on 20 December 2023).
- Press, A. Libya Evacuates Flooded City as Searchers Look for 10,000 Missing, Death Toll Passes 11,000. Available online: https://www.9news.com.au/world/libya-town-sealed-off-as-libya-flood-toll-passes-11000/082d082b-57a4-4ca8-92be-44ec367c2afb (accessed on 20 December 2023).
- Abdullah, W. Derna Evacuation Likely Amid Health Risks: Libyan Red Crescent. Available online: https://www.aa.com.tr/en/africa/derna-evacuation-likely-amid-health-risks-libyan-red-crescent/2994736 (accessed on 20 December 2023).
- Terminology on Disaster Risk Reduction; United Nations International Strategy for Disaster Reduction: Geneva, Switzerland, 2009; Available online: https://www.undrr.org/publication/2009-unisdr-terminology-disaster-risk-reduction (accessed on 20 December 2023).
- Wood, N.; Jones, J.; Peters, J.; Richards, K. Pedestrian evacuation modeling to reduce vehicle use for distant tsunami evacuations in Hawaii. Int. J. Disaster Risk Reduct. 2018, 28, 271–283. [Google Scholar] [CrossRef]
- Toledo, T.; Marom, I.; Grimberg, E.; Bekhor, S. Analysis of evacuation behavior in a wildfire event. Int. J. Disaster Risk Reduct. 2018, 31, 1366–1373. [Google Scholar] [CrossRef]
- Ping, P.; Wang, K.; Kong, D. Analysis of emergency evacuation in an offshore platform using evacuation simulation modeling. Phys. A Stat. Mech. Appl. 2018, 505, 601–612. [Google Scholar] [CrossRef]
- Meyer, M.A.; Mitchell, B.; Purdum, J.C.; Breen, K.; Iles, R.L. Previous hurricane evacuation decisions and future evacuation intentions among residents of southeast Louisiana. Int. J. Disaster Risk Reduct. 2018, 31, 1231–1244. [Google Scholar] [CrossRef]
- Hong, L.; Gao, J.; Zhu, W. Self-evacuation modelling and simulation of passengers in metro stations. Saf. Sci. 2018, 110, 127–133. [Google Scholar] [CrossRef]
- Gai, W.-M.; Du, Y.; Deng, Y.-F. Regional evacuation modeling for toxic-cloud releases and its application in strategy assessment of evacuation warning. Saf. Sci. 2018, 109, 256–269. [Google Scholar] [CrossRef]
- Foytik, P.; Robinson, R.M. Weighting critical infrastructure dependencies to facilitate evacuations. Int. J. Disaster Risk Reduct. 2018, 31, 1199–1206. [Google Scholar] [CrossRef]
- Qazi, A.N.; Okubo, K.; Kubota, H. Short-notice bus-based evacuation under dynamic demand conditions. Asian Transp. Stud. 2016, 4, 228–244. [Google Scholar]
- Murray-Tuite, P.; Wolshon, B. Evacuation transportation modeling: An overview of research, development, and practice. Transp. Res. Part C Emerg. Technol. 2013, 27, 25–45. [Google Scholar] [CrossRef]
- Lindell, M.K. Evacuation planning, analysis, and management. In Handbook of Emergency Response: A Human Factors and Systems Engineering Approach; CRC Press: Boca Raton, FL, USA, 2013; pp. 121–149. [Google Scholar]
- Jonkman, S.N. Global perspectives on loss of human life caused by floods. Nat. Hazards 2005, 34, 151–175. [Google Scholar] [CrossRef]
- do Amaral, J.V.S.; Montevechi, J.A.B.; de Carvalho Miranda, R.; de Sousa Junior, W.T. Metamodel-based simulation optimization: A systematic literature review. Simul. Model. Pract. Theory 2022, 114, 102403. [Google Scholar] [CrossRef]
- Sharbini, H.; Sallehuddin, R.; Haron, H. Crowd evacuation simulation model with soft computing optimization techniques: A systematic literature review. J. Manag. Anal. 2021, 8, 443–485. [Google Scholar] [CrossRef]
- Yi, W.; Özdamar, L. A dynamic logistics coordination model for evacuation and support in disaster response activities. Eur. J. Oper. Res. 2007, 179, 1177–1193. [Google Scholar] [CrossRef]
- Wang, Y.; Kyriakidis, M.; Dang, V.N. Incorporating human factors in emergency evacuation–An overview of behavioral factors and models. Int. J. Disaster Risk Reduct. 2021, 60, 102254. [Google Scholar] [CrossRef]
- Yoo, B.; Choi, S.D. Emergency evacuation plan for hazardous chemicals leakage accidents using GIS-based risk analysis techniques in South Korea. Int. J. Environ. Res. Public Health 2019, 16, 1948. [Google Scholar] [CrossRef] [PubMed]
- Shahparvari, S.; Abbasi, B.; Chhetri, P.; Abareshi, A. Fleet routing and scheduling in bushfire emergency evacuation: A regional case study of the Black Saturday bushfires in Australia. Transp. Res. Part D Transp. Environ. 2019, 67, 703–722. [Google Scholar] [CrossRef]
- Sun, Q.; Turkan, Y. A BIM-based simulation framework for fire safety management and investigation of the critical factors affecting human evacuation performance. Adv. Eng. Inform. 2020, 44, 101093. [Google Scholar] [CrossRef]
- Sheffi, Y.; Mahmassani, H.; Powell, W.B. A transportation network evacuation model. Transp. Res. Part A Gen. 1982, 16, 209–218. [Google Scholar] [CrossRef]
- Yamada, T. A network flow approach to a city emergency evacuation planning. Int. J. Syst. Sci. 1996, 27, 931–936. [Google Scholar] [CrossRef]
- Hamacher, H.W.; Tjandra, S.A. Mathematical Modelling of Evacuation Problems: A State of Art; Fraunhofer-Institut für Techno-und Wirtschaftsmathematik, Fraunhofer (ITWM): Kaiserslautern, Germany, 2001. [Google Scholar]
- Cova, T.J.; Johnson, J.P. A network flow model for lane-based evacuation routing. Transp. Res. Part A Policy Pract. 2003, 37, 579–604. [Google Scholar] [CrossRef]
- Xie, C.; Turnquist, M.A. Lane-based evacuation network optimization: An integrated Lagrangian relaxation and tabu search approach. Transp. Res. Part C Emerg. Technol. 2011, 19, 40–63. [Google Scholar] [CrossRef]
- Lu, Q.; Huang, Y.; Shekhar, S. Evacuation planning: A capacity constrained routing approach. In International Conference on Intelligence and Security Informatics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2665, pp. 111–125. [Google Scholar]
- Gan, H.-S.; Richter, K.-F.; Shi, M.; Winter, S. Integration of simulation and optimization for evacuation planning. Simul. Model. Pract. Theory 2016, 67, 59–73. [Google Scholar] [CrossRef]
- Sbayti, H.; Mahmassani, H. Optimal scheduling of evacuation operations. Transp. Res. Rec. J. Transp. Res. Board 2006, 1964, 238–246. [Google Scholar] [CrossRef]
- Han, L.D.; Yuan, F.; Chin, S.-M.; Hwang, H. Global optimization of emergency evacuation assignments. Interfaces 2006, 36, 502–513. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Zheng, H. Real-time mobilization decisions for multi-priority emergency response resources and evacuation groups: Model formulation and solution. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 710–736. [Google Scholar] [CrossRef]
- Bretschneider, S.; Kimms, A. A basic mathematical model for evacuation problems in urban areas. Transp. Res. Part A Policy Pract. 2011, 45, 523–539. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L.; Gao, Z.; Li, S.; Zhou, X. Evacuation planning for disaster responses: A stochastic programming framework. Transp. Res. Part C Emerg. Technol. 2016, 69, 150–172. [Google Scholar] [CrossRef]
- Çelik, M.; Ergun, Ö.; Johnson, B.; Keskinocak, P.; Lorca, Á.; Pekgün, P.; Swann, J. Humanitarian logistics. In New Directions in Informatics, Optimization, Logistics, and Production; INFORMS TutORials in Operations Research: Hanover, MD, USA, 2012; pp. 18–49. [Google Scholar] [CrossRef]
- Sarker, M.N.I.; Peng, Y.; Yiran, C.; Shouse, R.C. Disaster resilience through big data: Way to environmental sustainability. Int. J. Disaster Risk Reduct. 2020, 51, 101769. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction (UNDRR); United Nations International Strategy for Disaster Reduction (UNISDR). United Nations Office for Disaster Risk Reduction: 2018 Annual Report. 2018. Available online: https://www.undrr.org/publication/united-nations-office-disaster-risk-reduction-2018-annual-report (accessed on 20 December 2023).
