Seismic Failure Mechanisms of Concrete Pile Groups in Layered Soft Soil Profiles
Abstract
:1. Introduction
2. Damage to Concrete Pile Foundations during Earthquakes
3. Material Models for Concrete Pile and Soil Domain
4. Finite Element Models of the Selected Pile–Soil Interaction Systems
5. Seismic Failure Mechanisms of Concrete Pile Groups
6. Conclusions
- The presence of the soft silt layer has markedly expanded the area affected by damage and increased the count of damaged elements. Furthermore, the thickness of the soft silt layer has notably influenced both the scope and intensity of the damaged zone within the piles. The greatest extent of damage is observed in Model III, where the soft silt layers are the thickest. Additionally, Model II exhibits more damage compared to Model I.
- The peak ground accelerations have emerged as a crucial parameter in the onset of damage. Minimal damage is observed at 0.25 g, while the most extensive damage occurs at an acceleration of 0.75 g.
- The distribution of damage and the count of damaged elements resulting from the Kocaeli earthquake have shown a relatively higher impact compared to those caused by the Düzce earthquake.
- An increase in pile diameter correlates with a decrease in both the distribution of damaged areas and the count of damaged elements. Models featuring a 1.0 m pile diameter exhibited less damage compared to those with a 0.80 m pile diameter.
- The damages to both single and grouped pile elements were primarily concentrated near the lower and upper junction points where the sand and silt layers intersect.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Lai, Y.; Hong, Y.; Masin, D. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios. Ocean. Eng. 2020, 212, 107492. [Google Scholar] [CrossRef]
- Finn, W.D.L. A study of piles during earthquakes: Issues of design and analysis. Bull. Earthq. Eng. 2005, 3, 141–234. [Google Scholar] [CrossRef]
- Rajeswari, J.S.; Sarkar, R. Estimation of transient forces in single pile embedded in liquefiable soil. Int. J. Geomech. 2020, 20, 06020023. [Google Scholar] [CrossRef]
- Chang, Y.L. Discussion of lateral pile loading tests. Trans. ASCE 1937, 102, 272–278. [Google Scholar]
- Poulos, H.G. Behaviour of laterally loaded piles: I-single piles and II-pile groups. ASCE J. Soil Mech. Found. Div. 1971, 97, 711–731. [Google Scholar] [CrossRef]
- Randolph, M.F. The response of piles to lateral loading. Geotechnique 1981, 31, 247–259. [Google Scholar] [CrossRef]
- Ettouney, M.M.; Brennan, J.A.; Forte, M.F. Dynamic behavior of pile groups. J. Geotech. Eng. 1983, 109, 301–317. [Google Scholar] [CrossRef]
- Gazetas, G.; Dobry, R. Horizontal response of piles in layered soils. J. Geotech. Eng. 1984, 110, 20–40. [Google Scholar] [CrossRef]
- Lee, S.L.; Kog, Y.C.; Karunaratne, G.P. Axially loaded piles in layered soil. J. Geotech. Eng. 1987, 113, 366–381. [Google Scholar] [CrossRef]
- Wu, G.; Finn, W.D.L. Dynamic elastic analysis of pile foundations using the finite element method in the frequency domain. Can. Geotech. J. 1997, 34, 34–43. [Google Scholar] [CrossRef]
- Wu, G.; Finn, W.D.L. Dynamic nonlinear analysis of pile foundations using the finite element method in the time domain. Can. Geotech. J. 1997, 34, 44–52. [Google Scholar] [CrossRef]