- Farahani, R.Z.; Lotfi, M.; Baghaian, A.; Ruiz, R.; Rezapour, S. Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations. Eur. J. Oper. Res. 2020, 287, 787–819. [Google Scholar]
- Liang, B.; van der Wal, C.N.; Xie, K.; Chen, Y.; Brazier, F.M.; Dulebenets, M.A.; Liu, Z. Mapping the knowledge domain of soft computing applications for emergency evacuation studies: A scientometric analysis and critical review. Saf. Sci. 2023, 158, 105955. [Google Scholar] [CrossRef]
- Araki, Y.; Hokugo, A.; Pinheiro, A.T.K.; Ohtsu, N.; Cruz, A.M. Explosion at an aluminum factory caused by the July 2018 Japan floods: Investigation of damages and evacuation activities. J. Loss Prev. Process Ind. 2021, 69, 104352. [Google Scholar] [CrossRef]
- Cao, S.; Qian, J.; Li, X.; Ni, J. Evacuation simulation considering the heterogeneity of pedestrian under terrorist attacks. Int. J. Disaster Risk Reduct. 2022, 79, 103203. [Google Scholar] [CrossRef]
- He, J. Earthquake evacuation simulation of multi-story buildings during earthquakes. Earthq. Spectra 2021, 37, 95–113. [Google Scholar] [CrossRef]
- Gupta, S.; Starr, M.K.; Farahani, R.Z.; Matinrad, N. Disaster management from a POM perspective: Mapping a new domain. Prod. Oper. Manag. 2016, 25, 1611–1637. [Google Scholar] [CrossRef]
- Rozo, K.R.; Arellana, J.; Santander-Mercado, A.; Jubiz-Diaz, M. Modelling building emergency evacuation plans considering the dynamic behaviour of pedestrians using agent-based simulation. Saf. Sci. 2019, 113, 276–284. [Google Scholar] [CrossRef]
- Teichmann, D.; Dorda, M.; Sousek, R. Creation of preventive mass evacuation plan with the use of public transport. Reliab. Eng. Syst. Saf. 2021, 210, 107437. [Google Scholar] [CrossRef]
- Zong, X.; Xiong, S.; Fang, Z.; Li, Q. Multi-ant colony system for evacuation routing problem with mixed traffic flow. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; pp. 1–6. [Google Scholar]
- Lim, M.B.B.; Lim, H.R., Jr.; Piantanakulchai, M. Flood evacuation decision modeling for high risk urban area in the Philippines. Asia Pac. Manag. Rev. 2019, 24, 106–113. [Google Scholar] [CrossRef]
- Tahesh, G.; Abdulsattar, H.; Abou Zeid, M.; Chen, C. Risk perception and travel behavior under short-lead evacuation: Post disaster analysis of 2020 Beirut Port Explosion. Int. J. Disaster Risk Reduct. 2023, 89, 103603. [Google Scholar] [CrossRef]
- Ohtsu, N.; Hokugo, A.; Cruz, A.M.; Sato, Y.; Araki, Y.; Park, H. Evacuation of vulnerable people during a Natech: A case study of a flood and factory explosion in Japan. Int. J. Disaster Resil. Built Environ. 2023, 14, 53–67. [Google Scholar] [CrossRef]
- Crawford, M.C.; Bukvic, A.; Rijal, S.; Gohlke, J.M. The exposure of vulnerable coastal populations to flood-induced Natech events in Hampton Roads, Virginia. Nat. Hazards 2023, 119, 1633–1663. [Google Scholar] [CrossRef]
- Gita, K. Modeling Cascading Network Disruptions under Uncertainty for Managing Hurricane Evacuation. Ph.D. Dissertation, Arizona State University, Tempe, AZ, USA, 2020. [Google Scholar]
- Mohanty, S.; Dabral, A.; Chatterjee, R.; Shaw, R. Shelter management during pandemics: Lessons from cascading risks of cyclones and COVID-19. Int. J. Disaster Resil. Built Environ. 2022, 13, 72–88. [Google Scholar] [CrossRef]
- Seyrfar, A.; Osman, I.; Ataei, H. BIM and Building Emergency Response Management: Review of Applications. Forensic Eng. 2022, 2022, 613–619. [Google Scholar]
- Bayram, V. Optimization models for large scale network evacuation planning and management: A literature review. Surv. Oper. Res. Manag. Sci. 2016, 21, 63–84. [Google Scholar] [CrossRef]
- Sorensen, J.H.; Vogt, B.M.; Mileti, D.S. Evacuation: An Assessment of Planning and Research; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1987.
- Yusoff, M.; Ariffin, J.; Mohamed, A. Optimization approaches for macroscopic emergency evacuation planning: A survey. In Proceedings of the 2008 International Symposium on Information Technology, Kuala Lumpur, Malaysia, 26–28 August 2008; pp. 1–7. [Google Scholar]
- Gelenbe, E.; Wu, F.-J. Large scale simulation for human evacuation and rescue. Comput. Math. Appl. 2012, 64, 3869–3880. [Google Scholar] [CrossRef]
- Hawe, G.I.; Coates, G.; Wilson, D.T.; Crouch, R.S. Agent-based simulation for large-scale emergency response: A survey of usage and implementation. ACM Comput. Surv. CSUR 2012, 45, 1–51. [Google Scholar] [CrossRef]
- Swamy, R.; Kang, J.E.; Batta, R.; Chung, Y. Hurricane evacuation planning using public transportation. Socio-Econ. Plan. Sci. 2017, 59, 43–55. [Google Scholar] [CrossRef]
- Kaiser, E.I.; Hess, L.; Palomo, A.B.P. An emergency evacuation planning model for special needs populations using public transit systems. J. Public Transp. 2012, 15, 45–69. [Google Scholar] [CrossRef]
- Lindell, M.K.; Kang, J.E.; Prater, C.S. The logistics of household hurricane evacuation. Nat. Hazards 2011, 58, 1093–1109. [Google Scholar] [CrossRef]
- Giovanna, C.; Giuseppe, M.; Antonio, P.; Corrado, R.; Francesco, R.; Antonino, V. Transport models and intelligent transportation system to support urban evacuation planning process. IET Intell. Transp. Syst. 2016, 10, 279–286. [Google Scholar] [CrossRef]
- Na, H.S.; Banerjee, A. Agent-based discrete-event simulation model for no-notice natural disaster evacuation planning. Comput. Ind. Eng. 2019, 129, 44–55. [Google Scholar] [CrossRef]
- Abdelgawad, H.; Abdulhai, B. Large-scale evacuation using subway and bus transit: Approach and application in city of Toronto. J. Transp. Eng. 2012, 138, 1215–1232. [Google Scholar] [CrossRef]
- Wong, S.D.; Chorus, C.G.; Shaheen, S.A.; Walker, J.L. A revealed preference methodology to evaluate regret minimization with challenging choice sets: A wildfire evacuation case study. Travel Behav. Soc. 2020, 20, 331–347. [Google Scholar] [CrossRef]
- Litman, T. Lessons from Katrina and Rita: What major disasters can teach transportation planners. J. Transp. Eng. 2006, 132, 11–18. [Google Scholar] [CrossRef]
- Yun, N.Y.; Hamada, M. Evacuation behavior and fatality rate during the 2011 Tohoku-Oki earthquake and tsunami. Earthq. Spectra 2015, 31, 1237–1265. [Google Scholar] [CrossRef]
- Asgary, A.; Anjum, M.I.; Azimi, N. Disaster recovery and business continuity after the 2010 flood in Pakistan: Case of small businesses. Int. J. Disaster Risk Reduct. 2012, 2, 46–56. [Google Scholar] [CrossRef]
- Yazdani, M.; Haghani, M. Elderly people evacuation planning in response to extreme flood events using optimisation-based decision-making systems: A case study in western Sydney, Australia. Knowl. Based Syst. 2023, 274, 110629. [Google Scholar] [CrossRef]
- Shahparvari, S.; Chhetri, P.; Abbasi, B.; Abareshi, A. Enhancing emergency evacuation response of late evacuees: Revisiting the case of Australian Black Saturday bushfire. Transp. Res. Part E Logist. Transp. Rev. 2016, 93, 148–176. [Google Scholar] [CrossRef]
- Shahparvari, S.; Abbasi, B. Robust stochastic vehicle routing and scheduling for bushfire emergency evacuation: An Australian case study. Transp. Res. Part A Policy Pract. 2017, 104, 32–49. [Google Scholar] [CrossRef]
- Shahparvari, S.; Abbasi, B.; Chhetri, P. Possibilistic scheduling routing for short-notice bushfire emergency evacuation under uncertainties: An Australian case study. Omega 2017, 72, 96–117. [Google Scholar] [CrossRef]
- Ermel, A.P.C.; Lacerda, D.P.; Morandi, M.I.W.; Gauss, L. Literature Reviews: Modern Methods for Investigating Scientific and Technological Knowledge; Springer Nature: Berlin, Germany, 2021. [Google Scholar]
- Pittaway, L.; Robertson, M.; Munir, K.; Denyer, D.; Neely, A. Networking and innovation: A systematic review of the evidence. Int. J. Manag. Rev. 2004, 5, 137–168. [Google Scholar] [CrossRef]
- Petticrew, M.; Roberts, H. Systematic Reviews in the Social Sciences: A Practical Guide; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Creswell, J.W.; Plano-Clark, V. Designing and Conducting Mixed Methods Research; Sage Publications: Thousand Oaks, CA, USA, 2007. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Stone, P. Popping the (PICO) question in research and evidence-based practice. Nurs. Res. 2002, 15, 197–198. [Google Scholar] [CrossRef]
- Powell, K.R.; Peterson, S.R. Coverage and quality: A comparison of Web of Science and Scopus databases for reporting faculty nursing publication metrics. Nurs. Outlook 2017, 65, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A comparison between two main academic literature collections: Web of Science and Scopus databases. arXiv 2013, arXiv:1305.0377. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Lacey, F.M.; Matheson, L.; Jesson, J. Doing Your Literature Review: Traditional and Systematic Techniques; Sage Publications: London, UK, 2011; pp. 1–192. [Google Scholar]
- Bish, D.R. Planning for a bus-based evacuation. OR Spectr. 2011, 33, 629–654. [Google Scholar] [CrossRef]
- Fereiduni, M.; Shahanaghi, K. A robust optimization model for distribution and evacuation in the disaster response phase. J. Ind. Eng. Int. 2017, 13, 117–141. [Google Scholar] [CrossRef]