- Mylonakis, G.; Gazetas, G. Lateral vibration and internal forces of grouped piles in layered soil. J. Geotech. Geoenviron. Eng. 1999, 125, 16–25. [Google Scholar] [CrossRef]
- Liyanapathirana, D.S.; Poulos, H.G. Seismic lateral response of piles in liquefying soil. J. Geotech. Geoenviron. Eng. 2005, 131, 1466–1479. [Google Scholar] [CrossRef]
- Yang, Z.; Jeremic, B. Study of soil layering effects on lateral loading behavior of piles. J. Geotech. Geoenviron. Eng. 2005, 131, 762–770. [Google Scholar] [CrossRef]
- Brandenberg, S.J.; Zhao, M.; Boulanger, R.W.; Wilson, D.W. p-y plasticity model for nonlinear dynamic analysis of piles in liquefiable soil. J. Geotech. Geoenviron. Eng. 2013, 139, 1262–1274. [Google Scholar] [CrossRef]
- Banerjee, S.; Goh, S.H.; Lee, F.H. Earthquake-induced bending moment in fixed-head piles in soft clay. Géotechnique 2014, 64, 431–446. [Google Scholar] [CrossRef]
- Tang, L.; Ling, X. Response of a RC pile group in liquefiable soil: A shake-table investigation. Soil Dyn. Earthq. Eng. 2014, 67, 301–315. [Google Scholar] [CrossRef]
- Lin, H.; Ni, L.; Suleiman, M.T.; Raich, A. Interaction between laterally loaded pile and surrounding soil. J. Geotech. Geoenviron. Eng. 2015, 141, 04014119. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Zhang, M. Lateral vibration of pile groups partially embedded in layered saturated soils. Int. J. Geomech. 2015, 15, 04014063. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Hu, J. Statistical analysis of earthquake-induced bending moment in fixed-head piles embedded in soft clay. J. Eng. Mech. 2017, 143, 04017059. [Google Scholar] [CrossRef]
- Kaneko, O.; Kawamata, S.; Nakai, S.; Sekiguchi, T.; Mukai, T. Analytical study of the main causes of damage to pile foundations during the 2011 off the Pacific coast of Tohoku earthquake. Jpn. Archit. Rev. 2018, 1, 235–244. [Google Scholar] [CrossRef]
- Lopez Jimenez, G.A.; Dias, D.; Jenck, O. Effect of layered liquefiable deposits on the seismic response of soil foundations-structure systems. Soil Dyn. Earthq. Eng. 2019, 124, 1–15. [Google Scholar] [CrossRef]
- Turello, D.F.; Pinto, F.; Sánchez, P.J. Analysis of lateral loading of pile groups using embedded beam elements with interaction surface. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 272–292. [Google Scholar] [CrossRef]
- Keawsawasvong, S.; Ukritchon, B. Failure modes of laterally loaded piles under combined horizontal load and moment considering overburden stress factors. Geotech. Geol. Eng. 2020, 38, 4253–4267. [Google Scholar] [CrossRef]
- Anoyatis, G.; Mylonakis, G. Analytical solution for axially loaded piles in two-layer soil. J. Eng. Mech. 2020, 146, 04020003. [Google Scholar] [CrossRef]
- Shahbazi, M.; Cerato, A.B.; El Naggar, M.H.; Elgamal, A. Evaluation of seismic soil-structure interaction of full-scale grouped helical piles in dense sand. Int. J. Geomech. 2020, 20, 04020228. [Google Scholar] [CrossRef]
- Liu, T.; Wang, X.; Ye, A. Roles of pile-group and cap-rotation effects on seismic failure mechanisms of partially-embedded bridge foundations: Quasi-static tests. Soil Dyn. Earthq. Eng. 2020, 132, 106074. [Google Scholar] [CrossRef]