- Ngueveu, S.U.; Prins, C.; Calvo, R.W. An effective memetic algorithm for the cumulative capacitated vehicle routing problem. Comput. Oper. Res. 2010, 37, 1877–1885. [Google Scholar] [CrossRef]
- Bolia, N.B. Robust scheduling for large scale evacuation planning. Socio-Econ. Plan. Sci. 2020, 71, 100756. [Google Scholar]
- Rambha, T.; Nozick, L.K.; Davidson, R.; Yi, W.; Yang, K. A stochastic optimization model for staged hospital evacuation during hurricanes. Transp. Res. Part E Logist. Transp. Rev. 2021, 151, 102321. [Google Scholar] [CrossRef]
- Dalal, J.; Üster, H. Combining worst case and average case considerations in an integrated emergency response network design problem. Transp. Sci. 2018, 52, 171–188. [Google Scholar] [CrossRef]
- Ghasemi, P.; Khalili-Damghani, K.; Hafezalkotob, A.; Raissi, S. Stochastic optimization model for distribution and evacuation planning (A case study of Tehran earthquake). Socio-Econ. Plan. Sci. 2020, 71, 100745. [Google Scholar] [CrossRef]
- Rui, S.; Shiwei, H.; Zhang, L. Optimum transit operations during the emergency evacuations. J. Transp. Syst. Eng. Inf. Technol. 2009, 9, 154–160. [Google Scholar]
- Zheng, H. Optimization of bus routing strategies for evacuation. J. Adv. Transp. 2014, 48, 734–749. [Google Scholar] [CrossRef]
- Li, L.; Jin, M.; Zhang, L. Sheltering network planning and management with a case in the Gulf Coast region. Int. J. Prod. Econ. 2011, 131, 431–440. [Google Scholar] [CrossRef]
- Yao, C.; Chen, S.; Yang, Z. Evacuation Problem Under the Nuclear Leakage Accident. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 1703–1708. [Google Scholar]
- Chen, W.; Guinet, A.; Ruiz, A. Modeling and simulation of a hospital evacuation before a forecasted flood. Oper. Res. Health Care 2015, 4, 36–43. [Google Scholar] [CrossRef]
- Flores, I.; Ortuño, M.T.; Tirado, G. A goal programming model for early evacuation of vulnerable people and relief distribution during a wildfire. Saf. Sci. 2023, 164, 106117. [Google Scholar] [CrossRef]
- Goerigk, M.; Grün, B.; Heßler, P. Branch and bound algorithms for the bus evacuation problem. Comput. Oper. Res. 2013, 40, 3010–3020. [Google Scholar] [CrossRef]
- Haghpanah, F.; Foroughi, H. Optimal shelter location-allocation during evacuation with uncertainties: A scenario-based approach. arXiv 2018, arXiv:1802.05775. [Google Scholar]
- Qazi, A.-N.; Nara, Y.; Okubo, K.; Kubota, H. Demand variations and evacuation route flexibility in short-notice bus-based evacuation planning. IATSS Res. 2017, 41, 147–152. [Google Scholar] [CrossRef]
- An, S.; Cui, N.; Li, X.; Ouyang, Y. Location planning for transit-based evacuation under the risk of service disruptions. Transp. Res. Part B Methodol. 2013, 54, 1–16. [Google Scholar] [CrossRef]
- Krutein, K.F.; Goodchild, A. The isolated community evacuation problem with mixed integer programming. Transp. Res. Part E Logist. Transp. Rev. 2022, 161, 102710. [Google Scholar] [CrossRef]
- Zhang, X.; Chang, G.-L. A transit-based evacuation model for metropolitan areas. J. Public Transp. 2014, 17, 129–148. [Google Scholar] [CrossRef]
- Yazdani, M.; Haghani, M. Hospital evacuation in large-scale disasters using limited aerial transport resources. Saf. Sci. 2023, 164, 106171. [Google Scholar] [CrossRef]
- Goerigk, M.; Grün, B. A robust bus evacuation model with delayed scenario information. Or Spectr. 2014, 36, 923–948. [Google Scholar] [CrossRef]
- Yahyaei, M.; Bozorgi-Amiri, A. Robust reliable humanitarian relief network design: An integration of shelter and supply facility location. Ann. Oper. Res. 2019, 283, 897–916. [Google Scholar] [CrossRef]
- Yazdani, M.; Mojtahedi, M.; Loosemore, M. Enhancing evacuation response to extreme weather disasters using public transportation systems: A novel simheuristic approach. J. Comput. Des. Eng. 2020, 7, 195–210. [Google Scholar] [CrossRef]
- Heydar, M.; Yu, J.; Liu, Y.; Petering, M.E. Strategic evacuation planning with pedestrian guidance and bus routing: A mixed integer programming model and heuristic solution. J. Adv. Transp. 2016, 50, 1314–1335. [Google Scholar] [CrossRef]
- Goerigk, M.; Deghdak, K.; T’Kindt, V. A two-stage robustness approach to evacuation planning with buses. Transp. Res. Part B Methodol. 2015, 78, 66–82. [Google Scholar] [CrossRef]
- Ghasemi, P.; Khalili-Damghani, K.; Hafezalkotob, A.; Raissi, S. Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning. Appl. Math. Comput. 2019, 350, 105–132. [Google Scholar] [CrossRef]
- Bayram, V.; Yaman, H. Shelter location and evacuation route assignment under uncertainty: A benders decomposition approach. Transp. Sci. 2018, 52, 416–436. [Google Scholar] [CrossRef]
- Deghdak, K.; T’kindt, V.; Bouquard, J.-L. Scheduling evacuation operations. J. Sched. 2016, 19, 467–478. [Google Scholar] [CrossRef]
- Deghdak, K.; T’kindt, V.; Bouquard, J.-L. Enumeration of Pareto Optima for a Bicriteria Evacuation Scheduling Problem. In Proceedings of the ICORES, Lisbon, Portugal, 10–12 January 2015; pp. 162–171. [Google Scholar]
- Bian, R.; Wilmot, C.G. An analysis on transit pick-up points for vulnerable people during hurricane evacuation: A case study of New Orleans. Int. J. Disaster Risk Reduct. 2018, 31, 1143–1151. [Google Scholar] [CrossRef]
- Pereira, V.C.; Bish, D.R. Scheduling and routing for a bus-based evacuation with a constant evacuee arrival rate. Transp. Sci. 2015, 49, 853–867. [Google Scholar] [CrossRef]
- Li, M.; Xu, J.; Wei, L.; Jia, X.; Sun, C. Modeling a risk-based dynamic bus schedule problem under no-notice evacuation incorporated with dynamics of disaster, supply, and demand conditions. J. Adv. Transp. 2019, 2019, 9848603. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X. A multi-trip electric bus routing model considering equity during short-notice evacuations. Transp. Res. Part D Transp. Environ. 2022, 110, 103397. [Google Scholar] [CrossRef]
- Goerigk, M.; Deghdak, K.; Heßler, P. A comprehensive evacuation planning model and genetic solution algorithm. Transp. Res. Part E Logist. Transp. Rev. 2014, 71, 82–97. [Google Scholar] [CrossRef]
- Fereiduni, M.; Hamzehee, M.; Shahanaghi, K. A robust optimization model for logistics planning in the earthquake response phase. Decis. Sci. Lett. 2016, 5, 519–534. [Google Scholar] [CrossRef]
- Bolia, N.B. Operating strategies of buses for mass evacuation. Saf. Sci. 2019, 111, 167–178. [Google Scholar]
- Sidrane, C.; Kochenderfer, M.J. Closed-loop planning for disaster evacuation with stochastic arrivals. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2544–2549. [Google Scholar]
- Tayfur, E.; Taaffe, K. A model for allocating resources during hospital evacuations. Comput. Ind. Eng. 2009, 57, 1313–1323. [Google Scholar] [CrossRef]
- Nadeem, I.; Uduman, P.S.; Dar, A.A. An Integrated Bus-based Routing and Dispatching Approach for Flood Evacuation. Yugosl. J. Oper. Res. 2019, 30, 443–460. [Google Scholar] [CrossRef]
- Lamos Díaz, H.; Aguilar Imitola, K.; Barreto Robles, M.A.; Niño Niño, P.N.; Martínez Quezada, D.O. A memetic algorithm for location-routing problem with time windows for the attention of seismic disasters a case study from Bucaramanga, Colombia. INGE CUC 2018, 14, 75–86. [Google Scholar] [CrossRef]
- Tayfur, E.; Taaffe, K. Simulating hospital evacuation—The influence of traffic and evacuation time windows. J. Simul. 2009, 3, 220–234. [Google Scholar] [CrossRef]
- Dikas, G.; Minis, I. Solving the bus evacuation problem and its variants. Comput. Oper. Res. 2016, 70, 75–86. [Google Scholar] [CrossRef]
- Zhao, X.; Ji, K.; Xu, P.; Qian, W.-W.; Ren, G.; Shan, X.-N. A round-trip bus evacuation model with scheduling and routing planning. Transp. Res. Part A Policy Pract. 2020, 137, 285–300. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Lou, Y.; Yin, Y. Pick-up locations and bus allocation for transit-based evacuation planning with demand uncertainty. J. Adv. Transp. 2014, 48, 721–733. [Google Scholar] [CrossRef]
- Krasko, V.; Rebennack, S. Two-stage stochastic mixed-integer nonlinear programming model for post-wildfire debris flow hazard management: Mitigation and emergency evacuation. Eur. J. Oper. Res. 2017, 263, 265–282. [Google Scholar] [CrossRef]
- Flores, I.; Ortuño, M.T.; Tirado, G.; Vitoriano, B. Supported evacuation for disaster relief through lexicographic goal programming. Mathematics 2020, 8, 648. [Google Scholar] [CrossRef]
- Gao, X.; Nayeem, M.K.; Hezam, I.M. A robust two-stage transit-based evacuation model for large-scale disaster response. Measurement 2019, 145, 713–723. [Google Scholar] [CrossRef]
- Seraji, H.; Tavakkoli-Moghaddam, R.; Asian, S.; Kaur, H. An integrative location-allocation model for humanitarian logistics with distributive injustice and dissatisfaction under uncertainty. Ann. Oper. Res. 2022, 319, 211–257. [Google Scholar] [CrossRef]
- Dulebenets, M.A.; Pasha, J.; Kavoosi, M.; Abioye, O.F.; Ozguven, E.E.; Moses, R.; Boot, W.R.; Sando, T. Multiobjective optimization model for emergency evacuation planning in geographical locations with vulnerable population groups. J. Manag. Eng. 2020, 36, 04019043. [Google Scholar] [CrossRef]
- Adhikari, I.M.; Pyakurel, U.; Dhamala, T.N. An integrated solution approach for the time minimization evacuation planning problem. Int. J. Oper. Res. 2020, 17, 27–39. [Google Scholar]