- Rajeswari, J.S.; Sarkar, R. Performance of piles with different batter angles in laterally spreading soil: A probabilistic investigation. Bull. Earthq. Eng. 2020, 18, 6203–6244. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, L.; Li, X.; Ling, X.; Chan, A. Effect of the combined action of lateral load and axial load on the pile instability in liquefiable soils. Eng. Struct. 2020, 205, 110074. [Google Scholar] [CrossRef]
- Ebadi-Jamkhaneh, M.; Homaioon-Ebrahimi, A.; Kontoni, D.-P.N.; Shokri-Amiri, M. Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction. Geomech. Eng. 2021, 27, 465–479. [Google Scholar] [CrossRef]
- Fattah, M.Y.; Karim, H.H.; Al-Recaby, M.K.M. Vertical and horizontal displacement of model piles in dry soil with horizontal excitation. Proc. Inst. Civ. Eng.-Struct. Build. 2021, 174, 239–258. [Google Scholar] [CrossRef]
- Ali, O.S.; Aggour, M.S. Finite element analysis of the axial dynamic response and efficiency of pile groups. Int. J. Geotech. Eng. 2021, 15, 798–809. [Google Scholar] [CrossRef]
- Saadatinezhad, M.; Lakirouhani, A.; Asli, S.J. Seismic response of non-connected piled raft foundations. Int. J. Geotech. Eng. 2021, 15, 66–80. [Google Scholar] [CrossRef]
- Garala, T.K.; Madabhushi, G.S.P. Role of pile spacing on dynamic behavior of pile groups in layered soils. J. Geotech. Geoenviron. Eng. 2021, 147, 04021005. [Google Scholar] [CrossRef]
- Tran, N.X.; Bong, T.; Yoo, B.-S.; Kim, S.-Y. Evaluation of the soil–pile interface properties in the lateral direction for seismic analysis in sand. Soil Dyn. Earthq. Eng. 2021, 140, 106473. [Google Scholar] [CrossRef]
- Basack, S.; Karami, M.; Karakouzian, M. Pile-soil interaction under cyclic lateral load in loose sand: Experimental and numerical evaluations. Soil Dyn. Earthq. Eng. 2022, 162, 107439. [Google Scholar] [CrossRef]
- Radhima, J.; Kanellopoulos, K.; Gazetas, G. Static and dynamic lateral non-linear pile–soil–pile interaction. Géotechnique 2022, 72, 642–657. [Google Scholar] [CrossRef]
- Ye, Z.; Ai, Y.Z. Vertical dynamic response of a pile embedded in layered transversely isotropic unsaturated soils. J. Geotech. Geoenviron. Eng. 2022, 148, 04021169. [Google Scholar] [CrossRef]
- Timurağaoğlu, M.Ö.; Fahjan, Y.; Doğangün, A. Numerical investigation on p–y method of group piles under static and dynamic loads. Bull. Earthq. Eng. 2022, 20, 7381–7416. [Google Scholar] [CrossRef]
- Fansuri, M.H.; Chang, M.; Saputra, P.D.; Purwanti, N.; Laksmi, A.A.; Harahap, S.; Puspitasari, S.D. Effects of various factors on behaviors of piles and foundation soils due to seismic shaking. Solid Earth Sci. 2022, 7, 252–267. [Google Scholar] [CrossRef]
- Zafar, U.; Goit, C.S.; Saitoh, M. Experimental and numerical investigations on vertical dynamic pile-to-pile interactions considering soil and interface nonlinearities. Bull. Earthq. Eng. 2022, 20, 3117–3142. [Google Scholar] [CrossRef]
- Lee, J.; Do, J. Horizontal behavior and failure mechanism of group suction piles under monotonic loading varying with pile spacing. Ocean. Eng. 2022, 265, 112611. [Google Scholar] [CrossRef]
- Zou, X.; Yang, Z.; Wu, W. Horizontal dynamic response of partially embedded single pile in unsaturated soil under combined loads. Soil Dyn. Earthq. Eng. 2023, 165, 107672. [Google Scholar] [CrossRef]