- Nayeri, S.; Sazvar, Z.; Heydari, J. A fuzzy robust planning model in the disaster management response phase under precedence constraints. Oper. Res. 2022, 22, 3571–3605. [Google Scholar] [CrossRef]
- Mansoori, S.; Bozorgi-Amiri, A.; Pishvaee, M.S. A robust multi-objective humanitarian relief chain network design for earthquake response, with evacuation assumption under uncertainties. Neural Comput. Appl. 2020, 32, 2183–2203. [Google Scholar] [CrossRef]
- Adhikari, I.M.; Dhamala, T.N. On the transit-based evacuation strategies in an integrated network topology. Nepali Math. Sci. Rep. 2020, 37, 1–13. [Google Scholar] [CrossRef]
- Kyriakakis, N.A.; Marinaki, M.; Matsatsinis, N.; Marinakis, Y. A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning. Eur. J. Oper. Res. 2022, 300, 992–1004. [Google Scholar] [CrossRef]
- Manopiniwes, W.; Irohara, T. Stochastic optimisation model for integrated decisions on relief supply chains: Preparedness for disaster response. Int. J. Prod. Res. 2017, 55, 979–996. [Google Scholar] [CrossRef]
- Khalilpourazari, S.; Pasandideh, S.H.R. Designing emergency flood evacuation plans using robust optimization and artificial intelligence. J. Comb. Optim. 2021, 41, 640–677. [Google Scholar] [CrossRef]
- Ebrahimnejad, S.; Villeneuve, M.; Tavakkoli-Moghaddam, R. An optimization model for evacuating people with disability in extreme disaster conditions: A case study. Sci. Iran. 2021, 30, 1498–1517. [Google Scholar] [CrossRef]
- Tian, G.; Fathollahi-Fard, A.M.; Ren, Y.; Li, Z.; Jiang, X. Multi-objective scheduling of priority-based rescue vehicles to extinguish forest fires using a multi-objective discrete gravitational search algorithm. Inf. Sci. 2022, 608, 578–596. [Google Scholar] [CrossRef]
- Aalami, S.; Kattan, L. Fair dynamic resource allocation in transit-based evacuation planning. Transp. Res. Part C Emerg. Technol. 2018, 94, 307–322. [Google Scholar] [CrossRef]
- Yazdani, M.; Mojtahedi, M.; Loosemore, M.; Sanderson, D.; Dixit, V. An integrated decision model for managing hospital evacuation in response to an extreme flood event: A case study of the Hawkesbury-Nepean River, NSW, Australia. Saf. Sci. 2022, 155, 105867. [Google Scholar] [CrossRef]
- Ng, M.; Park, J.; Waller, S.T. A hybrid bilevel model for the optimal shelter assignment in emergency evacuations. Comput. Aided Civ. Infrastruct. Eng. 2010, 25, 547–556. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, Y.; Wang, D.; Ignatius, J.; Cheng, T.; Dhamotharan, L. Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics. Eur. J. Oper. Res. 2023, 305, 1042–1062. [Google Scholar] [CrossRef]
- Bayram, V.; Yaman, H. A stochastic programming approach for shelter location and evacuation planning. RAIRO-Oper. Res. 2018, 52, 779–805. [Google Scholar] [CrossRef]
- Goerigk, M.; Grün, B.; Heßler, P. Combining bus evacuation with location decisions: A branch-and-price approach. Transp. Res. Procedia 2014, 2, 783–791. [Google Scholar] [CrossRef]
- Alam, M.J.; Habib, M.A.; Husk, D. Evacuation planning for persons with mobility needs: A combined optimization and traffic microsimulation modelling approach. Int. J. Disaster Risk Reduct. 2022, 80, 103164. [Google Scholar] [CrossRef]
- Morin, M.; Abi-Zeid, I.; Quimper, C.-G. Ant colony optimization for path planning in search and rescue operations. Eur. J. Oper. Res. 2023, 305, 53–63. [Google Scholar] [CrossRef]
- Rabbani, M.; Zhalechian, M.; Farshbaf-Geranmayeh, A. A robust possibilistic programming approach to multiperiod hospital evacuation planning problem under uncertainty. Int. Trans. Oper. Res. 2018, 25, 157–189. [Google Scholar] [CrossRef]
- Esposito Amideo, A.; Scaparra, M.P.; Sforza, A.; Sterle, C. An integrated user-system approach for shelter location and evacuation routing. Networks 2021, 78, 46–68. [Google Scholar] [CrossRef]
- Ebrahimnejad, S.; Harifi, S. An optimized evacuation model with compatibility constraints in the context of disability: An ancient-inspired Giza Pyramids Construction metaheuristic approach. Appl. Intell. 2022, 52, 15040–15073. [Google Scholar] [CrossRef]
- Ahmadi, G.; Tavakkoli-Moghaddam, R.; Baboli, A.; Najafi, M. A decision support model for robust allocation and routing of search and rescue resources after earthquake: A case study. Oper. Res. 2022, 22, 1039–1081. [Google Scholar] [CrossRef]
- Ren, G.; Duan, T.-T. A Route Planning Model for Transit-Based Regional Emergency Evacuation. In CICTP 2017: Transportation Reform and Change—Equity, Inclusiveness, Sharing, and Innovation; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 4519–4529. [Google Scholar]
- Wang, Q.; Wallace, S.W. Non-compliance in transit-based evacuation pick-up point assignments. Socio-Econ. Plan. Sci. 2022, 82, 101259. [Google Scholar] [CrossRef]
- Naghawi, H.; Wolshon, B. Transit-based emergency evacuation simulation modeling. J. Transp. Saf. Secur. 2010, 2, 184–201. [Google Scholar] [CrossRef]
- Sabouhi, F.; Bozorgi-Amiri, A.; Moshref-Javadi, M.; Heydari, M. An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: A case study. Ann. Oper. Res. 2019, 283, 643–677. [Google Scholar] [CrossRef]
- Nabavi, S.; Vahdani, B.; Nadjafi, B.A.; Adibi, M. Synchronizing victim evacuation and debris removal: A data-driven robust prediction approach. Eur. J. Oper. Res. 2022, 300, 689–712. [Google Scholar] [CrossRef]
- Chang, M.-S.; Tseng, Y.-L.; Chen, J.-W. A scenario planning approach for the flood emergency logistics preparation problem under uncertainty. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 737–754. [Google Scholar] [CrossRef]
- Lim, G.J.; Zangeneh, S.; Baharnemati, M.R.; Assavapokee, T. A Simple Binary Search Algorithm for Short Notice Evacuation Scheduling and Routing. In Proceedings of the 2009 Industrial Engineering Research Conference, Miami, FL, USA, 30 May–3 June 2009. [Google Scholar]
- Pillac, V.; Cebrian, M.; Van Hentenryck, P. A column-generation approach for joint mobilization and evacuation planning. Constraints 2015, 20, 285–303. [Google Scholar] [CrossRef]
- Pillac, V.; Van Hentenryck, P.; Even, C. A conflict-based path-generation heuristic for evacuation planning. Transp. Res. Part B Methodol. 2016, 83, 136–150. [Google Scholar] [CrossRef]
- Correa, J.R.; Schulz, A.S.; Stier-Moses, N.E. Fast, fair, and efficient flows in networks. Oper. Res. 2007, 55, 215–225. [Google Scholar] [CrossRef]
- Bish, D.R.; Sherali, H.D.; Hobeika, A.G. Optimal evacuation planning using staging and routing. J. Oper. Res. Soc. 2014, 65, 124–140. [Google Scholar] [CrossRef]
- Kim, S.; Shekhar, S. Contraflow network reconfiguration for evacuation planning: A summary of results. In Proceedings of the 13th annual ACM International Workshop on Geographic Information Systems, Bremen, Germany, 4–5 November 2005; pp. 250–259. [Google Scholar]
- Lim, G.J.; Rungta, M.; Baharnemati, M.R. Reliability analysis of evacuation routes under capacity uncertainty of road links. IIE Trans. 2015, 47, 50–63. [Google Scholar] [CrossRef]
- Lu, Q.; George, B.; Shekhar, S. Capacity constrained routing algorithms for evacuation planning: A summary of results. In Proceedings of the International Symposium on Spatial and Temporal Databases, Angra dos Reis, Brazil, 22–24 August 2005; pp. 291–307. [Google Scholar]
- Zhao, X.; Ren, G.; Huang, Z.F. Optimizing one-way traffic network reconfiguration and lane-based non-diversion routing for evacuation. J. Adv. Transp. 2016, 50, 589–607. [Google Scholar] [CrossRef]
- He, X.; Zheng, H.; Peeta, S. Model and a solution algorithm for the dynamic resource allocation problem for large-scale transportation network evacuation. Transp. Res. Procedia 2015, 7, 441–458. [Google Scholar] [CrossRef]
- Hamacher, H.W.; Heller, S.; Rupp, B. Flow location (FlowLoc) problems: Dynamic network flows and location models for evacuation planning. Ann. Oper. Res. 2013, 207, 161–180. [Google Scholar] [CrossRef]
- Bretschneider, S.; Kimms, A. Pattern-based evacuation planning for urban areas. Eur. J. Oper. Res. 2012, 216, 57–69. [Google Scholar] [CrossRef]
- Kim, S.; George, B.; Shekhar, S. Evacuation route planning: Scalable heuristics. In Proceedings of the 15th annual ACM International Symposium on Advances in Geographic Information Systems, Seattle, WA, USA, 7–9 November 2007; p. 20. [Google Scholar]
- Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N.R. Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 2015, 219, 40–66. [Google Scholar] [CrossRef]
- Mohamed, R.E.; Kosba, E.; Mahar, K.; Mesbah, S. A framework for emergency-evacuation planning using GIS and DSS. In Information Fusion and Intelligent Geographic Information Systems (IF&IGIS’17); Springer: Berlin/Heidelberg, Germany, 2018; pp. 213–226. [Google Scholar]
- Archetti, C.; Speranza, M.G. The split delivery vehicle routing problem: A survey. In The Vehicle Routing Problem: Latest Advances and New Challenges; Springer: Berlin/Heidelberg, Germany, 2008; pp. 103–122. [Google Scholar]
- Yazici, M.; Ozbay, K. Impact of probabilistic road capacity constraints on the spatial distribution of hurricane evacuation shelter capacities. Transp. Res. Rec. J. Transp. Res. Board 2007, 2022, 55–62. [Google Scholar] [CrossRef]
- Shen, Z.-J.M.; Pannala, J.; Rai, R.; Tsoi, T.S. Modeling Transportation Networks during Disruptions and Emergency Evacuations; UC Berkeley: Berkeley, CA, USA, 2008. [Google Scholar]
- Yao, T.; Mandala, S.R.; Do Chung, B. Evacuation transportation planning under uncertainty: A robust optimization approach. Netw. Spat. Econ. 2009, 9, 171. [Google Scholar] [CrossRef]
- Li, J.; Ozbay, K. Evacuation planning with endogenous transportation network degradations: A stochastic cell-based model and solution procedure. Netw. Spat. Econ. 2015, 15, 677–696. [Google Scholar] [CrossRef]
- Ng, M.; Lin, D.-Y. Sharp probability inequalities for reliable evacuation planning. Transp. Res. Part C Emerg. Technol. 2015, 60, 161–168. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Do Chung, B.; Mandala, S.R.; Yao, T. Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains. Transp. Res. Part B Methodol. 2011, 45, 1177–1189. [Google Scholar] [CrossRef]
- Ng, M.; Waller, S.T. Reliable evacuation planning via demand inflation and supply deflation. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 1086–1094. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Wu, D.; Lou, Y.; Yin, Y. Robust shelter locations for evacuation planning with demand uncertainty. J. Transp. Saf. Secur. 2011, 3, 272–288. [Google Scholar] [CrossRef]
- Yazici, A.; Ozbay, K. Evacuation network modeling via dynamic traffic assignment with probabilistic demand and capacity constraints. Transp. Res. Rec. J. Transp. Res. Board 2010, 2096, 11–20. [Google Scholar] [CrossRef]
- Huibregtse, O.; Hoogendoorn, S.; Bliemer, M.C. Optimization of Evacuation Measures under Uncertainty. In Proceedings of the Transportation Research Board 89th Annual Meeting, Washington, DC, USA, 10–14 January 2010. [Google Scholar]
- Manual, H.C. HCM2010; Transportation Research Board, National Research Council: Washington, DC, USA, 2010. [Google Scholar]
- Alçada-Almeida, L.; Tralhão, L.; Santos, L.; Coutinho-Rodrigues, J. A multiobjective approach to locate emergency shelters and identify evacuation routes in urban areas. Geogr. Anal. 2009, 41, 9–29. [Google Scholar] [CrossRef]
- Bayram, V.; Tansel, B.T.; Yaman, H. Compromising system and user interests in shelter location and evacuation planning. Transp. Res. Part B Methodol. 2015, 72, 146–163. [Google Scholar] [CrossRef]
- Khalili, S.M.; Jolai, F.; Torabi, S.A. Integrated production–distribution planning in two-echelon systems: A resilience view. Int. J. Prod. Res. 2017, 55, 1040–1064. [Google Scholar] [CrossRef]
- Coutinho-Rodrigues, J.; Tralhão, L.; Alçada-Almeida, L. Solving a location-routing problem with a multiobjective approach: The design of urban evacuation plans. J. Transp. Geogr. 2012, 22, 206–218. [Google Scholar] [CrossRef]
- Kimms, A.; Seekircher, K. Network design to anticipate selfish evacuation routing. EURO J. Comput. Optim. 2016, 4, 271–298. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Z. A bi-level model for planning signalized and uninterrupted flow intersections in an evacuation network. Comput. Aided Civ. Infrastruct. Eng. 2012, 27, 731–747. [Google Scholar] [CrossRef]
- Saberi Kalaee, M. Investigating Freeway Speed-Flow Relationships for Traffic Assignment Applications; ProQuest LLC.: Ann Arbor, MI, USA, 2010. [Google Scholar]
- Hobeika, A.G.; Jamei, B. MASSVAC: A model for calculating evacuation times under natural disasters. Emerg. Plan. 1985, 15, 23–28. [Google Scholar]
- Hobeika, A.G.; Kim, C. Comparison of traffic assignments in evacuation modeling. IEEE Trans. Eng. Manag. 1998, 45, 192–198. [Google Scholar] [CrossRef]
- Tufekci, S.; Kisko, T.M. Regional evacuation modeling system (REMS): A decision support system for emergency area evacuations. Comput. Ind. Eng. 1991, 21, 89–93. [Google Scholar] [CrossRef]
- Ziliaskopoulos, A.K.; Waller, S.T. An Internet-based geographic information system that integrates data, models and users for transportation applications. Transp. Res. Part C Emerg. Technol. 2000, 8, 427–444. [Google Scholar] [CrossRef]
- Franzese, O.; Han, L. A methodology for the assessment of traffic management strategies for large-scale emergency evacuations. In Proceedings of the 11th Annual Meeting of ITS America, Miami Beach, FL, USA, 4–7 June 2001. [Google Scholar]
- Mahmassani, H.S. Dynamic network traffic assignment and simulation methodology for advanced system management applications. Netw. Spat. Econ. 2001, 1, 267–292. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, X.; Chang, G.-L. Two-level integrated optimization system for planning of emergency evacuation. J. Transp. Eng. 2006, 132, 800–807. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Zheng, H.; Villalobos, J.; Gautam, B. Modeling no-notice mass evacuation using a dynamic traffic flow optimization model. IIE Trans. 2007, 39, 83–94. [Google Scholar] [CrossRef]
Search Engine | Structural Keywords | Number of Retrieved Studies |
---|---|---|
Web of Science | “evacuation OR rescue OR egress (All Fields) AND model OR Optimisation OR logistic OR routing OR transport OR simulate OR simulation OR optimum (All Fields) NOT crowd (Abstract)” | 133 |
“evacuation Or rescue Or egress (All Fields) AND planning Or routing (All Fields) AND disaster Or emergency (All Fields) NOT crowd (All Fields) AND Model Or Optimisation Or logistic Or Routing Or transport (Abstract)” | 51 | |
Scopus | “(TITLE-ABS-KEY (evacuation OR rescue OR egress) AND ALL (model OR Optimisation OR logistic OR routing OR transport OR simulate OR simulation OR optimum) AND NOT ABS (crowd))” | 199 |
“(TITLE-ABS-KEY (evacuation OR rescue OR egress) AND ALL (planning OR routing) AND ALL (disaster OR emergency) AND NOT ABS (crowd) AND ALL (model OR Optimisation OR logistic OR routing OR transport))” | 117 |
Criteria | Inclusion Criteria | Exclusion Criteria |
---|---|---|
“Document Types” | “Article” | Other document types like conference papers or review papers. |
“Languages” | “English” | A language other than English, such as Chinese or German. |
“Web of Science Categories” | “Operations Research Management Science” AND “Management” | Other categories such as “Engineering Civil”, “Geosciences Multidisciplinary”, etc. |
“SUBJAREA” in Scopus | “Mathematics” OR “Decision Sciences” | Other subject areas such as “Medicine”, “Engineering”, etc. |
Reference | Vehicle Routing | Vehicle Scheduling | Vehicle Allocation | Pick-Up Location | Shelter Allocation | Shelter Location | Relief Supplying | Relief Distribution | Reference | Vehicle Routing | Vehicle Scheduling | Vehicle Allocation | Pick-Up Location | Shelter Allocation | Shelter Location | Relief Supplying | Relief Distribution | Reference | Vehicle Routing | Vehicle Scheduling | Vehicle Allocation | Pick-Up Location | Shelter Allocation | Shelter Location | Relief Supplying | Relief Distribution | Reference | Vehicle Routing | Vehicle Scheduling | Vehicle Allocation | Pick-Up Location | Shelter Allocation | Shelter Location | Relief Supplying | Relief Distribution |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[97] | √ | √ | [98] | √ | √ | √ * | [99] | √ | √ | √ * | √ ** | [100] | √ ** | √ | √ | √ | |||||||||||||||||||
[95] | √ | √ | √ | [101] | √ * | √ ** | √ | √ | √ *** | [102] | √ | √ | √ | √ | [103] | √ | √ | √ | √ ** | ||||||||||||||||
[104] | √ | √ | √ | √ | √ *** | [105] | √ | √ | [106] | √ | √ | √ | [107] | √ | √ | √ * | √ ** | √ | √ | ||||||||||||||||
[108] | √ | √ | [1] | √ | √ | √ ** | √ | √ | √ *** | [109] | √ | √ ** | √ | [110] | √ | √ ** | |||||||||||||||||||
[111] | √ | √ | √ | [112] | √ | √ | √ | √ ** | [113] | √ | √ | √ | √ | √ ** | [114] | √ | √ | √ | |||||||||||||||||
[115] | √ | √ | [116] | √ | √ | √ | √ *** | [117] | √ | √ | √ | [118] | √ | √ | √ ** | ||||||||||||||||||||
[119] | √ | √ | [120] | √ * | √ * | √ ** | √ | √ | [121] | √ | √ | √ | √ ** | √ | [122] | √ | √ | ||||||||||||||||||
[123] | √ | √ | [33] | √ | √ | √ | √ | [76] | √ | √ | √ | √ ** | [124] | √ | |||||||||||||||||||||
[125] | √ | √ | √ | [126] | √ | √ | √ | [127] | √ | √ | √ | [128] | √ | √ | √ ** | √ | |||||||||||||||||||
[129] | √ | √ | √ | [130] | √ * | √ | √ | [131] | √ | √ | √ | √ | [132] | √ | √ | √ * | √ ** | ||||||||||||||||||
[82] | √ | √ * | √ | √ | [133] | √ | √ | √ | √ | √ | √ | [134] | √ | √ | √ | [135] | √ | √ | √ * | √ ** | |||||||||||||||
[136] | √ | √ | √ | √ ** | [137] | √ | √ | √ ** | [96] | √ | √ | √ | √ ** | √ | √ | √ | [138] | √ | √ | √ | |||||||||||||||
[139] | √ | √ * | √ ** | [140] | √ | √ ** | [141] | √ | √ | √ * | √ | √ ** | [142] | √ | √ | √ * | √ ** | √ | √ | √ *** | |||||||||||||||
[83] | √ | √ | √ * | [143] | √ | √ ** | [144] | √ | √ | √ | √ | √ ** | [145] | √ | |||||||||||||||||||||
[84] | √ | √ | √ | [146] | √ | √ | √ * | √ ** | √ | √ | √ *** | [147] | √ | √ | √ | √ | √ ** | [148] | √ | √ | |||||||||||||||
[149] | √ | √ ** | √ | √ *** | [150] | √ | √ | √ ** | √ | [151] | √ | √ | [152] | √ | √ | ||||||||||||||||||||
[153] | √ | √ | [154] | √ | √ | √ | √ ** | [155] | √ | √ ** | [156] | √ | √ | √ | |||||||||||||||||||||