- Jia, K.; Xu, C.; Dou, P.; Zhang, X.; Song, J. Seismic behavior and failure mechanism of pile-group in mildly sloping liquefiable soils with crusts: Large-scale shaking table experiment. J. Earthq. Eng. 2023, 27, 4260–4287. [Google Scholar] [CrossRef]
- Hu, H.; Gan, G.; Bao, Y.; Guo, X.; Xiong, M.; Han, X.; Chen, K.; Cui, L.; Wang, L. Nonlinear stochastic seismic response analysis of three-dimensional reinforced concrete piles. Buildings 2023, 13, 89. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Orense, R.P.; Lombardi, D. Seismic Design of Foundations: Concepts and Applications; ICE Publishing: Leeds, UK, 2019; ISBN 978-0-7277-6166-8. [Google Scholar]
- Rostami, R.; Mickovski, S.B.; Hytiris, N.; Bhattacharya, S. The dynamic behaviour of pile foundations in seismically liquefiable soils/failure mechanisms, analysis, re-qualification. In Earthquakes-From Tectonics to Buildings; Salazar, W., Ed.; IntechOpen: London, UK, 2021; p. 755. [Google Scholar] [CrossRef]
- Tokimatsu, K.; Oh-Oka, H.; Satake, K.; Shamoto, Y.; Asaka, Y. Effects of lateral ground movements on failure patterns of piles in the 1995 Hyogoken-Nambu earthquake. In Proceedings of a Specialty Conference on Geotechnical Earthquake Engineering and Soil Dynamics III; ASCE Geotechnical Special Publication No. 75; University of Washington Seattle: Seattle, WA, USA; American Society of Civil Engineers Geo-Institute: Reston, VA, USA, 1998; pp. 1175–1181. [Google Scholar]
- Berrill, J.B.; Christensen, S.A.; Keenan, R.P.; Okada, W.; Pettinga, J.R. Case studies of lateral spreading forces on a piled foundation. Geotechnique 2001, 51, 501–517. [Google Scholar] [CrossRef]
- Bobet, A.; Salgado, R.; Loukidis, D. Seismic Design of Deep Foundations, Joint Transportation Research Program; Project No. C-36-36GG, File No. 6-14-33, Paper 188; Purdue University: West Lafayette, IN, USA, 2001; Available online: https://docs.lib.purdue.edu/jtrp/188 (accessed on 12 October 2023).
- Finn, W.D.L.; Fujita, N. Piles in liquefiable soils: Seismic analysis and design issues. Soil Dyn. Earthq. Eng. 2002, 22, 731–742. [Google Scholar] [CrossRef]
- Abdoun, T.; Dobry, R. Evaluation of pile foundation response to lateral spreading. Soil Dyn. Earthq. Eng. 2002, 22, 1051–1058. [Google Scholar] [CrossRef]
- Madabhushi, G.; Knappett, J.; Haigh, S. Design of Pile Foundations in Liquefiable Soils; Imperial College Press: London, UK, 2010. [Google Scholar]
- Hannigan, P.J.; Rausche, F.; Likins, G.E.; Robinson, B.R.; Becker, M.L. Design and Construction of Driven Pile Foundations, Volume I and II; Report No: FHW A-NHI-16-009 and 10; National Highway Institute, U.S. Department of Transportation, Federal Highway Administration: Washington, DC, USA, 2016.
- Lubliner, J.; Oliver, J.; Oller, S.; Onate, E. A plastic-damage model for concrete. Int. J. Solids Struct. 1989, 25, 299–326. [Google Scholar] [CrossRef]
- Dassault Systèmes Simulia Corp. Abaqus, v10; Dassault Systèmes Simulia Corp.: Providence, RI, USA, 2010. [Google Scholar]
- URL-1. Available online: https://github.com/amaelkady/ABAQUS-Tools/tree/main/CDP%20Generator (accessed on 5 April 2023).