[157] | √ | √ | √ | √ | [158] | √ | √ | √ | √ | √ | √ | [159] | √ | √ * | √ ** | [160] | √ | √ | |||||||||||||||||
[161] | √ | √ ** | [162] | √ | √ | √ ** | √ | [163] | √ | √ | √ | √ | [164] | √ | √ | √ | √ | ||||||||||||||||||
[165] | √ | √ | √ ** | [166] | √ ** | [167] | √ | √ | √ ** | ||||||||||||||||||||||||||
[168] | √ | √ | √ | √ ** | √ | √ | [169] | √ | √ | √ | √ | √ ** | [170] | √ | √ | √ | √ *** |
Reference | Arrival Time | Evacuation Time | Evacuation Cost | Evacuation Risk | Evacuation Rate | Network Clearance Time | Transportation Cost | Resource Cost | Relief Item Shortage | Equity/Welfare | Reference | Arrival Time | Evacuation Time | Evacuation Cost | Evacuation Risk | Evacuation Rate | Network Clearance Time | Transportation cost | Resource Cost | Relief item Shortage | Equity/Welfare | Reference | Arrival Time | Evacuation Time | Evacuation Cost | Evacuation Risk | Evacuation Rate | Network Clearance Time | Transportation Cost | Resource Cost | Relief Item Shortage | Equity/Welfare |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[97] | √ | [33] | √ | [147] | √ | √ | ||||||||||||||||||||||||||
[95] | √ | [126] | √ | √ | √ | [151] | √ | |||||||||||||||||||||||||
[104] | √ | [130] | √ | √ | [155] | √ | √ | |||||||||||||||||||||||||
[108] | √ | [133] | √ | √ | [159] | √ | ||||||||||||||||||||||||||
[111] | √ | √ | [137] | √ | √ | [163] | √ | √ | ||||||||||||||||||||||||
[115] | √ | √ | [140] | √ | √ | √ | [167] | √ | √ | |||||||||||||||||||||||
[119] | √ | √ | [143] | √ | √ | [170] | √ | √ | √ | √ | ||||||||||||||||||||||
[123] | √ | √ | [146] | √ | √ | [100] | √ | √ | √ | √ | √ | √ | ||||||||||||||||||||
[125] | √ | [150] | √ | √ | [103] | √ | ||||||||||||||||||||||||||
[129] | √ | √ | [154] | √ | [107] | √ | √ | √ | √ | |||||||||||||||||||||||
[82] | √ | √ | √ | [158] | √ | [110] | √ | |||||||||||||||||||||||||
[136] | √ | √ | [162] | √ | √ | [114] | √ | √ | ||||||||||||||||||||||||
[139] | √ | √ | √ | [166] | √ | √ | [118] | √ | √ | √ | ||||||||||||||||||||||
[83] | √ | √ | [169] | √ | √ | [122] | √ | |||||||||||||||||||||||||
[84] | √ | √ | [99] | √ | √ | [124] | √ | |||||||||||||||||||||||||
[149] | √ | √ | [102] | √ | [128] | √ | √ | √ | ||||||||||||||||||||||||
[153] | √ | √ | √ | [106] | √ | √ | [132] | √ | √ | √ | ||||||||||||||||||||||
[157] | √ | [109] | √ | [135] | √ | √ | √ | |||||||||||||||||||||||||
[161] | √ | √ | [113] | √ | [138] | √ | ||||||||||||||||||||||||||
[165] | √ | [117] | √ | [142] | √ | √ | √ | √ | ||||||||||||||||||||||||
[168] | √ | √ | [121] | √ | [145] | √ | ||||||||||||||||||||||||||
[98] | √ | √ | [76] | √ | √ | √ | [148] | √ | ||||||||||||||||||||||||
[101] | √ | √ | √ | [127] | √ | √ | √ | [152] | √ | √ | √ | |||||||||||||||||||||
[105] | √ | [131] | √ | [156] | √ | √ | √ | √ | ||||||||||||||||||||||||
[1] | √ | √ | [134] | √ | [160] | √ | ||||||||||||||||||||||||||
[112] | √ | √ | [96] | √ | √ | √ | [164] | √ | √ | |||||||||||||||||||||||
[116] | √ | √ | √ | [141] | √ | √ | √ | |||||||||||||||||||||||||
[120] | √ | √ | √ | √ | √ | [144] | √ | √ |
Reference | VRP Constraints | Shelter Capacity | Number of Shelters | Vehicle Capacity | Number of Vehicles | Network Capacity | Evacuation Time Window | Radius Covering | Rescue Team Capacity | Relief Item Capacity | Reference | VRP Constraints | Shelter Capacity | Number of Shelters | Vehicle Capacity | Number of Vehicles | Network Capacity | Evacuation Time Window | Radius Covering | Rescue Team Capacity | Relief Item Capacity | Reference | VRP Constraints | Shelter Capacity | Number of Shelters | Vehicle Capacity | Number of Vehicles | Network Capacity | Evacuation Time Window | Radius Covering | Rescue Team Capacity | Relief Item Capacity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[97] | √ | √ | √ | [33] | √ | √ | √ | √ | √ | √ | [147] | √ | √ | √ | ||||||||||||||||||
[95] | √ | √ | [126] | √ | √ | √ | [151] | √ | √ | √ | √ | |||||||||||||||||||||
[104] | √ | √ | [130] | √ | √ | √ | √ | [155] | √ | √ | √ | |||||||||||||||||||||
[108] | √ | √ | [133] | √ | √ | √ | √ | [159] | √ | √ | √ | √ | √ | √ | ||||||||||||||||||
[111] | √ | √ | √ | [137] | √ | √ | √ | √ | [163] | √ | √ | √ | √ | √ | ||||||||||||||||||
[115] | √ | √ | [140] | √ | √ | √ | [167] | √ | √ | √ | √ | √ | √ | |||||||||||||||||||
[119] | √ | √ | [143] | √ | √ | √ | √ | [170] | √ | √ | √ | √ | √ | |||||||||||||||||||
[123] | √ | √ | √ | √ | [146] | √ | √ | √ | √ | √ | √ | [100] | √ | √ | √ | √ | √ | |||||||||||||||
[125] | √ | √ | [150] | √ | √ | [103] | √ | √ | √ | √ | ||||||||||||||||||||||
[129] | √ | √ | √ | √ | √ | [154] | √ | √ | √ | √ | √ | √ | [107] | √ | √ | √ | √ | √ | ||||||||||||||
[82] | √ | √ | √ | √ | √ | √ | [158] | √ | √ | √ | √ | [110] | √ | √ | √ | √ | ||||||||||||||||
[136] | √ | √ | √ | [162] | √ | √ | √ | [114] | √ | √ | √ | √ | √ | |||||||||||||||||||
[139] | √ | √ | √ | [166] | √ | √ | [118] | √ | √ | √ | √ | |||||||||||||||||||||
[83] | √ | √ | √ | √ | √ | [169] | √ | √ | √ | √ | √ | [122] | √ | √ | √ | |||||||||||||||||
[84] | √ | √ | √ | √ | [99] | √ | √ | √ | √ | [124] | √ | |||||||||||||||||||||
[149] | √ | √ | √ | √ | √ | [102] | √ | √ | √ | √ | √ | [128] | √ | √ | √ | √ | √ | √ | ||||||||||||||
[153] | √ | √ | √ | [106] | √ | √ | [132] | √ | √ | √ | √ | √ | ||||||||||||||||||||
[157] | √ | √ | √ | √ | [109] | √ | √ | √ | √ | [135] | √ | √ | √ | √ | ||||||||||||||||||
[161] | √ | √ | √ | √ | [113] | √ | √ | √ | √ | [138] | √ | √ | √ | √ | √ | |||||||||||||||||
[165] | √ | √ | √ | √ | [117] | √ | √ | √ | √ | √ | [142] | √ | √ | √ | √ | √ | ||||||||||||||||
[168] | √ | √ | √ | √ | √ | √ | [121] | √ | √ | √ | [145] | √ | √ | √ | ||||||||||||||||||
[98] | √ | √ | √ | √ | [76] | √ | √ | √ | √ | √ | √ | [148] | √ | √ | √ | √ | ||||||||||||||||
[101] | √ | √ | √ | √ | √ | [127] | √ | √ | √ | √ | [152] | √ | √ | |||||||||||||||||||
[105] | √ | √ | √ | √ | √ | √ | [131] | √ | √ | [156] | √ | √ | √ | |||||||||||||||||||
[1] | √ | √ | √ | √ | √ | [134] | √ | √ | √ | √ | √ | [160] | √ | √ | ||||||||||||||||||
[112] | √ | √ | √ | [96] | √ | √ | √ | √ | √ | √ | [164] | √ | √ | √ | √ | √ | ||||||||||||||||
[116] | √ | √ | √ | √ | [141] | √ | √ | √ | √ | √ | √ | √ | ||||||||||||||||||||
[120] | √ | √ | √ | √ | [144] | √ | √ | √ |
Reference | Predefined Location of Shelters | Shelter Types | Predefined Assembly Locations | Multi-Mode Transportation | Non-Homogeneous Vehicles | Facility Disruption | Network Disruption | Vehicle Disruption | Graph Theory Concepts | Split Delivery | Evacuee Priorities | Reference | Predefined Location of Shelters | Shelter Types | Predefined Assembly Locations | Multi-Mode Transportation | Non-Homogeneous Vehicles | Facility Disruption | Network Disruption | Vehicle Disruption | Graph Theory Concepts | Split Delivery | Evacuee Priorities | Reference | Predefined Location of Shelters | Shelter Types | Predefined Assembly Locations | Multi-Mode Transportation | Non-Homogeneous Vehicles | Facility Disruption | Network Disruption | Vehicle Disruption | Graph Theory Concepts | Split Delivery | Evacuee Priorities |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[97] | √ | √ | √ | [33] | √ | √ | √ | √ | √ | √ | [147] | √ | √ | √ | |||||||||||||||||||||
[95] | √ | √ | √ | √ | [126] | √ | √ | √ | √ | [151] | √ | √ | √ | √ | √ | ||||||||||||||||||||
[104] | √ | [130] | √ | √ | √ | √ | √ | [155] | √ | √ | √ | ||||||||||||||||||||||||
[108] | √ | √ | [133] | √ | [159] | √ | √ | √ | √ | √ | |||||||||||||||||||||||||
[111] | √ | √ | √ | [137] | √ | √ | √ | √ | [163] | √ | √ | √ | √ | ||||||||||||||||||||||
[115] | √ | √ | √ | [140] | √ | √ | √ | √ | √ | [167] | √ | √ | √ | ||||||||||||||||||||||
[119] | √ | √ | √ | √ | √ | √ | [143] | √ | √ | √ | √ | √ | [170] | √ | √ | √ | |||||||||||||||||||
[123] | √ | √ | √ | √ | [146] | √ | √ | √ | √ | [100] | √ | √ | √ | ||||||||||||||||||||||
[125] | √ | √ | √ | [150] | √ | √ | [103] | √ | √ | √ | |||||||||||||||||||||||||
[129] | √ | √ | √ | [154] | √ | √ | √ | √ | √ | √ | [107] | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||||||||||
[82] | √ | √ | √ | √ | √ | [158] | √ | [110] | √ | √ | √ | ||||||||||||||||||||||||
[136] | √ | √ | √ | √ | √ | [162] | √ | √ | √ | √ | √ | [114] | √ | √ | √ | √ | √ | ||||||||||||||||||
[139] | √ | √ | √ | [166] | √ | √ | √ | [118] | √ | √ | √ | √ | |||||||||||||||||||||||
[83] | √ | √ | √ | √ | √ | [169] | √ | √ | √ | √ | √ | √ | [122] | √ | √ | √ | √ | ||||||||||||||||||
[84] | √ | √ | √ | √ | √ | [99] | √ | √ | √ | √ | √ | √ | √ | √ | [124] | √ | √ | √ | |||||||||||||||||
[149] | √ | √ | [102] | √ | √ | √ | √ | [128] | √ | √ | √ | √ | √ | √ | |||||||||||||||||||||
[153] | √ | √ | √ | [106] | √ | √ | √ | [132] | √ | √ | √ | √ | √ | √ | |||||||||||||||||||||
[157] | √ | √ | √ | √ | √ | √ | [109] | √ | √ | √ | [135] | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||||||||||
[161] | √ | √ | √ | √ | √ | [113] | √ | √ | √ | [138] | √ | √ | √ | √ | |||||||||||||||||||||
[165] | √ | √ | [117] | √ | √ | √ | √ | [142] | √ | √ | √ | √ | |||||||||||||||||||||||
[168] | √ | √ | √ | [121] | √ | √ | √ | √ | [145] | √ | √ | √ | √ | √ | |||||||||||||||||||||
[98] | √ | √ | √ | [76] | √ | √ | √ | √ | [148] | √ | √ | ||||||||||||||||||||||||
[101] | √ | √ | √ | [127] | √ | √ | √ | √ | √ | [152] | √ | √ | |||||||||||||||||||||||
[105] | √ | √ | √ | [131] | √ | √ | √ | [156] | √ | √ | √ | ||||||||||||||||||||||||
[1] | √ | √ | √ | [134] | √ | √ | √ | √ | [160] | √ | √ | ||||||||||||||||||||||||
[112] | √ | √ | √ | [96] | √ | √ | √ | √ | [164] | √ | √ | √ | |||||||||||||||||||||||
[116] | √ | √ | [141] | √ | √ | √ | |||||||||||||||||||||||||||||
[120] | √ | √ | √ | √ | √ | [144] | √ | √ | √ |
Uncertainty | Uncertainty | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Shelter Capacity | Vehicle Capacity | Road Capacity | Evacuation Demand | Relief Demand | Relief Capacity | Maximum Egress Time | Travel Time | Travel Cost | Deterministic | Stochastic/Possibilistic | Mixed | Reference | Shelter Capacity | Vehicle Capacity | Road Capacity | Evacuation Demand | Relief Demand | Relief Capacity | Maximum Egress Time | Travel Time | Travel Cost | Deterministic | Stochastic/Possibilistic | Mixed |
[97] | √ | √ | √ | √ | [169] | √ | √ | √ | √ | √ | √ | ||||||||||||||
[95] | √ | √ | √ | [99] | √ | √ | √ | √ | √ | √ | |||||||||||||||
[104] | √ | √ | √ | [102] | √ | √ | √ | √ | √ | ||||||||||||||||
[108] | √ | √ | √ | [106] | √ | √ | √ | √ | √ | ||||||||||||||||
[111] | √ | √ | √ | √ | [109] | √ | √ | √ | √ | √ | |||||||||||||||
[115] | √ | √ | √ | [113] | √ | √ | √ | √ | √ | √ | |||||||||||||||
[119] | √ | √ | [117] | √ | √ | √ | √ | √ | |||||||||||||||||
[123] | √ | √ | √ | √ | [121] | √ | √ | √ | √ | √ | |||||||||||||||
[125] | √ | √ | √ | √ | √ | √ | [76] | √ | √ | √ | √ | √ | |||||||||||||
[129] | √ | √ | √ | √ | √ | [127] | √ | √ | √ | √ | √ | ||||||||||||||
[82] | √ | √ | √ | √ | [131] | √ | √ | √ | √ | √ | √ | ||||||||||||||
[136] | √ | √ | √ | √ | [134] | √ | √ | √ | √ | √ | √ | ||||||||||||||
[139] | √ | √ | √ | √ | √ | [96] | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||||
[83] | √ | √ | √ | √ | √ | [141] | √ | √ | √ | √ | √ | √ | √ | ||||||||||||
[84] | √ | √ | √ | √ | [144] | √ | √ | √ | √ | √ | √ | ||||||||||||||
[149] | √ | √ | √ | √ | [147] | √ | √ | √ | √ | √ | √ | ||||||||||||||
[153] | √ | √ | √ | √ | √ | [151] | √ | √ | √ | √ | |||||||||||||||
[157] | √ | √ | √ | √ | √ | √ | [155] | √ | √ | √ | √ | ||||||||||||||
[161] | √ | √ | √ | √ | √ | √ | [159] | √ | √ | √ | √ | √ | √ | ||||||||||||
[165] | √ | √ | √ | √ | √ | [163] | √ | √ | √ | √ | |||||||||||||||
[168] | √ | √ | √ | √ | √ | [167] | √ | √ | √ | √ | √ | √ | |||||||||||||
[98] | √ | √ | √ | √ | [170] | √ | √ | √ | √ | √ | √ | √ | |||||||||||||
[101] | √ | √ | √ | √ | √ | √ | √ | [100] | √ | √ | √ | √ | √ | √ | |||||||||||
[105] | √ | √ | √ | √ | [103] | √ | √ | √ | √ | √ | |||||||||||||||
[1] | √ | √ | √ | √ | [107] | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||||||
[112] | √ | √ | √ | √ | [110] | √ | √ | √ | √ | ||||||||||||||||
[116] | √ | √ | √ | √ | √ | √ | [114] | √ | √ | √ | |||||||||||||||
[120] | √ | √ | √ | √ | √ | √ | √ | [118] | √ | √ | √ | √ | √ | ||||||||||||
[33] | √ | √ | √ | √ | √ | [122] | √ | √ | √ | √ | |||||||||||||||
[126] | √ | √ | √ | √ | [124] | √ | √ | √ | |||||||||||||||||
[130] | √ | √ | √ | √ | √ | [128] | √ | √ | √ | √ | √ | √ | |||||||||||||
[133] | √ | √ | √ | [132] | √ | √ | √ | √ | |||||||||||||||||
[137] | √ | √ | √ | √ | √ | [135] | √ | √ | √ | √ | √ | √ | √ | ||||||||||||
[140] | √ | √ | √ | √ | √ | √ | [138] | √ | √ | √ | √ | √ | |||||||||||||
[143] | √ | √ | √ | √ | √ | [142] | √ | √ | √ | √ | √ | √ | √ | ||||||||||||
[146] | √ | √ | √ | √ | √ | √ | √ | √ | [145] | √ | √ | √ | √ | √ | |||||||||||
[150] | √ | √ | √ | √ | √ | √ | [148] | √ | √ | ||||||||||||||||
[154] | √ | √ | √ | √ | √ | [152] | √ | √ | √ | ||||||||||||||||
[158] | √ | √ | √ | √ | √ | [156] | √ | √ | √ | √ | √ | ||||||||||||||
[162] | √ | √ | √ | √ | √ | [160] | √ | √ | √ | √ | |||||||||||||||
[166] | √ | √ | √ | √ | [164] | √ | √ | √ | √ |
Reference | Linear Programming | Integer Programming | Mixed-Integer Programming | Non-Linear Programming | Two/Multi-Stage-Scenario-Based Stochastic Programming | Multi-Objective | Reference | Linear Programming | Integer Programming | Mixed-Integer Programming | Non-Linear Programming | Two/Multi-Stage-Scenario-Based Stochastic Programming | Multi-Objective | Reference | Linear Programming | Integer Programming | Mixed-Integer Programming | Non-Linear Programming | Two/Multi-Stage-Scenario-Based Stochastic Programming | Multi-Objective | Reference | Linear Programming | Integer Programming | Mixed-Integer Programming | Non-Linear Programming | Two/Multi-Stage-Scenario-Based Stochastic Programming | Multi-Objective |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[97] | √ | [98] | √ | [99] | √ | √ | [100] | √ | √ | √ | |||||||||||||||||
[95] | √ | [101] | √ | √ | √ | [102] | √ | [103] | √ | ||||||||||||||||||
[104] | √ | [105] | √ | √ | [106] | √ | [107] | √ | √ | ||||||||||||||||||
[108] | √ | [1] | √ | √ | [109] | √ | √ | [110] | √ | √ | |||||||||||||||||
[111] | √ | [112] | √ | √ | [113] | √ | √ | [114] | √ | ||||||||||||||||||
[115] | √ | [116] | √ | [117] | √ | [118] | √ | √ | |||||||||||||||||||
[119] | √ | [120] | √ | √ | [121] | √ | √ | [122] | √ | ||||||||||||||||||
[123] | √ | [33] | √ | [76] | √ | √ | [124] | √ | √ | ||||||||||||||||||
[125] | √ | [126] | √ | [127] | √ | [128] | √ | ||||||||||||||||||||
[129] | √ | [130] | √ | [131] | √ | [132] | √ | ||||||||||||||||||||
[82] | √ | [133] | √ | [134] | √ | [135] | √ | ||||||||||||||||||||
[136] | √ | √ | [137] | √ | [96] | √ | √ | [138] | √ | √ | |||||||||||||||||
[139] | √ | √ | [140] | √ | √ | [141] | √ | √ | √ | √ | √ | [142] | √ | √ | √ | ||||||||||||
[83] | √ | [143] | √ | √ | [144] | √ | √ | [145] | √ | ||||||||||||||||||
[84] | √ | [146] | √ | √ | [147] | √ | √ | [148] | √ | ||||||||||||||||||
[149] | √ | √ | [150] | √ | √ | [151] | √ | √ | [152] | √ | √ | √ | |||||||||||||||
[153] | √ | √ | √ | [154] | √ | √ | [155] | √ | √ | [156] | √ | √ | |||||||||||||||
[157] | √ | √ | [158] | √ | [159] | √ | √ | [160] | √ | ||||||||||||||||||
[161] | √ | √ | [162] | √ | √ | [163] | √ | [164] | √ | √ | |||||||||||||||||
[165] | √ | [166] | √ | √ | [167] | √ | |||||||||||||||||||||
[168] | √ | √ | [169] | √ | √ | [170] | √ | √ | √ |
Reference | Exact Method | Meta/Heuristic Algorithm | Hybrid Algorithm | Branch and Bound Algorithm | Decomposition Algorithm | Robust/Fuzzy Optimisation | Multi-objective Algorithms | Bi-Level Programming | Game Theory | Simulation | Reference | Exact Method | Meta/Heuristic Algorithm | Hybrid Algorithm | Branch and Bound Algorithm | Decomposition Algorithm | Robust/Fuzzy Optimisation | Multi-Objective Algorithms | Bi-Level Programming | Game Theory | Simulation | Reference | Exact Method | Meta/Heuristic Algorithm | Hybrid Algorithm | Branch and Bound Algorithm | Decomposition Algorithm | Robust/Fuzzy Optimisation | Multi-Objective Algorithms | Bi-Level Programming | Game Theory | Simulation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[97] | √ | [33] | √ | √ | [147] | √ | √ | √ | ||||||||||||||||||||||||
[95] | √ | √ | [126] | √ | √ | √ | [151] | √ | ||||||||||||||||||||||||
[104] | √ | [130] | √ | [155] | √ | |||||||||||||||||||||||||||
[108] | √ | [133] | √ | √ | √ | [159] | √ | √ | ||||||||||||||||||||||||
[111] | √ | √ | [137] | √ | √ | √ | [163] | √ | √ | |||||||||||||||||||||||
[115] | √ | √ | √ | [140] | √ | √ | [167] | √ | ||||||||||||||||||||||||
[119] | √ | √ | √ | [143] | √ | √ | [170] | √ | √ | |||||||||||||||||||||||
[123] | √ | √ | √ | √ | [146] | √ | [100] | √ | √ | √ | √ | |||||||||||||||||||||
[125] | √ | √ | [150] | √ | √ | √ | [103] | √ | √ | |||||||||||||||||||||||
[129] | √ | √ | √ | √ | [154] | √ | √ | √ | √ | √ | [107] | √ | ||||||||||||||||||||
[82] | √ | √ | [158] | √ | √ | √ | [110] | √ | ||||||||||||||||||||||||
[136] | √ | √ | [162] | √ | √ | √ | [114] | √ | √ | √ | ||||||||||||||||||||||
[139] | √ | √ | √ | [166] | √ | √ | [118] | √ | √ | √ | ||||||||||||||||||||||
[83] | √ | √ | √ | [169] | √ | √ | √ | √ | √ | [122] | √ | √ | ||||||||||||||||||||
[84] | √ | √ | [99] | √ | √ | √ | √ | [124] | √ | √ | ||||||||||||||||||||||
[149] | √ | √ | [102] | √ | √ | [128] | √ | √ | ||||||||||||||||||||||||
[153] | √ | √ | [106] | √ | [132] | √ | √ | √ | ||||||||||||||||||||||||
[157] | √ | [109] | √ | √ | [135] | √ | √ | |||||||||||||||||||||||||
[161] | √ | √ | √ | √ | [113] | √ | √ | [138] | √ | √ | √ | |||||||||||||||||||||
[165] | √ | [117] | √ | √ | √ | [142] | √ | √ | √ | |||||||||||||||||||||||
[168] | √ | √ | [121] | √ | √ | [145] | √ | √ | √ | |||||||||||||||||||||||
[98] | √ | √ | [76] | √ | √ | √ | √ | √ | [148] | √ | √ | |||||||||||||||||||||
[101] | √ | √ | √ | √ | [127] | √ | √ | √ | [152] | √ | √ | √ | ||||||||||||||||||||
[105] | √ | [131] | √ | √ | √ | [156] | √ | √ | √ | √ | √ | |||||||||||||||||||||
[1] | √ | √ | [134] | √ | √ | [160] | √ | √ | ||||||||||||||||||||||||
[112] | √ | √ | [96] | √ | √ | √ | [164] | √ | √ | |||||||||||||||||||||||
[116] | √ | √ | [141] | √ | √ | √ | ||||||||||||||||||||||||||
[120] | √ | √ | [144] | √ | √ | √ |
Reference | Experiments/Disaster Type | Case Study | Integrated Emergency Management |