- Alejano, L.R.; Alonso, E. Considerations of the dilatancy angle in rocks and rock masses. Int. J. Rock Mech. Min. Sci. 2005, 42, 481–507. [Google Scholar] [CrossRef]
- Ecemis, N. Experimental and numerical modeling on the liquefaction potential and ground settlement of silt-interlayered stratified sands. Soil Dyn. Earthq. Eng. 2021, 144, 106691. [Google Scholar] [CrossRef]
- Reese, L.C.; Van Impe, W.F. Single Piles and Pile Groups under Lateral Loading; CRC Press: Boca Raton, FL, USA, 2011; ISBN 9780415469883. [Google Scholar]
- Zhong, R.; Huang, M. Winkler model for dynamic response of composite caisson–piles foundations: Seismic response. Soil Dyn. Earthq. Eng. 2014, 66, 241–251. [Google Scholar] [CrossRef]
- Jeremić, B.; Jie, G.; Preisig, M.; Tafazzoli, N. Time domain simulation of soil-foundation-structure interaction in non-uniform soils. Earthq. Eng. Struct. Dyn. 2009, 38, 699–718. [Google Scholar] [CrossRef]
- Hashash, Y.M.A.; Musgrove, M.I.; Harmon, J.A.; Okan, I.; Groholski, D.R.; Philipis, C.A.; Park, D. DEEPSOIL 7.0 User Manual; University of Illinois Urbana-Champaign: Urbana, IL, USA, 2017. [Google Scholar]
- Zucca, M.; Crespi, P.; Tropeano, G.; Simoncelli, M. On the influence of shallow underground structures in the evaluation of the seismic signals. Ing. Sismica 2021, 38, 23–35. [Google Scholar]
- URL-2, Ground Motion Database, University of California, Berkeley, CA. Available online: https://ngawest2.berkeley.edu/spectras/680962/searches/new (accessed on 2 July 2023).
Properties | Concrete |
---|---|
Elasticity Modulus (MPa) | 27,000 |
Density (kg/m3) | 2500 |
Poisson’s ratio | 0.20 |
Layer | Density (kg/m3) | Modulus of Elasticity (MPa) | Poisson’s Ratio | Cohesion (MPa) | Friction Angle (deg) | Dilatation Angle (deg) | Shear Wave Velocity (m/s) |
---|---|---|---|---|---|---|---|
Layer 1 (Sand) | 1800 | 40 | 0.25 | 0.00 | 36 | 5 | 298 |
Layer 2 (Silt) | 1800 | 13 | 0.30 | 0.00 | 36 | 5 | 167 |
Bedrock | 2500 | 3500 | 0.35 | 2.55 | 38 | 0 | 2277 |
Event | Record Seq. | Station | Date | Rrup (km) | Magnitude | PGA (g) | Shear Wave Velocity (m/s) |
---|---|---|---|---|---|---|---|
Düzce | 1602 | Bolu | 12 November 1999 | 12.04 | 7.14 | 1.01 | 293.57 |
Kocaeli | 1147 | Ambarlı | 17 August 1999 | 69.62 | 7.51 | 0.253 | 175.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hökelekli, E.; Bayraktar, A.; Şermet, F. Seismic Failure Mechanisms of Concrete Pile Groups in Layered Soft Soil Profiles. Buildings 2024, 14, 177. https://doi.org/10.3390/buildings14010177
Hökelekli E, Bayraktar A, Şermet F. Seismic Failure Mechanisms of Concrete Pile Groups in Layered Soft Soil Profiles. Buildings. 2024; 14(1):177. https://doi.org/10.3390/buildings14010177
Chicago/Turabian StyleHökelekli, Emin, Alemdar Bayraktar, and Fethi Şermet. 2024. "Seismic Failure Mechanisms of Concrete Pile Groups in Layered Soft Soil Profiles" Buildings 14, no. 1: 177. https://doi.org/10.3390/buildings14010177
APA StyleHökelekli, E., Bayraktar, A., & Şermet, F. (2024). Seismic Failure Mechanisms of Concrete Pile Groups in Layered Soft Soil Profiles. Buildings, 14(1), 177. https://doi.org/10.3390/buildings14010177