---|---|---|---|
[97] | Numerical experiments | Regional evacuation after a hazard | |
[95] | Hurricanes/Numerical experiments | Regional evacuation after a hazard | |
[104] | Hurricanes | Gulf Coast region, USA | Shelter planning; resource planning |
[108] | Bombing/Numerical experiments | Regional evacuation after a hazard | |
[111] | Hurricanes | Three coastal cities in the State of Mississippi, USA | Integrated pre- and post-disaster planning |
[115] | Bombing/Numerical experiments | Kaiserslautern, Germany | |
[119] | Bombing/Numerical experiments | Kaiserslautern, Germany | |
[123] | Numerical experiments | Regional evacuation/Sample data of Nice, France | |
[125] | Numerical experiments | Regional evacuation after a natural hazard | |
[129] | Earthquakes | Tehran, Iran | Relief item planning |
[82] | Murrindindi Mill fire Black Saturday/Bushfire | Victoria, Australia | Shelter planning; resource planning |
[136] | Numerical experiments | Transporting casualties after a natural hazard or terrorist incident | |
[139] | Storms/Wildfire debris flow hazard management | Santa Barbara 2009 Jesusita, USA | Integrated pre- and post-disaster planning |
[83] | Bushfires | 2009 Black Saturday in Victoria, Australia | |
[84] | Bushfires | 2009 Black Saturday in Victoria, Australia | |
[149] | Floods | Chiang Mai Province in Northern Thailand | Integrated pre- and post-disaster planning |
[153] | Numerical experiments | Regional evacuation after a hazard | |
[157] | Earthquakes | Istanbul, Turkey | Shelter planning; traffic management |
[161] | Numerical experiments | Hospital evacuation after a hazard | |
[165] | Numerical experiments | Low-mobility people evacuation after a natural hazard | |
[168] | Earthquakes | Tehran, Iran | Relief item planning |
[98] | Nuclear leakage accident | India | |
[101] | Earthquakes | Tehran, Iran | Integrated pre- and post-disaster planning |
[105] | Nuclear leakage accident | Regional evacuation after nuclear leakage accident | |
[1] | Earthquakes | Sarpol-e Zahub and Gilan-e Gharb, Iran | |
[112] | Numerical experiments | Isolated communities | Shelter planning; relief item planning |
[116] | Numerical experiments/Earthquakes | Tehran, Iran | Relief logistics network design; facility location |
[120] | Earthquakes | Tehran, Iran | Integrated pre- and post-disaster planning; location and storage decisions for relief centres; temporary care centre locations and efficient supply distribution |
[33] | Bushfires | Black Saturday bushfires in Victoria, Australia | |
[126] | Numerical experiments | Regional evacuation after a hazard | Resource planning |
[130] | Radiological accidents in nuclear power plants | Kakrapar Atomic Power Station, Gujarat, India | |
[133] | Floods | Regional evacuation after a hazard | Shelter planning; resource planning; facility location |
[137] | Numerical experiments | Regional evacuation after a hazard/Ningbo, China | |
[140] | Earthquake/Tsunami | Palu, Indonesia | Relief item planning |
[143] | Numerical experiments/Catastrophic natural hazards | Broward County, Florida, USA | Shelter planning; minimising mental, physical, and temporal effort and frustration faced by evacuees |
[146] | Earthquakes | Tehran, Iran | Relief item planning |
[150] | Tsunami | The catastrophic tsunami of 2011 in Ishinomaki, Japan | |
[154] | Flood | Hospital evacuation, New South Wales, Australia | |
[158] | Bomb disposal | Kaiserslautern, Germany | Facility location |
[162] | Numerical experiments/Catastrophic natural hazards | Sioux Falls, South Dakota, USA | Shelter planning |
[166] | Numerical experiments/Catastrophic natural hazards | Beaufort County, South Carolina, USA | |
[169] | Earthquake | Kermanshah, Iran | Integrated victim evacuation and debris removal planning |
[99] | Numerical experiments/A hypothetical hospital evacuation during hurricanes | North Carolina, USA | Predicting flood, wind, and roadway traffic conditions. |
[102] | Hurricane | Gulfport, Mississippi, USA | |
[106] | Floods | Simulating hospital evacuation | Resource planning |
[109] | Numerical experiments | Lombardy, Italy | Shelter planning |
[113] | Terrorist attack | Baltimore, Maryland, USA | Facility location; evacuee demand planning |
[117] | Numerical experiments/Catastrophic natural hazards | Regional evacuation after a hazard | |
[121] | Numerical experiments | Regional evacuation after a hazard | Shelter planning; traffic management |
[76] | Numerical experiments/Catastrophic natural hazards | Toronto, Canada | Traffic management |
[127] | Numerical experiments/Floods | Regional evacuation after a hazard/Hongshan District, China | Facility location (charging stations for electric buses used in evacuation operation); equity consideration in emergency management |
[131] | Numerical experiments | Regional evacuation after a hazard | Evacuee demand planning |
[134] | Earthquake | Bucaramanga, Colombia | Facility location |
[96] | Earthquakes | Tehran, Iran | Shelter planning; relief item planning; integrated pre- and post-disaster planning |
[141] | Numerical experiments | Regional evacuation after a hazard/man-made disaster | Facility location |
[144] | Numerical experiments | Regional evacuation after a hazard | Evacuees’ lateness patterns |
[147] | Numerical experiments | Regional evacuation after a hazard | Evacuees’ demand planning |
[151] | Earthquake | Kermanshah, Iran | |
[155] | Numerical experiments/Catastrophic natural hazards | Sioux Falls, South Dakota, USA | Traffic management; evacuees’ behaviour modelling |
[159] | Numerical experiments/Floods | Nova Scotia Emergency Health Services, Halifax, Canada | Traffic simulation and traffic management |
[163] | Numerical experiments | Regional evacuation of people with disabilities after a hazard | Shelter planning; facility location |
[167] | Hurricane Katrina | New Orleans, USA | Traffic simulation and traffic management |
[170] | Floods | Taipei City, Northern Taiwan | Shelter planning; resource planning; facility location |
[100] | Numerical Experiments/Hurricane | Texas, USA | Shelter planning; relief item planning; facility location |
[103] | Numerical experiments | Regional evacuation after a hazard | |
[107] | Bushfires | Saddleridge Fire, San Fernando Valley, Los Angeles County, California, USA | Shelter planning; relief item planning |
[110] | Floods | Kawajima, Japan | Evacuee demand planning |
[114] | Numerical experiments/Large-scale disasters | Hospital evacuation, Tasmania, Australia | Resource (staff and equipment) |
[118] | Numerical experiments/Large-scale disasters | Regional evacuation after a hazard | Pedestrian evacuation network design |
[122] | Numerical experiments | Regional evacuation after a hazard | |
[124] | Hurricane | Regional evacuation of vulnerable people in New Orleans, USA | Facility location; evacuee demand planning |
[128] | Bombing/Earthquake followed by floods | Kaiserslautern Germany/Nice, France | Shelter planning; facility location; traffic management |
[132] | Numerical experiments | Hospital evacuation, USA | Resource (staff) planning |
[135] | Numerical experiments | Hospital evacuation, USA | Resource (staff and vehicle) planning; considering traffic effects |
[138] | Numerical experiments/Catastrophic natural hazards | Sioux Falls, South Dakota, USA | Shelter planning; facility location |
[142] | Earthquakes | Tehran, Iran | Shelter planning; relief item planning; integrated pre- and post-disaster planning |
[145] | Floods | Agh-Qala, Golestan, Iran | Rescue team assignment; rescue precedence constraints; rescue time windows |
[148] | Numerical experiments | Comparing results with well-known benchmarks | Optimising humanitarian coverage path planning via cumulative UAV routing approach |
[152] | Forest fires | Heilongjiang Province, China | Assessing rescue priority based on the fire’s condition of each affected area |
[156] | Earthquake | Jiuzhaigou, China | Resource planning |
[160] | Numerical experiments | Regional evacuation after a natural hazard | Search and rescue operation planning |
[164] | Earthquake | Tehran, Iran | Search and rescue operation planning; risk assessment for secondary destruction; resource planning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalili, S.M.; Mojtahedi, M.; Steinmetz-Weiss, C.; Sanderson, D. A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches. Buildings 2024, 14, 176. https://doi.org/10.3390/buildings14010176
Khalili SM, Mojtahedi M, Steinmetz-Weiss C, Sanderson D. A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches. Buildings. 2024; 14(1):176. https://doi.org/10.3390/buildings14010176
Chicago/Turabian StyleKhalili, Seyed Mohammad, Mohammad Mojtahedi, Christine Steinmetz-Weiss, and David Sanderson. 2024. "A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches" Buildings 14, no. 1: 176. https://doi.org/10.3390/buildings14010176
APA StyleKhalili, S. M., Mojtahedi, M., Steinmetz-Weiss, C., & Sanderson, D. (2024). A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches. Buildings, 14(1), 176. https://doi.org/10.3390/buildings14010176